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Expansive homeomorphisms of surfaces

Jorge Lewowicz

Abstract.  Let f be an expansive homeomorphism of a compact oriented surface M. We
show that S2 does not support such an f, and that f is conjugate to an Anosov diffeomorphism
if M=T?andtoa pseudo-Anosov map if M has genus > 2. These results are consequences
of our description of local stable (unstable) sets: every z € M has a local stable (unstable) set
that consists of the union of r arcs that meet only at z. For each z € M r = 2, except for a
finite number of points, where r > 3.

Introduction

In this paper we study the topological classification of expansive homeomorphisms
of compact orientable surfaces without boundary.

Let M be a compact metric space; a homeomorphism f: M — M is expansive
if there exists o > 0 such that if z,y € M, z # y, then dist(f"(z), f*(y)) >
a for some n € Z. The homeomorphisms f,g are topologically equivalent or
conjugate if there exists another homeomorphism h: M — M such that k o J =
g o h; obviously, expansivity is a conjugacy invariant. Anosov diffeomorphisms,
pseudo-Anosov maps and their smooth models [2], [11], [4], [9], are examples
of expansive homeomorphisms of compact manifolds; the subshifts in KZ (K a
finite set) are also expansive.

As it is well known, there are no expansive homeomorphisms of S!; on
the other hand every compact orientable surface of genus > 1 supports such a
homeomorphism [10]. We prove (Section 4) that there are no expansive homeo-
morphisms of S2.

With respect to topological equivalence of expansive diffeomorphisms, in
[3] it is shown that an Anosov diffeomorphism on the torus T2 is conjugate
to a linear hyperbolic isomorphism. We show (section 5) that every expansive
homeomorphism of T? is also conjugate to such a linear map, and that on compact
orientable surfaces of genus > 2, an expansive homeomorphism is topologically
equivalent to a pseudo-Anosov map (section 6) (I leamned that K. Hiraide has
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obtained the same results). This implies, in particular that, roughly, the dynamics
of an expansive homeomorphism of a surface is preserved under C°-perturbations:
expansive homeomorphisms are topologically stable on T2 and persistent [8] on
other surfaces.

In the proof of the above mentioned results of [3] concerning Anosov dif-
feomorphisms f, the existence of continuous foliations of stable and unstable
manifolds plays a fundamental role. The stable (unstable) set of z consists of
those y such that dist(f™(z), f/*(y)) — 0 for n — oo (resp. n — —oo). The fact
that these sets are differentiable manifolds at any z is a consequence of the rich
uniform behaviour of the tangent map of Anosov diffeomorphisms, which does
not hold, in general, even for smooth expansive diffeomorphisms. On the other
hand, expansivity means, from the topological point of view, that any point of the
space M has a distinctive dynamical behaviour. Therefore a stronger interaction
between the topology on M and the dynamics could be expected. For instance,
while for subshifts on compact perfect spaces, the stable set of some point may
reduce to the point, for expansive homeomorphisms of compact manifolds, this
is never the case. Moreover, any sufficiently small closed neighbourhood of each
point z € M contains a connected subset of the stable (unstable) set of z, that
joins z to the boundary of the neighbourhood (Lemma 2.1). When dim M = 2,
since such a connected stable piece meets an ustable one at one point, we prove,
using the nice topological properties of the plane, that they are locally connected
(see Lemma 2.3). Thus, such a piece contains arcs that join any pair of its points;
from this fact we obtain that, locally, the stable (unstable) set of z is the union of
p arcs, p > 2, which meet only at z and separate the sectors limited by the un-
stable (stable) arcs (Proposition 3.6). Furthermore, every z has a neighbourhood
that consists of points at which, except perhaps z itself, p = 2; therefore p > 2
only on a finite set. On the complement of this set we get continuous transversal
foliations of stable and unstable manifolds.

With arguments analogous to those used in the classical Poincaré- Bendixson’s
theory, we show, essentially, that the lifting of a stable (unstable) manifold to the
universal covering of M is a closed submanifold (see Lemma 4.1); this implies
readily that S does not support expansive homeomorphisms.

The classification of expansive homeomorphisms of T2 follows from the pre-
vious conclusions and from the results of [3] on semiconjugacy: if g is a home-
omorphism of T2 homotopic to a linear hyperbolic isomorphism f, there exists
a continuous surjective h: T2 — T2 such that hog = foh (g is semiconjugate
to f). The fact that the lifting of h to R? is a proper map, together with the
mentioned properties of liftings of stable (unstable) manifolds allow to prove that,
for expansive g, h is also injective. Since some diameters grow exponentially
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under the iterates of a lifting of g, we get that g is homotopic to f (Lemma 5.4).

For surfaces M with higher genus, the results on semiconjugacy of [5] state
that, if g is homotopic to a pseudo-Anosov f, there exists a g-invariant compact set
C c M such that g|C is semiconjugate to f. We show that when g is expansive,
C = M (see Lemma 6.2). The classification of expansive homeomorphisms of
M follows now from arguments similar to those used in the case of the torus and
from Thurston’s isotopy classification theorem [2], [11].

1. Lyapunov functions

Consider an expansive homeomorphism f of a compact connected manifold M,
endowed with some riemannian metric. Let a > 0 be an expansivity constant for
f.ie., dist (f*(z), f"(y)) < e for every n € Z implies = y. Call (M, @) the
suspension of f, p: M x R - M the canonical projection, and M; the manifold
p(M x {t}), t € R; we shall identify M to M,,.

Let V' be a real continuous function defined on a neighbourhood of the diag-
onal of N = Useg M; x M; and such that V' (&,€) = 0 for € € M. Define V,
the derivative of V' along the flow, as

V(f,fl) =3 }1_{%%' (V(¢(§’t)3¢(’7>t) _V(€>’7))

Analogously, define V' by replacing V by V in the above limit. When V(£,7)> 0
and V(f ,n) > 0 for £ # n, we call V a Lyapunov function for the suspension
flow of f (see [7], p. 197). An idea about the geometric meaning of the existence
of a Lyapunov function for such a flow may be obtained as follows. Let k be a
small positive number, £ € M and K; = {n € M;:V (¢(&,t),n) < k}. We may
think of Ugeg K as a tube with axis ¢(¢,t), t € R. The fact that V > 0 implies
that if a trajectory of the suspension flow is in the border of the tube for ¢ = ¢,
then, it stays in the tube in no neighbourhood of t,.

