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The Hausdorff dimension of horseshoes
of diffeomorphisms of surfaces

Ricardo Mané

Abstract. Let f bea C" diffeomorphism, r > 2, of a two dimensional manifold M?, and let
A be a horseshoe of f (i.e. a transitive and isolated hyperbolic set with topological dimension
zero). We prove that there exist a C" neighborhood U of f and a neighbourhood U of A such
that for g € U, the Hausdorff dimension of (), ¢"(U) is a C" 1 function of g.

1. Introduction

Let M be a closed manifold and let Diff” (M) be the space of C" diffeomorphisms
of M endowed with the C” topology. We say that A C M is a basic set of f €
Diff" (M) if it is hyperbolic, isolated (i.e. there exists a compact neighborhood
U of A such that A =0, f*(U)) and f/A is transitive. If moreover A is totally
disconnected (i.e. the connected component of every p € A is {p}) we say that
A is a horseshoe.

The objective of this paper is to prove the following result:

Theorem A. Let A be a horseshoe of f € Diff"(M), dimM = 2, r > 2,
and let U be a compact neighborhood of A such that (), f*(U) = A. Then
there exists a C" neighborhood U of f such that the Hausdorff dimension of
N, 9™ (U) is a C™ function of g € U.

When r = 1 this result was proved by Manning and McCluskey ([4]). A dif-
ferent proof was given by Palis and Viana ([5]). Actually Manning and McCluskey
work with the dimension of A N W *(p), where W*(p) is the stable manifold of
a periodic point. Our proof of Theorem A does not cover the C1 case.

Our proof relies in a method, introduced by Bowen in [2], that makes possible
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to read, through thermodynamic formalism, the Hausdorff dimension of hyperbolic
conformal invariant sets. Since dim M = 2, our horseshoe is roughly speaking,
a Cartesian product of two such objects. However, in our case, a technical ob-
struction appears in the application of Bowen’s method forcing us to deviate it
along a cumbersome roundabout.

In order to explain this technical obstruction and the result through which we
shall circumvent it, we shall first recall some definitions. if X and Y are metric
spaces we say that a function f: X — Y is Holder v-continuous, 0 < v < 1, if

gl fal

zzy  d(z,y)7
Denote C7(X,Y) the set of Holder y-continuous maps from X into Y. When Y’
is a normed space and X is compact we shall consider C7(X,Y") endowed with
the norm || . ||., given by

lle(z) = (W)l

d(z,y)7
When X is compact and Y is an n-dimensional manifold, C7(X,Y) is a Banach
manifold modelled on C"(X,R"™). Given an m X m matrix A whose entries a;;

llell, = sup|le(z)]| + sup
z z#Y

are 0 or 1, define B*(A) as the space of sequences 6:ZT — {1,... ,m} such
that ag(n)g(n+1) = 1 for all n > 0. Endow B*(A) with the metric d(a, 8) =
Yon>027"|a(s) — B(7)|- The shift o: B*(A) « is defined by o (8)(n) = 6(n+
1). Define B(A) as the space of sequences §:Z — {1,...,m} that satisfy
ag(n)6(n+1) = 1 for all n endowed with the metric

d(a, ) = 327 Ma(n) - B(n)|.

The shift o: B(A) « is defined as before. Given ¢ € C°(B*(A),R), the
Perron-Froebenius operator £y:C°(B*(A),R) « is defined by

(Lyp)(z) = D o(y)expi().

o(y)=z
Then
(Lye)(@) = D o(y)expSat(z)
o (y)=z

where
n—1

Bu=) Yoo .

§=0
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It is easy to prove that for all z € Bt (A) the limit
1
lim —1 %
b - loptlp R

exists and is independent of z (see section I). Define P () as this limit. Clearly
exp P(#) is the spectral radius of £, and it follows from Ruelle’s theorem (whose
statement will be recalled in the next section) that when ¢ € C7(B*(A),R) then
exp P(¥) is a simple eigenvalue of Ly:C7(B*(A),R) « and the rest of the
spectrum of Ly:C7(B*(A),R) « is contained in the disk |z| < exp P(3).
Moreover it is well known that P(t) is the topological pressure of t, but we
shall not use that concept.