In [7], section 4, the arguments previous to proposition 4.3 show that if f is
an expansive diffeomorphism, there exists a Lyapunov function for its suspension
flow. The fact that f is a diffeomorphism is only used to obtain the flow
defined on N by the vector field aX, where X is the vector field on N defined
by the restriction to N of ¢ x ¢ (that we shall call also ¢), and a is a smooth real
function that vanishes on a compact subset A of N and is positive on N — A.
Since we will use Lyapunov functions for the suspension flow of an expansive
homeomorphism, we include here some simple remarks that allow the use of the
arguments of [7], section 4, to the case of homeomorphisms.

Let N be a compact manifold and A a compact subset of N. Let ¢: N xR —
N be a dynamical system, and for z € A, let o(t) = sup,¢ 4 a(¢(z,t)), where
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a: N — R is a continuous function that vanishes on A and is positive elsewhere.
Obviously, ¢ is continuous and lim,_,q o (t) = 0.

Lemma 1.1. There exists a continuous increasing h:R — R, h(0) = 0, such
that
/ (h(o(t))dt = oo.
0

Proof. Let an be a decreasing sequence an — 0, such that for [t] < an, o(t) <
1/n, and bs — 0 be another decreasing sequence such that Yone1(@nt1—an)/bn=
oo. Pick a continuous increasing h,h(0) =0, so that |h(t)| < bn if 1/(n +1) <
t <1/n; then [y(h(o(t))~'dt > T2 (ans1 — an)/bn.

Clearly, such an h may be taken to be smooth, h’(t) > 0 if t # 0, and
h(1) = 1. Put g = hoq; then g vanishes on A, is positive on N — A, g=1if
a=1, and f,(g(¢(z,t))"'dt = oo for z € A. Now, let us return to our compact
manifold N = uyeg M; x M;, endowed with some metric, and to its flow ¢
defined, for z = (&,9) € N, by ¢(z,t) = (¢(,t), #(n,t)), as mentioned above.
Let 0,6 and a be defined as in [7], p. 201; this time a: N — R is only continuous.
For ze N,z ¢ A= {(£,n) € N:dist(¢,n) > 6} let ¥(z,t) = ¢(z, 7(t)), where
7(t) = r2(t) is the inverse function of t = fJ g(¢(z,s))~'ds, and for z € A, let
Y(z,t) =z.

Lemma 1.2. ¢ is a flow on N.

Proof. We show first that for z ¢ A, ¢ is defined for every ¢t € R. For
such an z, either ¢(z,7*) € A for some 7* > 0, or, because of expansivity,
dist(¢(z,t), A) > A for some A > 0 and each ¢ > 0. Thus, in the second case,
(=, t) is defined for all t > 0; with respect to the first one, let 7* be the first pos-
itive number for which ¢(z,t) € A. Then, f;(g(#(z,8))~! - oo when 7 — *
as may easily be shown through the change of variables s = u+ r* on account of
the previous lemma and the fact that ¢(z,7*) € A. Therefore ¥(z,t) is defined
for all t > 0; the proof for t < 0 is similar. We finish the proof of the lemma
by showing that ¢ is continuous. If z ¢ A, the continuity follows from that of é
and g since g(4(z,t)) > O for t € R; for z € A let zn,tn be such that z, — z,
th—t, zn¢ A and, say, tn >0,n=1,2,....

Since [ ("‘)(g(¢(z,,,s))'1ds) = tn > C7(tn) for some positive constant C,
we have, by taking convergent subsequences, that T(tr) = 7, 0 < 7* < 00. As
9(é(zn, s)) converges to g(¢(z, s)) uniformly on [0,7*], we must have r* = 0,
Thus, ¢(zn,ts) converges to ¢(z,0).

Let f be an homeomorphism of the compact manifold M, and V: Mx M — R
a continuous function that vanishes on the diagonal; for §€,n € M, call AV the
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difference, AV (&,n) = V(£(€), f(n)) - V(€,n). We say that V is a Lyapunov
function for f if V and A(AV) are positive for (¢, %) in a neighbourhood of the
diagonal, £ # 1.

Theorem 1.3. Let f be a homeomorphism of the compact manifold M. The
following assertions are equivalent

i) f is expansive,

ii) There exists a Lyapunov function for the suspension flow of f.
iii) There exists a Lyapunov function for f.

Proof. The equivalence of i) and ii) follows, on account of the previous lemmas,
from the already mentioned arguments in [7], section 4, and from Lemma 3.3
in the same paper. To construct a Lyapunov function for an expansive fletV
be a Lyapunov function for its suspension flow; identify M, with M and define
V(€n) =V(£,n).

Since we shall use, for homeomorphisms, Lemma 2.7 of [8], we recall that
z € M is a stable (unstable) point of the homeomorphism f of the metric space
M if for every e > 0, there exists § > 0 such that y € M and dist(z,y) < §
imply dist(f"(z), f*(y)) < € for n > 0 (resp. n < 0).

Lemma 1.4. An expansive homeomorphism of a compact manifold has no
stable (unstable) points.

Proof. See [8], p. 573.

2. Stable and unstable sets
Let M be a riemannian manifold and f an expansive homeomorphism of M,
with expansivity constant « > 0. For § > 0, and z € M, let Bs(z) = {y €
M:dist(z,y) < 6}; choose 61,62,k,0 < & < & < a, k> 0 in such a way that
for every z € M,

Bs,(z) c {y € M:V (z,y) < k} C By, (2);
here, as in the previous section, V' denotes a Lyapunov function for the suspension
flow of f. Also, we keep with the identification of M to M,.

Lemma 2.1. Let Ac M be an open set, z € A c B;, (). Then there exists a
compact connected set C, z € C c clos(A), CndA # O, such that for every

yeC, dist(f"(z), f*(y)) < 62, f n > 0.

Proof. Assume this is not the case. Then there exists N > 0 so that for every
compact connected D c clos(A) and joining z to d A, there exists z € D and
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n,0 <n < N, such that dist(f"(z), f*(y)) > 6;. Otherwise, for all n > 0, we
could find a compact connected set Dy, C clos(A), joining z to d A and such that
for every y € Dy, dist(f™(z), f™(y)) < 63, 0 < m < n. But then

Dy = ﬂ clos (U Dj)
n=0 j=n
will satisfy the thesis of the lemma; a contradiction.

Recall that p denotes the canonical projection onto M, and ¢ the suspension
flow. Let { = p(z,0) and K; = {n € M;:V(¢(&,t),n) < k}, t € R. For
arbitrarily large T' > 0, the connected component of Ky that contains #(&,T),
must have points 5 such that ¢(n,t — T') ¢ clos(K;) for some t, 0 < ¢t < T.
Indeed, if this were not so, for sufficiently large T and every n in the mentioned
component of Kr, V(¢(&,t +T),é(n,t)) <k, -T <t <O0;if ¢ = p(z,0),
z € M, is an w-limit point of ¢ we get that V (¢(¢,t), é(n,t)) < k, for t < 0
and # in some neighbourhood of ¢. It follows easily that z would be an unstable
point of f in contradiction with lemma 1.4.

Choose then T > N and 7, such that the above mentioned property holds.
Let a:[0,1] — K7 be an arc, a(0) = ¢(¢,T), a(1) = 5, and s* the supremum
of those s € [0, 1] such that, for each u in [0,s], ¢(a(u),t-T) e K, 0<t< T,
and ¢(a(u),-T) € 4; since V > 0, ¢(a(s*), t-T)eKrfor0<t<T and
consequently, ¢(a(s*),~T) € A. Thus, if b = ¢(a([0,s°]),-T), f"(b) e By,
for 0 < n < N, which is absurd.

For e M and 0 < 6§ < a, let S;(z), the §-stable set of z, be

Ss(z) = {y € M: dist(f"(z), f*(y)) <6, n > 0}.

Lemma 2.2. Let 0 < §' < §; there exists o > 0 such that if y e Ss(z) and
dist(z,y) < o, then y € Ss:i(z).

Proof. Take k > O such that for every z,y € M, V(z,y) < k implies
dist(z,y) < 6'. Let y € S(z); if for some t* > 0, V (¢(z,t*), #(y,t*)) > 0,
the same is true for ¢ > ¢t* and therefore V (¢(z,t),(y,t)) would be increas-
mg for t > t* which leads easily to a contradiction with expansivity. Thus
V(4(z,t), ¢(y,t)) < 0 for ¢t > 0 and consequently, for these ¢,

V(4(z,t),6(y,t)) <k
provided that V'(z,y) < k. Choose o such that B, (z) c {y: V(x, y) < k}.
From now on we shall assume that « is so small that any subset of diameter
a is contained in the domain of a coordinate map of M; also we shall consider
these subsets of M as subspaces of the metric space R? (or S$2) and talk about
coordinate axis, straight lines, etc.
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Let C;(z) be the connected component of Sj(z) such that z € Cj(z).

Lemma 2.3. C4(z) is locally connected at z.

Proof. Let 0, > 0 be so small that for any 0 < o < o we have that

i) for y € Bo(z) there is a connected set joining y to dBs(z), contained in
clos(By(z)) N S5/5(y) (Lemma 2.1), and
ii) if y € S5(z) and y € Bo(z) then y € S;/5(z) (Lemma 2.2).
For such a o and y, let D; be the connected component of clos(B,(z)) n
C;s(z) including z, and if y belongs to Cy(z) let us call Dy the connected

component of clos(Bs(z)) N Cy(z) that contains y; on account of i), we may
assert that both D and Dy meet the boundary of Bj(z).

Arguing again by contradiction, we may assume that for some o in the above
conditions there are y € C;(z) arbitrarily close to z, such that Dz n Dy is empty.
Let S’ be the straight line segment joining z to such a y close to z. There is a first
point z in S’ that belongs to Dy and a point u € Dz n S’ such that the segment
S c S’ joining u to z meets Dy only in z and D only in u. Analogously, there
is a small arc A of the circumference 8 B,(z) that meets Dz U S U Dy only in
two points, one in D and the other one in Dy. As Dz u S u Dy is connected,
D; U S u Dy u A separates R? (see [6], p. 506), but since neither Dz nor Dy
separate R? — for otherwise f would have a stable point — no union of three of
the four Dz, Dy, S, A, separates RZ, as may be shown applying theorem 7 of
[6], p. 507. Therefore, the boundary of any component of the complement of
H = Hy = Dz uS uDyu A, must include the arc A; it follows easily that
there are only two components of the complement of H, one of them contains the
exterior of By (z), while the other one, say G = Gy, is bounded.

On account of the compactness of D it is easy to see that there exists
7 > 0 with the following property: if u,v € D, dist(u,v) > /8, then
dist(U5(w), u)
>« for any w such that dist(w, v) < 7. Here Uy 5(w) denotes the §/2-unstable
set of w; the §-unstable set of a point z is defined as

Us(z) = {y: dist(f"(z), f"(v)) <6, n<0}.

Take such a v < ¢/8 and choose p > O such that if dist(z,y) < p, the
corresponding component Gy is contained in the set of points whose distance to
D: is less than «. The existence of such a p may be shown in the following
way: each z € Bo(z), z ¢ D, may be joined to the exterior of B,(z) by a
compact arc a included in the complement of D,; as any connected set that
contains z and is contained in S;(z) N Bo(z) must be included in Dy, if y is
close enough to z, and y € C4(z), Dz n Dy = @, then the corresponding Hy
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does not meet the arc a. For, otherwise, we take a sequence of yn satisfying
the same conditions as the previous, Yn — z, and show that the intersection of
the sets F, = clos(u;‘;"D,’.), is a connected set, and therefore contained in
D:, that meets the arc a; a contradiction. Thus, there exists a p; > 0, such
that if dist(y, Dz) < p, there is a neighbourhood of z disjoint from Gy; then a
compactness argument on the set {z € B,(z): dist(z, Dz) > «} permits to find
such a p. Pick y € C4(z), Dzn Dy = @, such that dist(Gy, D:) < v, and denote
Gy again by G.