The question of the smoothness of the Hausdorff dimension of ,, g"(U) as
a function of ¢ € U is reduced, through Bowen’s method, to the smoothness
of the composition of certain function U > g — ¢, € C7(B*(A),R) with
P:C7(B*(A),R) — R. The first function is C"~% and the second, as we
shall see below, is real analytic. Then the composition turns out to be C"~2
that is below what we want. To improve this method we shall show that U >
g — ¥, € C°(B*(A),R) is C"~1. But now the problem is that P, as a map
P:C°(B*(A),R) — R is only Lipschitz ([3]). To obtain our result we have to
use both properties simultaneously and the following theorem.

Theorem B. Let N be a Banach manifold and let $: N — C7(B*1(A),R),
0 < v < 1, be a C* function, k > 1, such that : N — C°(B*(A),R) is
C**1. Then Po®: N — R is C*t1.

To explain the role of this theorem in the proof of Theorem A we shall give
a short outline of its proof.

Let M be a two dimensional manifold and A a horseshoe of f € Diff" (M),
r > 2. Let U be a neighborhood of A such that (), f*(U) = A. Take a
neighborhood U of f such that A, = ), ¢"(U) is a horseshoe of g for all
g € U and there exists a C" map U > g — hy, € C°(A, M) such that hy is a
topological equivalence between f|A and g|A,. Define §°(g) and 6%(g) as the
Hausdorff dimensions of W;(z) N Ay and W'(z) N Ay, = € A,. These numbers
are independent of the point z. There are several ways to prove this, our proof
will implicitly contain one. We shall also see that the Hausdorff dimension of
Ay is 6°(g) + 6%(g). Therefore we have only to prove that §°(g) and §%(g) are
C~! functions of g. Take a shift o: B(A) « topologically equivalent to f|A.



Let h: B(A) — A be a homeomorphism realizing this equivalence. Given g € u
define v,: B(A) — R by

$(6) = — 108 |g'(hgh(6))/ Eiynie) |-

There exists 0 < 4 < 1 such that ¢, € C7(B(A),R). Moreover there exists a
continuous linear map T: C7(B(A),R) « such that (T'4)(#) is homologous to
4 and independent of the values 8(n) for n < 0. ([1]). This means that Ty can
be regarded as an element of C7(B*(A),R). Define a function B:R x U — R
by B(6,9) = P(8T+;s). Essentially following Bowen ([2]) one proves that §* (9)
satisfies B(6%(g),g) = 0. Now suppose that we were able to prove that the map
U>g— ¢, € C(BT(A),R) is, say, C*,k > 1. Then, since T is linear and
P:C7(B*(A),R) — R is real analytic, it would follow that B is oF

Moreover, as we shall see, it is easy to prove that for each ¢ € U there exists
C(g) > 0 such that (8B/36)(6,9) < —C(g) for all §. Then for each g € U
there exists a unique &(g) satisfying B(5(g),g) = 0. Hence é(g) = 6*(g) and
by the implicit function theorem, the function 6*:U — R is C*. Therefore this
approach would work if we could prove that, for some 0 < v < 1, the function
U>g — ¢, € C'(B(A),R) is C"1. However we can only prove that it is
C"-2. But we can also prove that U 3 g — v, € C°(B(A),R) is C"~'. Hence
we can apply Theorem B to N = U and @ being the map g — 1, and we obtain
that B is C"~! and then that §%: Y — R is also C"~ L.

1. Proof of Theorem B.

Let g: Bt (A) « be a subshift of finite type. To simplify the notation we shall
denote K = B*(A). Given ¢ € C7(K,R),0 < v < 1, the Perron-Froebenius
operator Ly:C°(K,R) « is defined by

(Lyp)(z)= D ely)expy(y)-

veo1(z)

Theorem 1.1. (Ruelle [1]) If ¥ € C?(K,R),0 < v < 1, the spectrum of
Ly:CY(K,R) « consists in a simple eigenvalue \(y) > 0 and a set contained
in the disk {z € C/|z| < A(¥)}. Moreover there exist a strictly positive
function hy € C7(K,R) and a probability vy on the Borel g-algebra of K
satisfying
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a) Lyhy = A(¥)hy

b)) fhedig =1

) Lyvy = A(P)vy

d) For all p € CP(K,R), 0<B<7:

“/\(‘([))_nﬂnP T h,/, / godv,,, =0

B
and for 0 < B < 7 the convergence is uniform in the unit C?# ball

lim
n—+oo

e) There exists Cy > O such that if for 6 € BT (A) and n > 0 we define
B(68,n) = {a|a(s) = 0(j) for 0 < j < n}, then

CT M%) " exp(8,¢)(8) < vy(B(6,n)) < CLA($) ™" exp(Sn¥)(0).