Let P be a poligonal line of sides parallel to the coordinate axes, that joins
an interior point of S to an interior point of A, and is included in G, except for
its endpoints. Let Q be a straight line such that

i) dist(Q,SuA) > o/4.
ii) @n P # & but Qn P contains no vertex of P.
iii) @ separates S from A.

If we QnG, Us/p(w) does not cut S u A because there exists v e Dy,
dist(v,w) < 4 so dist(v,z) > |dist(z, w) - dist(v,w)| > o/4 - 7 > o/8
and according to the above mentioned properties characterizing «, this implies
dist(Uy/5(w),z) > ~; similarly dist(v, u) > o/8 for {u} = Dz n A.

Q cuts P in a finite set; the number of points in this set must be odd for
otherwise, S and A would lie in the same component of the complement of Q,
in contradiction with iii). On the other hand @nG consists of a union of disjoint
open segments of @, and one of them must contain an odd number of points of
P. Assume that one of the endpoints of such a segment is in Dy.

Dy Q
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Then we claim that the other one lies on Dy. Indeed, consider H; = DyuPu
S1,U A; where S; c S, A; C A, are segments with one endpoint in Dy and the
other one in P. Since D; is connected and does not meet Hj, if both endpoints
of the segment belonged to D they would belong to the same component of the
complement of Hy; but this is impossible, since each time the segment meets P,
it goes from one component of H; to the other one. Thus, we have found an
open segment Q° contained in G, whose endpoints belong to D, and Dy,.

Let Q7 be the subset of Q° that consist of those points whose § /2-unstable set
does not meet D;; Q1 is open and also non-empty, since the endpoint of Q] that
belongs to Dy has, because of expansivity, the property defining Q3. Similarly,
Q° - Q1 consists of those points whose §/2-unstable set does not meet Dy, and
is also open and non-empty. (Recall that, by previous arguments, these unstable
sets do not meet S U A). Thus, we get a contradiction.

Assume now that § < /3 and let y € Cj(z); then Cy(z) c Cy5(y). By the
previous lemma, Cy4(y) is locally connected at y, and therefore for any o > 0
and any z close enough to y,z € Cjs(z), there exists a compact connected set
C joining y to z such that C ¢ Bo(y) N Cys(y). Cs(z)uC c Cys(y) and so,
Cs(z) UC can not separate R?. Consequently, by [6], p. 506, Cs(z) nC must be
connected; thus, Cs(z) nC is a connected set joining y to z within B, (y). We
have then proved the following corollary.

Corollary 2.4. For any z € M, C4(z) is compact connected and locally
connected.

In the sequel, arc will mean a homeomorphic image of [0, 1].

Corollary 2.5. For z in M and any two points p,q € Cs(z) there is an arc,
contained in Cs(z), joining p to q.

Proof. See [6] Section 50.

3. Local product structure

Let 0,6, 0 < 0 < § < a, be so that for any z € M and z € B,(z), the
intersections Sj/5(2) N8 Bs(z) and Uj /2(2) N 8 Bs(z) are not empty, and such
that if z € S5 ('a:g, then z € S5 /,(z). Call C = C(z,0) the connected component
of Cs(z) n By(z) that contains z; from the previous arguments it follows that C
is locally connected and that any two points on C' may be joined within C, by an
arc.

Consider the family A of all arcs contained in C and having their origins at
z and their endpoints on 3 B.(z). When two arcs of A meet at a naint differant



than z, they have in common an arc through z because C does not separate R?
and has empty interior. Among the arcs of A we define an equivalence relation
according to which the arc 4 is equivalent to the arc b if 4N b strictly contains

{z}.

Lemma 3.1. There are only a finite number of equivalence classes.

Proof. Let p > 0 be so that
dist(Us(z) N8 Bs(z), CnAdBs(z))> p,

and assume that for two non-equivalent arcs a, be A, their endpoints determine
on 8Bs(z) a compact arc ¢ with diameter less than p. Then Us(z) does not
cut & Let X be the union of the curve & U b U & with its interior and D the
connected component containing z of Uy /2 (z) n X. There is an open connected
neighbourhood N of D in X, such that for every z in the closure of N » Us /z(z)n&
is void. By [6], p. 437, the boundary B of the connected component of X — N
that contains ¢, is connected; z ¢ B and also, the intersections B n & and B n b
are not empty. Since for z € B, Uy /5(2) N dB,(z) # & and Uspp(z)ne =2,
Uy /2(2) must cut either & or b. Then the points of B may be classified according
to whether the §/2-unstable sets through them meet @ or 5; both classes are open
and non-void, which is absurd. Thus, any set of endpoints of representatives of
different classes must be finite.

Assume now that, at x, there are least two equivalence classes of arcs of A.
Then it is easy to see that there are non-equivalent arcs &,3 € A such that for some
arc ¢ C dBy(z), auub is a Jordan curve and C only meets 2 at its endpoints.
Call again X the union of 4uéub with its interior and D the connected component
of Us5(z) n X that contains {z}.

Lemma 3.2. D separates X and therefore there is an arc in D Jjoining z to
a point of ¢.

Proof. If D does not meet & we may repeat the connectedness argument in the
proof of the previous lemma to reach a contradiction. The last assertion follows
from the results of the preceding section applied to f~1.

Let ¢;,&; be arcs contained in & so that &, begins at the endpoint of &, &,
ends at the endpoint of b, and D n (¢; u ¢2) = @. Let N be an open connected
neighbourhood of z in X such that for y € N the connected component of
Ss/2(¢) né that contains {y} is, in turn, included in ¢ Ué;. Moreover, we choose
N and &,, &, such that the §/2-unstable set through any point of N does not meet
¢ in points that belong to &, Ué,. Let Q be the subset of N that consist of those
y such that
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i) There is an arc 3(y) through y, 3(y) c S; /2(y) that intersects &; and &,,
ii) . There is an arc #(y) through y, a(y) c Uy /2(y), that meets & and 8 B, (z) - &.