Corollary 1.2. If 4 € C7(K,R),0 < v < 1, then

lim ~log 3 exp(Sat)(y) = log A(¥)

n—+oo N
yeo~"(z)

uniformly on z € K.
Proof. From part (d) of 1.1 follows that

lim l1og > exp(Snd;)(y):nETm%log(ﬂnl)(z):

n—+oo n
yeo—"(z)

. 1
= log A($) + lim_—log A(¥)™(£51)(z) = log A(¥)
uniformly on z € K.

Corollary 1.3. If ¢ € C°(K,R) the limit

Ko = e Y. exp(Sa¥)(v)

n—-+oo n a"(y):z
exists for all z € K and is independent of z.

Proof. Define &,: C°(K) « by

¢n(¢)(z)=,—lllog > exp(Sat)(v)-
o (y)=z
= S g el exp(Sele)
, _ Yon(y)=z = (Snp)(y) exp(Sn) (y
(Qn(¢)¢)(x) w Ea"(y):z exp(S,,1/))(y)




INIC /AN NS AvAL R vas

Hence
[(@n(¥)e)(2)] < [lello
for all z € K. Then

[@n(#)llo < 1

for all n. Then the sequence of maps ®,: C°(K,R) « is uniformly Lipschitz
and is pointwise convergent (by 1.2), in the dense subset C7(K,R) c C°(K,R).
Therefore the sequence @, converges uniformly on compact subsets of CO(K ,R)
to a continuous function : C°(K,R) «. Since &(¢)) € C°(K,R) is (by 1.2)
a constant function when ¢ € C7(K,R),0 < 4 < 1, then, by the density of
C7(K,R) in C°(K,R) and the continuity of & in C°(K,R), it follows that
®(+) is a constant function for each ¢ € C°(K,R).

Using 1.3, given ¢ € C°(K,R) define

Pi¢)= lm Tlog 3 exp(Sa¥)(y):

n—+oco N
yeo—"(z)

Corollary 1.4. For all 0 < vy < 1 the functions
P:C"'(K,R) - R
C'(K,R)> ¢ — vy, € C'(K,R)
C"(K,R)> ¢ — hy € C"'(K,R)

are real analytic.
Proof. Let D be a closed disk centered at A(3) such that
Dnsp(Ly) = {A(¥)}-

Let F be the space of linear maps of C7(K,R) into itself endowed with the
topology of the norm. Let U be a neighborhood of Ly in F such that 9D N
sp(L) = ¢ for all L € U. Then, if L € U, we can define the projection of
C7(K,R) given by:

wp = i/ (AT - L) A (1)

271 Jop

When L = L, the image of this projection is the eigenspace associated to the
eigenvalue A(t). By part (d) of Theorem 1.1 this space is spanned by Ay, hence
it is one dimensional. Therefore if U is small enough the image of nz, is also

one dimensional and invariant under L. Hence it is an eigenspace associated to
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an eigenvalue p(L) that is near to A(t)) because the image of = is near to the
image of 7 v Then p(L) > 0. Hence we can calculate it as

(w,wLy) ‘
(w,rLv)
where v € C7(K,R) and w € C7(B*(A),R)’ are vectors such that the inner
product in the denominator is # 0. Choose v and w such that (w, 7, ¢u) -0
Then, the previous requirement, is satisfied for all L € U if U is small enough.
Then (1) and (2) show that u(L) is a real analytic function of L. Moreover, by
elementary arguments, the spectrum of L consists of u(L) and a set contained
in a disk {z/|z| < r} with r < p(L) (recall that by Theorem 1.1 this property

holds for L = Ly). Hence, if ¢ is so near to ¢ that L, € U, then

#(Le) = Ae)- &)

Take a neighborhood V' of ¢ in C7(K,R) such that £, € U when p € V.
Clearly the map V > ¢ — L, € F is real analytic. Hence the map V' >
@ — M) € R is real analytic because it is the composition of the maps
Vop— L,eUand U > L — p(L) € R. Therefore the map V' > ¢ —
P(p) = log A(p) € R is real analytic. Since the spectrum of L3: C7(K,R)' «,
is the same as the spectrum of Ly: C7(K,R) «, a similar argument shows that
there exists a neighborhood U of E;, in the space of linear continuous maps of
C7(K,R)’ endowed with the topology of the norm, such that for each L € U there
exists a projection #7:C7(K,R)" «, depending analytically on L, and whose
image is the one dimensional eigenspace associated to the eigenvalue A(1). We
leave to the reader to check that given a neighborhood W of ¢ such that LI, € U
when ¢ € W, then v,, and h,, are given by

w(IL) = @

vp = (Reg,vy, 1) 'R vy

hy = (Tz by, V) ime, hy.