In the sequel, we shall say that y € M has a local product structure if there
is a homeomorphism of R? onto an open neighbourhood of y such that it maps
horizontal (vertical) lines onto open subsets of local stable (resp. unstable) sets.

Lemma 3.3. Q is open and non-void and every y € Q n int(X) has a local
product structure.

Proof. Let us first show that z € Q. In the presence of non-equivalent arcs 4
and b, it is clear that we can find a set X', analogous to X, bordered by arcs
a b, e a b c Ss/2(2); & c 3By (z), and such that ¢’ and & have no interior
point in common. By lemma 3.2, there exists D' ¢ X' defined in a similar way
as our previous D, D'n D = {z} and an arc contained in D’ and joining z to an
interior point of &. This proves that z satisfies ii); as i) is obviously true for z,
we get T € Q.

Now we show that @ is open in N. Let y € Q; for z close t0 y,z € a(y),
the arguments of the previous paragraph may be applied to get that the connected
component of Sy /5(2) N Bo(z) that contains {z} meets &, and &,. Similarly, for
t close to y but on 3(y), the corresponding connected component has to cut &
and 8 By (z) - ¢. The function that sends (z,t) to the unique intersection point of
S5/2(2) and Uy 5(t) is continuous, injective and open, by invariance of domain.
This proves the lemma.

Corollary 34. Let z € M be such that there are at least two non-equivalent
arcs in A. Then there is a neighbourhood of z such that each y in that
neighbourhood y # z, has a local product structure.

Proof. To construct such a neighbourhood it is enough to remark that if a € A
there is a non trivial arc &, beginning at z, such that if &' is equivalent to @, then
€ C @' (see the proof of Lemma 3.1), and to replace stable arcs by unstable ones
to include the points in the border of sectors such as our previous X.

Lemma 3.5. For each = € M there is o > 0 such that the family A has at
least two non-equivalent arcs.

Proof. Assume that for some z we have that for every ¢ > 0 the family A
defined by z and o has only one class of arcs. Pick a small o; let the arc & with
origin z.and endpoint z € d Bo(z) be a representative of that class. If C, the
connected component of Ss(z) N By(z) that contains {z}, also contains points
other than those in &, we join them to z, withn C, by all possible arcs. If all these
arcs contain @, it is easy to see that for some smaller ¢, C would consist of only



140 JORGE LEWOWICZ

one arc joining z to dBy(z). Assume then that there is a point v € C, v ¢ &,
that may be joined to z, within C, by an arc which does not contain 4. Thus,
there is a point u € &, u # =z, andanarcIA;c:Cwithoriginuandendpoim v,
whose mnersecuon with @ is {u}. Let J be a Jordan curve through 2z and v such
that & and b lie in its interior except for their endpoints. Let w € &, w # z be the
closest point to z such that there is an arc ¢ c C with origin w and endpoint on
J, ¢né = {w} (lemma 3.1). Consequently, the arc contained in &, with origin z
and endpoint w, belongs (except for w) to the interior of one of the stable sectors,
say X, defined as previously, with w replacing z and J instead of 8 B,(z). But
on account of the local product structure on a neighbourhood of w in X, this
implies that the stable set of w meets twice some unstable set, which is absurd.

Thus for some o > 0, C consists of an arc & interior to B,(z) except for
its endpoint. All interior points of & have a local product structure and therefore
their local unstable sets are arcs transversal to @. A connectedness argument on
the boundary of a small neighbourhood of & (see [6], p. 437) permits to find a
stable arc that has to cut dB,(z) up and down a (but close to &): if not, we
break the connectedness of the boundary of the mentioned small neighbourhood
of a. These arcs meet twice some of those local unstable arcs.

Proposition 3.6. Except for a finite number of points, that we shall call
singular, every z € M has a local product structure. Any singular point y
is periodic and its local stable (unstable) set consist of the union of r arcs
that meet only at y; r > 3. The stable (unstable) arcs separate unstable ( resp.
stable) sectors.

Proof. Lemma 3.5 and corollary 3.4 imply that singular points can not accumu-
late; thus, there are only a finite number of them. Since the set of singular points
is f-invariant, all of them are periodic. The rest of the assertions are also easy
consequences of our previous results.

4. The sphere

A rectangle in M will be the image of [0, 1] x [0, 1] through a homeomorphism that
maps horizontal (vertical) segments into stable (resp. unstable) arcs; we assume
that a rectangle has a diameter less than « and that it may contain at most one
singular point, and only as one of its vertices.

By standard procedures we may construct a finite family R of rectangles R;,
whose union is M, and such that, if § # j, R;nR; = 9R; NAR;, and that this
intersection consists of an arc included in one of the sides of each rectangle, when
it is non-void. Take a point z, , on an unstable side of, say, R;, (it may be a

EXPANSIVE HOMEOMORPHISMS OF SURFACES 125

vertex), such that it belongs to no stable leaf through any singular point. In the
unstable side of R, opposite to that of z; and on the stable arc of R; through z,,
we take z,; since z; belongs to the unstable side of another rectangle, say Ry, we
may continue with the same procedure. We find, in this way, a finite collection
of rectangles and points, that we shall denote by R;,z;, i =1,... ,n, so that

) Ry#R;ifi#73,4,7=1,...,n-1,and R; = Rn.
ii) For ¢ =2,...,n, z; belongs to an unstable side of R;_, and of R;.

In particular, zn belongs either to the unstable side of R; through z; or
to the one where z; lies. In the first case we define z,,; continuing, from
Zn, the previous procedure. Then, in this case, the union of the stable arcs

T2Z3,... ,ZTn_1Zn With the unstable arc z,,,;z, is a Jordan curve, as well as, in
the other case, the union of the stable arcs z,zs,... ,,_;Zn With the unstable
Inlg.