Then they are real analytic functions of ¢ € W.

Corollary 1.5. For all 0 < v < 1,vy is a weakly continuous function of
¢ € C7(K,R), i.e.
lim [ pdvy, = / pdvy

n—+oo

for every convergent sequence b, — v in C?(K,R) and all p € C°(K,R).
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Proof. Let ¢, — % be a convergent sequence in C7(K,R) and suppose that
vy, does not converge weakly to vy. Then we can assume that vy, converges
weakly to a probability v # vy. Then

Lyv = lim Loy, = lm A$a)vn = A$)v.

Hence, v € C°(K,R)' C C7(K,R)" is an cigenvector of L}:C7(K,R)’ « as-
sociated to the eigenvalue A(¢). But A(¢) is a simple eigenvalue of
Ly:C7(K,R)" « because () is a simple eigenvalue of Ly:C7(K, R) «.
Since vy is an cigenvector of L3: C7(K,R)" « associated to A(%), it follows
that v is a scalar multiple of vy. But since both arc probabilities it follows that

VvV = V,,/,.

Corollary 1.6. If € C"(K,R),0 < v < 1, then
1 L} (Snp)

—_ hyd

n L3l /SO P p
for all p € CP(K,R),0 < B < . Moreover, when 0 < B < ~, the conver-
gence is uniform in the unit ball of o]

lim = ()
n— +oo

Proof. It is casy to check that
n—1
2(Snp) =D Ly (pLy1)
=0

Then
n-1

X)L (Snp) = D AW) I LTI (A (W) I Ly 1),
j=0
But by Ruelle’s thcorem

fme |erw)7 231 - oh ¢“ﬂ —n

and
sup H)\(tj))_mﬂ:p"”ﬂ < oo.
Hence
1 n-1 : ;
Jim @) L5(Se) = 3 A) O L ehy| =0 @)
j=0 8
But, by Ruelle’s Theorem,
: -m pn o s )
mkrilm A(v) ﬂ,l,(ph.l, h,p/{ph,pdv,p 4 0. 2)
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From (2) it follows that

lim
n—+oo

= 3

1 n—1 Y L
—2_A¥) ) Bl hnp/sohcpdw:
i=0

Also from Ruelle’s theorem it follows that
Q -n ny _ s
dm x5 - hy, = o @

Then, by (1), (3) and (4):

|1 £5(S) [
im ||=——F—— — [ phydvy| =
n—+oo || N £¢1 5
. A% 1
= i ’(:’b) —A—"(¢)£$(Sngo)—/ph¢dv¢ <
n—-+oo £¢1 n P
. Aﬂ(d,) . 1 -n n -npn / —
- nkr-ir-loo ﬂsl ﬂnEToo H_Y;A (¢)£¢(Sn<p)—(/\(¢) £¢1) ¢7h¢dl/¢ ﬂ—
= lim l/\_n(lf))ﬂ;Sl@) S h¢/g0h¢dV¢ =0,
n—+oo || N B

The uniform convergence in the unit C* ball follows from the fact that, by part (d)
of Ruelle’s theorem, all the convergences involved in this argument are uniform
in the unit ball of C? for 0 < 8 < 1.

Corollary 1.7. If 0 < y < 1, and ¢ € C"(K,R), then the derivative
P'(¢):C"(K,R) = R
is given by
) P'($)p = /sph\odw:-
Proof. Fix p € K and define P,:C7(K,R) — R by
1

Pa(y) = —~log(£y1)(p).
Then an easy calculation shows that

AR el

n

Hence, 1.6 implies that

PWe=_lim Pa(¥)p = [ phydvy.
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Now we shall prove Theorem B. This proof requires two Lemmas.