Let M be homeomorphic to S? and let C be a connected component of the
complement, say, the interior, of one of the Jordan curves defined previously.

For any z € M there is a sequence z, k=0,1,..., 5o that 2o = z, 2, ),
is a stable arc contained in a rectangle of R and ZTpTi41 nzk,zk,ﬂ consists of at
most one point if k # k',k,k' = 0,1,.... Moreover, for k =0,1,..., z; and
z41 lie on opposite sides of some rectangle. The existence of such a sequence
(we shall call the union of the arcs z,z,,; an infinite stable prolongation of
Tozy; an H stable prolongation, if k = 0,1,... , H), is an easy consequence of
the non-existence of stable closed curves.

Lemma 4.1. C contains some infinite stable prolongation

Proof. Assume that C' contains some singular point. If the thesis of the lemma
were not true, we could find a Jordan curve J, J = aj Uay Ub, where ay,a, are
arcs of the stable set of a singular point p, a; nay = {p}, and b is an arc included
in 4123 (Or in znz3). Moreover, we may choose J so that no singular point
belongs to the interior of J (contained in C). Then, the continuous function that
sends z € b to the first point y € b where the stable prolongation of z entering C
meets b again, would have a fixed point. Since this is absurd, and as the case when
C contains no singular point may be handled in the same way, this completes the
proof.

Theorem 4.2. There are no expansive homeomorphisms of S2.

Proof. Let f be an expansive homeomorphism of S% and let C be as above. The
previous lemma permits to construct in the same way as the border of C, a Jordan
curve whose interior. C. is pronerlv included in ¥ and containg an infinite ctahla
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prolongation. Consider a maximal family of sets like clos(C), clos(C}), ordered
by inclusion. It is easy to see that the intersection of such a family contains an
infinite stable prolongation, and, then, it contains properly a set that belongs to
the family: a contradiction.

5. The torus

Let f be a lifting of f to the universal covering M =~ R? or S? of M and let 3,
u, be, respectively, the corresponding liftings of a stable and an unstable leaf of
f- Clearly 3(%) is a stable (unstable) leaf of f. If 3 and & meet at two points we
find a Jordan curve whose boundary is the union of an arc of 3 with an arcof ©
and therefore, by previous arguments, it contains an infinite stable (or unstable)
semi-leaf. Since the reasoning of lemma 3.2 applies essentially in the same way,
this is absurd; therefore we may state:

Corollary 5.1. 3n4u is either empty or consists of one point.

Now we assume that M = T? and that f is homotopic to an Anosov dif-
feomorphism g; by [3], f is semi-conjugate to g. Let then h:T?2 — TZ be a
continuous surjective map, ho f = goh, and let f,g,h be liftings of f,g,h such
that h:R? — R? is a proper map that satisfies ko f =g o h (see [3], p. 62-64).

Let R be a family of rectangles of T2 with the properties of the previous one,
and moreover, such that if an unstable (stable) arc g is contained in the union of
two rectangles of R, then, diam(f"()) is less than the expansivity constant o
for any n < 0 (resp. n > 0). Let R be the lifting of R and assume that y belongs
to the unstable leaf u through =, T # y. Let 8 be the arc of u with endpoints
Z,y; then diam(?"(ﬂ)) — oo, for otherwise there would exist a positive integer
K and a subsequence n;, + = 1,2..., such that Tm(ﬂ) would be contained, for
m = n;, in the union of K rectangles of R. Choose a partition of 8 as the union
of more than K sub-arcs; we have, on account of the properties of R with respect
to o, that there exists N such that for n > N, the 7” image of any one of the
arcs of the partition contains an entire unstable arc of some rectangle of R (if
not there would be an arc say v, such that for n > 0 diamf™(4) < «, which is
absurd). Since by previous arguments, 7"(‘11) can not meet twice a rectangle of R
we get that for n > N, 7n(ﬂ) can not be included in the union of K rectangles.

Now we prove the following lemma which admits a similar version for points
on a stable arc and n — —co.

Lemma 5.2. lim dist(f" (2),f" (7)) = o.

Proof. If this were not true we could find another sequence m.: — oo of positive
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integers m;, a compact set L ¢ M, and, for each m = m;, points Zm,¥,, € L,
such that

D) Zm=1 (Z)+em Un=7 (Y)+ em, where em € Z x Z, and

ii) the diameter of the unstable arcs with endpoints Zm,¥,, tends to infinite.

In these conditions it is easy, on account of ii), to find points Z,,, W, in the
straight line segment joining Tm to v,,, such that the stable leaf through Z,, and
the unstable leaf through w., meet at points whose distance to Zm Or Wy, tends
to infinite with m. But on account of the properties of Anosov diffeomorphisms
i.e., for Z,7 € R? the stable leaf of Z and the unstable leaf of § meet at exactly
one point (see [3], p. 89) and the fact that h is a proper map, this is absurd as it
may be shown easily by taking a subsequence of m; such that the corresponding
zm and wm converge.

It follows from the preceding lemma that if ¥y lies in the unstable set of Z,
whether this set contains singular points or not, h(Z) # h(y) provided = = .
For otherwise we would have for n > 0,

A(f" @) =7"() =3"(R(@) =% (7))
and then, we could find en € Z x Z such that " (Z) + en, J () + en lic in the
pre-image of the fundamental square in R2. But since dist(f (), 7 (7)) — oo,
this is absurd.

Consequently f has no singular points, and this, in turn implies that A is a
covering map since if Z,Z have the same h image and Z lies in the neighbourhood
of Z with a local product structure we could find ¥ in the unstable leaf through
and such that h(Z) = h(y) and

sup dist(F"(z), T (y)) < oo,

in contradiction with lemma 5.2. Thus h is a homeomorphism. We have proved
then the following theorem.

Theorem 5.3. If f is expansive and homotopic to an Anosov diffeomorphism
g of T%, then f is conjugate to g.