We say that amap f: K; — K, where K;, K, are metric spaces, is compact
if it maps bounded sets onto relatively compact sets. It is easy to see that if a
sequence of compact maps f,: K3 — K, converges to a map f: Ky — K,
uniformly on bounded sets, then f is compact.

Lemma 1.9. Let Ey, E; be Banach spaces and U C E, an open set. If

f:U — Ey is a C* compact map, then for all - € U, the derivatives
J

g ——— B
f(J)(::):El X «++ X Ey — Ey are compact for all 1 < 5 < k.

Proof. Given z € U let B be the unit ball centered at 0 and define maps
fn: B — E3 by

alo) = n(f(z+ 20) - £(2)).

Then the sequence fy, converges uniformly to f'(z)/B. Since clearly each map
fn is compact, it follows that f'(z) is compact. Now suppose that we have proved
that f()(z) is compact for 1 < j < m. Define maps f,: B — E, by

7]

m 1 Lol 1 1
(o) = n" (et 2= 10) = 5 570 (oo o))

Then the scquence f,, converges uniformly to the map
B>v— f(m)(:c)(v,... ,v) € Es.

Hence this map is compact. Since using the symmetry of the m-linear map
f™)(z) it is possible to write f(™(z)(v1,... ,vm) as a linear combination of
the vectors f(™)(z)(v;, ... ,v;),1 <4 < m, it follows that f(™) is compact.

Lemma 1.10. Let Ey, E,, E; be Banach spaces, U C Ey an open set and
suppose that f:U — Ey,L: Ey — E3 and P: E; — R are maps satisfying

a) L is linear and compact
b) fisC*¥ k>0
¢) Lof B.irrs
d) PoLis Ck!
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e) There exists a function T that associates to each z € E; a continuous
linear map T'(z): E2 — R satisfying

(Pol) =T8T 1)
for all x € E1, and
nEl:}r-loo T(zn)v = T(lim z,)v 2)
for every convergent sequence {z,} C E; and all v € E,.
Then Po Lo f is C*¥t1
Proof. Obviously Po L o f is C* because Po L is C* and f is C*. Suppose
that k > 1. The derivative (P o L o f)(*¥)(z) can be written as the sum of
(Po L) (f(2))f®(=) 3

and a linear combination of compositions of derivatives (P o L)) and f() with
1 <i<kand1l < j < k. Hence all these terms are C!, because f is C*
and Po L is C*. This means that to prove that f is C*¥*1 we have only to
prove that (3) is C!. Observe that given Banach spaces E and F, an open set
U C E and amap &: U — F, then, to prove that @ is C! it suffices to show that
for every z € U there exists a continuous linear map A(z): E — F, depending
continuously on z, such that
lim %(?(z ) = 8()) =Alz)v

for all z € U and v € E. This is proved by writing

O(z+v) - P(z) = /0 dit¢(x + tv)dt =

L /01 A(z + tv)vdt = A(z)v + /OI(A(:I: + tv) — A(z))vdt.
Hence

[#(z + v) = &(z) - A(z)v]| < lv]| sup [ A(y) - A(=)]]

lly==zlI<llvll

thus proving that ¢'(z) = A(z). We shall use this criteria to prove that (3) is
C. Observe that

(Po L) (f(z + tw)) f®)(z + tw) — (Po L) (f(2)) f¥(z) =
=((Po L)(f(z+ tw)) — (Po LY (f(z))) f*¥)(z + tw)+
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+(Po L) (f(2))(f®(z + tw) — f*)()).
Since P o L is C? by (d) and the assumption k > 1, it follows that

lim 2((P o LY (f(z + tw)) = (Po LY (f(2))) /W) + tw) =

= (P o L)"(f(2))f' (z)wf ") ().
Moreover, by (1):

(Po L) (f(@) (/P (z + tw) - f®)(z)) =
= T(@)(LNM (@ + tw) - (L) D (2)).

Hence, since Lf is C*t1,
lim ;T @) (BN Pz + tw) = (L) (@) =

= T(f(2))(L)* ) (z)w.