Let f:T2 — T2 be expansive and f:R? — R? a lifting of f. Let A be the
matrix of integer elements and determinant +1 such that f(zZ +v) = f(z) + Av
for every Z € R%, v € Z x Z. Let H > 0 be such that “f(E)“ < H for every

T in the fundamental square, and let Z € R%, T = Z, + v, where T, belongs
to the fundamental square and vy € Z x Z. Then f(z) = f(%o) + Avp and
f(Zo) = %1+, where Z; belongs also to the fundamental square and v; € Z x Z,
|vill < H+1. If for £ =0,1,..., we define Z; 4 by f(Z;) = Z;yq +7;41 Where
x;,, belongs to the fundamental square v;,, € Z x Z, ||v; 1|l < H + 1, we have
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that )
7@ =3 +y+ Ay + -+ Ay,
and if for some s > 0, ” Al ” < st, we get that, for some C,D > 0,
—
7@
Let R be a finite family of rectangles, as before. However we choose this
time the rectangles so small that no unstable arc included in the union of 4
rectangles of R can have a T"-image, n < 0, with diameter greater than o,
for some 0, 0 < 0 < a. Let m > 0 be such that the Tm-image of any unstable
segment of a rectangle (i.e. an unstable arc, contained in the rectangle, and joining
opposite stable sides of it) in R meets at least 4 rectangles; consequently, this
image contains unstable segments of 2 rectangles. Since by previous arguments
no unstable leaf may contain points on different unstable arcs of a R rectangle,

Tkm (I;) contains unstable segments of at least 2* rectangles, provided b is itself, an
unstable segment. On the other hand, if for s > 0, n=1,... we had A" < sn,

the number of rectangles met by Tkm(l;) would be, according to the previous
inequalities, less than Bk* for some B > 0. Thus, A must be hyperbolic (for
otherwise ”A‘” < st forsome s >0andi=1,2...).

<C+2Di(i +1).

Lemma 5.4. Let f:T? — T? be an expansive homeomorphism; then f is
homotopic to an Anosov diffeomorphism.

Proof. The linear map A:R? — R? considered above, is the lifting of a linear
Anosov isomorphism g of T?; f is homotopic to g.

Theorem $.5. Let f:T% — T2 be an expansive homeomorphism, then f is
conjugate to an Anosov diffeomorphism.

6. Surfaces of genus > 2

Let M be a surface of genus greater then 1, and f:M — M an expansive
homeomorphism. Let g: M — M be a pseudo-Anosov map isotopic to f, M the
universal covering of M, f, g suitable liftings of f and g to M, and D,, D,
equivariant pseudo-metrics D,, Dy: M x M — R such that D, (Z,9) (Du(Z,9))
is the infimum of the length in terms of the g-measure transyerse to the unstable
(resp. stable) foliation, of the arcs joining Z to Y [11,2]. There exists A > 1 such
that
—-5-' (g_l(i))g—l(g)) = ’\—5‘ (’.’E,ﬂ),ﬁu@(f),i(y)) = /\Bu(i,ﬂ);

furthermore, D = D, + Dy, is an equivariant metric on M.
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Lemma 6.1. There exists P > 0 such that for any T which does not_éelong
to stable or unstable sets of the f singular points, there exists § € M such
that D(F"(z),5"(y)) < P, n 0.

Proof. For P > 0and ¢ € M, let By(§), denote the D balls of radius P centered
at . Let WZ (Z) be a closed arc of the unstable manifold through Z,% € W] (Z),
that meets the boundary of Bp(Z) only at both endpoints. Assume that for no
vewl (%), D(3*(y),f (%)) < P, n > 0. Then there exists N > 0, such that
for every y € W.,T (Z) it is possible to find n(y), 0 < n(y) < N, such that
DE@WE).7"" @) > P

Let M, be the suspension of (M, ) and let p > 0 be such that if d, (%)
denotes the usual open disk of M, with radius p and centre Z, we have that
$n+(dp(Z)) contains ¢(Bp(f (Z)) for 0 < n< N, 0<t <1 Now we
consider arcs w,(4(Z,t)) through ¢(z,t), of the stable manifold of ¢(Z,t), such
that their endpoints lie outside of ¢;(d,(Z)), 0 <t < N, and moreover, such that
these arcs depend continuously on ¢. Also, let U(Z) be a small closed arc of the
f unstable manifold through Z, Z € int(T (%)), such that ¢,(T(Z)) < ¢:(d,(Z)),
0<t< N; ¢n(U(F)) c Bp(F" (%)), 0<n< N. Let Q(t), 0 <t < N be the ¢,
image of one of the points of U (Z); for points

Ze¢(ds(2)), Z¢ ws(4(3,1)), O<t<N,

we consider the modulo 2 intersection number £(Z) of the arc w,(é(z,t)) with
an arc joining Z to Q(t) within ¢¢(d,(Z)). Let a > 0; if for 0 < t < a, ¢(Z,1) ¢
ws($(F"(2),t)) and $(,t) € Pnse (d,(z)). then clearly, i(¢(2,t)) is constant
on [0,a]. Thus, if 0 < n < N,_E(E,f (%)) < P and Z does not belong to the
whole stable manifold through f (Z), ¢(f(z)) = i(2).

Let

~> max{ sp D33, o B RO
zeM zeM

H>3R(A-1)"' and P> (AH+2R)(A-1)"1.

Assume that for § in Wy(Z) there is m, 0 < m < N, such that
D@, 7)) < P
for 0 <n < mand D(g™(y),7 (%)) > P. Let % stand for g™ (y); if
Du(zT"(EN\>P-H
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we would have, since D, is a pseudometric, that
—_ 1 s -1 - e . I -
Dug™'(=),f" (@) 2 Du(a (@), 577" (@) - R
=AD,(z, 1" (z))-R
>AP-H)-R
> P
which is absurd. Therefore Du(z,f (%)) > H and then
- =, =m+1,__ Y o g
Du(f(2),f"" (%)) 2 Du(3(2),5(f " (z)) - 2R
>AH-2R>H+R
= <k, —mtk,__ .
Thus, D(f"(z), Vi (%)) > H for k > 0; it follows that Z does not belong
to the f-stable manifold through f" (Z) and that, in case D(z,7 () = P,
i(z) =i(f(2)). On the other hand, if D(f(2),%) < R, we have that
— —m+l, ., _ — = i
Du(f™" (2),%) + Du(@, 7)) 2 Dul(7™"(2), £ (2))
which implies T)'u(fmﬂ(i),ﬁ) > H+ R - R = H; therefore T does not be-
long to the entire f-stable manifold of ™' () and i(v) = i(f(z)). Since
D(g(z), f(Z)) < R we get :
i(9(2) =i(f(2)) = i(2).
Let g € W (z) and let n(y), 0 < y < n(y) < N, be the first positive integer
such that D(g"@ (), ?n(ﬁ) (z)) > P. Since the previous arguments imply that
7 (¥) does not belong to the f-stable manifold of 7"(”) (Z) we may define