. Hence
lim = ((Po L) (/= + tw)) [z + tw) ~ (Po LY (/(2))1®)(a)) =

= (Po L)"(f(@))(f (=)w)f ¥ () + T(f (=))(Lf)*+ (2)w.
Therefore, if we prove that the (k + 1)-linear map T(f(z))(Lf)**1(z) is a
continuous function of z, it will follow that (2) is C! and then that Po L o fis
C*t1, Since Po L is C* and f is C* it follows that the first term of the sum
depends continuously on z. To prove the continuity of T'(f(z))(Lf)*+V(z)
first observe that if z,, — z and S C Ej is a relatively compact set then, by (2),
T(z,)/S converges uniformly to T'(z)/S. Moreover, Lf is compact because L
is compact, and then, by the previous Lemma, (L f)(*+1)(y) is compact for all

k+1

e i
y € Ey. Let B be the unit ball of Eg X --+ X Ey. Define
S = (Lf)**D(z)B U (U (L)** (24)B).
n>1
This set is relatively compact because every sequence {u,} C S either has a
subsequence contained in some (Lf)(*+1(p)B, p € {z,z,, ...} (and then, since

this set is relatively compact, has a convergent subsequence) or has a subsequence
that can be written as

_ (k+1)
Uy X (Lf) (xmj)om,-

AN AAIRIASNSINA & ASALVALILVWANSLY SR A ANSANASILANSEAS —

with Hmj € B and m; — +oo. But now, by the compacity of (Lf)*+1), we can
assume that the sequence (L f )("“)(:c)()mj ,J > 1, converges to a point y € Ey
and then it is easy to prove that (Lf )("“)(xmj)Omj converges to y. This con-
cludes the proof of the relative compacity of S and then T'(z,)/S converges
uniformly to T'(z)/S. Since (Lf)*+1)(z)B c S for all p € {z,z1,...}, it
follows that T(z,)(Lf)*+V(z,)/B converges to T(z)(Lf)*+V(z)/B uni-
formly. This completes the proof of the Lemma when k > 1. The case k = 0 is
handled by similar methods.

To prove Theorem B we shall apply Lemma 1.10 to an oben set U € N,
the Banach spaces C7(K,R) and C°(K,R), the C* map :U — C7(K,R), the
compact linear map i: C7(K,R) — C°(K,R) given by the inclusion and the func-
tion P: C°(K,R) — R. Hypothesis (a), (b) and (c) of 1.10 are obviously satisfied.

- Hypothesis (d) holds because we proved (Corollary 1.4) that P:C7(K,R) — R

is real analytic. To check (e) associate, to each ¢ € C7(K,R), the functional
T(¢) € C°(K,R)’ given by

T(Y)e = / phydvy.
Then, by 1.7,

(Poid)(d)e=T()p

thus proving property (1) of hypothesis (e). Property (2) follows from the fact
that vy is, by 1.5, a weakly continuous function of ¢ € C7(K,R) and hy is a
continuous (in fact real analytic) function of 4 by 1.4. Then, 1.11 can bc applicd
and proves that P o4 o @ is C**1,

2. Proof of Theorem A

The proof of Theorem A requires the following properties:

Proposition 2.1. ([1]) For all 0 < ~ < 1 there exists a continuous lin-
ear map T:C7(B(A),R) — G?(B*,(A),R) such that, denoting n: B(A) —
B*(A) the canonical projection (i.e. =(0) = 0/Z%) then, for all ¢ €
CY(B*(A),R),v is homologous to (T¢) o =, ie. there exists
u € C°(B(A),R) such that

uoo—u=19— (TY)om.
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Lemma 2.2. If A is a horseshoe of f € Diff' (M),r > 1, and h: B(A) — A
is a topological equivalence between o: B(A) < and f|A, then h is Holder
continuous

Lemma 2.3. Let A be a horseshoe of f € Diff'(M),r > 2,dimM = 2.
Let h: B(A) — A be a topological equivalence between o: B(A) < and f|A.
Define 1: B(A) — R by

¥(0) = —log
Then the following properties hold:

1(h(8))/ B

a) The function R 3 § — P(6T) € R is real analytic (where T is given by
2.1).

b) There exists ¢ > 0 such that
2]
—P < -
35 (6Ty) < —c¢
for all 6.

c) There exists a unique §(f) > O such that P(§(f)T¢) = 0. Moreover every
z € A is contained in an open interval J C W*(z) such that there exists a
probability u on the Borel o-algebra of J and a constant C > 0 satisfying

C 1 < u(B,(z)) < Cr?

for all »r > 0.

Lemma 2.4. If A is a basic set of f € Diff" (M), r > 2, there exist neighbor-
hoods U and U of A and f respectively such that, defining A, = ,, ¢"(U),
there exist 0 < vy < land a C™~ function U > g — h, € CV(A, M) satisfying
the following properties:

a) hg(A) = Ay and hy is a topological equivalence between f|A and g|A,;
b) The function U > g — |(det(g’'/E*)) o hy| € C7(A,R) is CT~%;

¢) The function U > g — |(det(¢'/E*)) o hy| € C°(A,R) is CT~1.

Now let us prove Theorem A. Let A be a horseshoe of f € Diff" (M), r > 2
and suppose that dimM = 2. Let U and U be the neighborhoods given by
Lemma 2.4. It is known (Bowen [1]) that there exists a topological equivalence
h: B(A) — A between o: B(A) « and f|A. Then, if hy;:A — A, is given
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by Lemma 2.4, the map hgyh: B(A) — A, is a topological equivalence between
o:B(A) « and g/A,. Moreover by Lemmas 2.2 and 2.4 there exists 0 <
4 < 1 such that hyh € C7(B*(A), M) and the function ¥ > g — hyh €
C7(B(4), M) is C™1. Define ¢, € C7(B*(A),R) by

,(6) = — logg'(hgh(9))/ B ()|

and B: U X R — R by

B(g,6) = P(6T4,).

Then B is C™~1. This follows from applying Theorem B to the Banach manifold
U and the C*™"2 map U > g — ¢, € C°(B*(A),R). Moreover, by Lemma 2.3,
for each g € U there exists a unique §%(g) satisfying

P(g,6%(g9)) =0

S (6,8%()) <0,

Then, by the implicit function theorem the function U > g — &%(g) is C™~ L.
Take a point z € A, and let J* be an interval contained in W*(z) and containing
z such that, according to Lemma 2.3 there exists a finite measure y,, on the Borel
o-algebra of J* and a constant C,, > O such that

C 1759 < py(B,(p)) < Cur® W@ )

for all p € J and r > 0. In a similar way (replacing g by g~!) there exists a
C"! function ¥ > g — §°(g) € R such that there exists an interval J* C W*(z)
containing z and a finite measure u,, on the Borel o-algebra of J* such that there
exists C, > 0 satisfying

C1%°0) < (B, (p)) < C,r*° ) @)

for all r > 0 and p € J*. By standard properties of hyperbolic sets, there exists
€ > 0 such that if J* and J* are sufficiently small then W2 (a) "W *(b) contains
exactly one point for all a € J* and b € J*. Given A C J* and B C J? define

AX B={WS(a)nW!(b)|la € A,be B}.
Take a measure u on the Borel o-algebra of J* x J* such that
#(A x B) = pu(A)us(B) €)

for every pair of Borel sets A C J*, B C J*. Since g is at least C?, the stable
and unstable foliations extend to C! foliations of a neighborhood of A,y. Then



there exists k > 1 such that

(B,/k(p) N J¥) X (Byyi(p) N J*) € By(p) € (Ber(p) N J*) X (Bir(p) N J°)

for all p € J* x J*. Then, from (1), (2) and (3), there exists C' > 0 such that
C~15°0+8%(9) < (B, (p)) < Cr¥ @W+6%0)

for all p € J* x J® and r > 0. Then the Hausdorff dimension of J* x J*® is
5°(g9) + 6%(g). This follows from the following easy Lemma:

Lemma. Let K be a compact metric space and p a probability on the Borel
o-algebra of K such that there exist 0 < 61 < 63 and C > 0 satisfying:

C1r% < u(B,(z)) < Cr¥

forallz € K andr > 0. Then, if HD(K),c™ (K), ct(K) denote respectively
the Hausdorff dimension and the lower and upper capacities of K

61 < HD(K) < ¢ (K) <c*(K) < &

Proof. ¢*(K) can be defined as

log S
ct(K) = lim sup M)
r—0 log(1/r)
where S(r) is the maximum number m such that there exists points zj,... ,Zpm

such that d(z;,z;) > r for all 1 < ¢ < 5 < m. Then the balls B,/3(z;),? =
1,... ,m are disjoint. Hence

12> p (G B, 2(z:) ) f: B, j3(z:)) 2 mC™ (;)62 .

=1

b2
m§C<z> :
r

This implies easily ¢t (K) < 6,. In a similar way one proves HD(K) > &
completing the proof of the Lemma.