3(y) as the intersection number ¢(¢"((g)); j(¥) = 0 or 1. We want to show
now that the sets

io={7ewl(@): iz =0},
a={vew{(2): jz) =1}

are both open. I_fny is such that D(g"(g),f (%)) < P foreach n, 0 < n <n(y),

orif D(g"(y),f (%)) <Pfor0<n < n(y)-1and
DE®-'@,7"" @) =P

we know that y has a neighbourhood whose points Z satisfy J(Z) = 7(¥). So,

let us try to choose P in order to have that if D(§"(3).f" (z)) = P for some n,
0<n<n(y), then n=n(y) -1
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Consider, for a,b € M,
A =D(g(a), 7 (b)) - 2D(a,b) + D(g~*(a), 7" (3))
2 B(Zj(a),'j(b)) R 25(“: b) +5(§_1(a)15_1(b)) -R
>(A+ 271 -2)D(a,b) - 2R.

Let r = A+ A~1 — 2 and choose P to satisfy also P > 2r~1R; then if
D(a,b) = P, A > 0. Thus if D(a,b) = P and D(5~(a),f (b)) < P we get
that D(g(a), f(b)) > P. Hence, with this choice of P, we have that if for some
n,0<n < n(y), DE"(¥),f (%)) = P, then n = n(y) — 1, proving that j, and
J1 are open.

Let now e stand for an endpoint of W/ (z); if Ds(Z,e) > H, we get that
Du(f'(2).7 ' (€)) 2 A - 2R > B, and that B(7 "(2),7 (e)) > &,
k > 0, which is absurd. Thus Dy(Z,e) > P — H and therefore

D(f(2),3(e)) 2 Du(f(2),9(e)) > A(P - H) - R > P.
Hence it follows from the previous arguments that j, and 7, are non-void; this
completes the proof.

Lemma 6.2. For each T € M there exists a unique ¥ € M such that
D(f"(z),3"(3) < P.nel

Proof. From the previous lemma it follows easily that for each T € M which is
not on the stable or unstable sets of the f-singular points, there exist § € M such
that D(f"(%),9"(¥)) < P, n € Z. In fact, let §,, have, with respect to 7 @),
n < 0, the property stated in that lemma; take y to be a limit point of §"(yn).
Since those Z constitute a dense subset of M, we may complete the proof of the
lemma using the expansivity properties of the liftings of pseudo Anosov maps
i.e., that D(g™(%),9"(¥)) < k. n € Z, implies T = [5].

Let h:T — Y. then it follows from [5] (see, Theorems 1,2 and Lemma 2.2)
that h is a surjective semiconjugacy between f and §; furthermore h is a proper
map. Let R be a family of rectangles of f as in the previous section. As in that
section, we may show that k is injective on each rectangle of R, on account of
the fact that also for pseudo Anosov maps, if Z, — Z, §,, — ¥ and the stable sets
of Zn meets the unstable set of ¥,,, n > 0, then the unstable set of Y, meets the
stable set of Z. Since, by the same arguments, two prongs of a singular point can
not go to the same prong of the image point, we conclude that every point Z has
a neighbourhood where h is injective; thus, h is a covering map. We have then
proved the following theorem.

Theorem 6.3. If f is expansive and homotopic to a pseudo Anosov §, then f
is conjugate to g.
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Lemma 6.4. An expansive homeomorphism can not preserve any non trivial
isotopy class.

Proof. Assume that for some expansive homeomorphism the assertion of the
lemma is not true. Let f be an iterate of this homeomorphism such that there is a
homeomorphic image of S, say o, through a fixed (it is not difficult to show the
existence of a periodic non-singular point of an expansive homeomorphism) non
singular point z of f, whose non trivial isotopy class is preserved under f. We
may construct, as in the proof of proposition II.6, exposé 5 of [2], a simple curve
~ through z, isotopic to o that consists of unstable arcs plus arcs transversal
to both foliations plus singular points and is transversal to the stable foliation.
Also we may construct another simple closed curve o through z, isotopic to o,
that consist of a finite union of stable and unstable arcs (not containing singular
points). Clearly f"(«) and f~™(c) are isotopic, n,m > 0. Lemma 2.4 and 2.5
of [1] imply, for large n and m, the existence of a very large unstable arc Q in
f"(v) that is continuously mapped, through the stable leaves starting at (2, to
a very small unstable arc ' c f~™(a). Indeed, this is a consequence of the
existence of a disk (or a ring) bounded by an arc in f"(~) and an arc in f (),
our previous results concerning infinite prolongations of stable leaves contained
in disks, together with the finiteness of the total number of prongs and the fact
that the number of unstable arcs of f~™(a), m =1,2..., is fixed.

Suppose now that we have a family of rectangles as the previous ones. Since,
as it is easy to show, there is a positive integer H such that all the rectangles met
by all possible infinite stable prolongations of the arcs joining opposite sides of
any rectangle are also met after H stable prolongations (see section 4) of the same
arcs, we may construct, starting from {1, an unstable arc mapped continuously,
following the stable leaves, on a part of it. But this implies the existence of a
closed stable leaf, which is absurd.

Theorem 6.5. Every expansive homeomorphism of M is conjugate to a pseudo
Anosov map.

Proof. By the previous lemma and Thurston’s theorem [11] such an homeomor-
phism is isotopic to a Pseudo Anosov map.
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