Hence

Then HD(J* x J*) = §%(g) + 6°(g). Since J* x J* is a neighborhood of
z and z is arbitrary, it follows that

HD(Ag) = 6%(9) +6°(9)-

Since §° and 6% are C"~! functions of g this completes the proof of the Theorem.
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Proof of Lemma 2.2. Due to the hyperbolicity of A there exists § > 0,C > 0
and 0 < A < 1 such that if z € A and y € M satisfy d(f"(z), f"(y)) < 6 for
all —N < n < N then

d(z,y) < CAV.

Moreover, recalling that we endowed B(A) with the metric

(e, 8) = 22 ™a(n) — B(n)],

it is easy to see that a(n) = B(n) for all n satisfying
|n| < —(log2)~"logd(e, 8).

Since h is continuous there exists k > 0 such that a(n) = B(n) for —k <n < k
implies d(h(a), h(B)) < 6. Then, given a, § € B(A) define

N = —(log 2) 'logd(a,B) — 1. 1)

Then a(n) = B(n) for all —N < n < N. Therefore (o7 a)(n) = (a7 8)(n) for
all -k < n < kif —(N —k) <j < N — k. Hence d(h(o?a),h(s78)) < 6
for —(N — k) < j < N — k. Since ho? = f7h, this implies

d(f*(r(@)), £ (h(B))) < 6
for —(N — k) <j < N — k. Then

d(h(a), h(B)) < CAV .

Replacing (1) in this inequality, we obtain

d(h(a),h(B)) < Cod(e, B)"
with Co = C/A¥*! and v = (log2) ' log A.
Proof of Lemma 2.3. To prove (a) first recall that the subbundle E* C TM|A
is Holder continuous because r > 2. Moreover 2.2 implies that h is Holder
continuous. Hence, ¢ € C7(B(A),R) for some 0 < 4 < 1, and then Ty €
C7(B"(A),R). Therefore the analiticity of the map R > § — P(6T¢) € R

follows from the analiticity of P: C?(B*(A),R) — R. Before proving (b) let us
show that there exists A > 0 > B satisfying

Sn(T$)(6) < A+ Bn )
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for all § € B(A) and n > 0. For this purpose take 8 such that 7 (#) = 6. Then

n-1

Sn(T)(6) = Sa(T)(x(6)) = Z(Tt/))(oj (= (8)))

Z:: 0’0)

Recalling that (T'4)) o — 4 is homologous to zero, there exists u € C°(B(A),R)
such that

(TY)omr =9+ (uoo — u).

Hence
n—1

Sa(T$(0)) = 2_((T) o m)(o (8))

=0

=3 V(e @) + ulo"@) - u(0)

Let K be the maximum of u. Then

Sa(T)(8) < "z_: V(o7 (0)) + 2K. )
But » _’1
> W @) = - Z log |'(o7 (8)) | By ;5|
= @B 5

o 1og ](f 7 (h("))/E:(E)"

Then, if C > 0and 0 < A < 1 are such that
(/") (=)/ B2 " < can

for all z € A and n > 0; it follows that
n—1

Z (a7 (0)) < log C + nlog \.
7=0

Replacing this inequality in (2), we obtain (1) with A = logC + 2K and B =
log A. Now, to complete the proof of (b), fix & € B(A) and define P,:R « by
Palt) = =105 3" expSa(t(T4))(0).

olf=qa
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Then
dPn 4y = 1 Zono=a Sn(T¥)(0) exp Sn(t(T4))(9)
dt n 20“0:0« exp Sn(tT'p)(g)
< %agugas (T4)(0)
< ;(A + By).

This implies that there exists ¢ > 0 such that, if n is large, (dP,/dt)(t) < —
for all ¢. In particular

Pn(tl) o Pn(tz) < —C(tl % tz)
for all T} > ty. By 1.2
log A(t(Ty)) = liT Pa().

Hence

log A(t1(T¢)) — log A(t2(T9)) < —c(t1 — t2)
for all ¢; > t9. This implies

2 logA(t(Ty)) < -

thus proving (b). To prove (c) take an interval J C W* (x) containing z and define
F:J — BT(A) by F(p) = mh~1(p). Clearly F is continuous. Let us prove
that if diam(J) is small enough then F is injective. Let K; C A be the image
under h of the set {# € B(A)|6(0) = 1}. The sets K; are compact and disjoint.
Then there exists §o > 0 such that d(K;, K;) > & forall 1 <1 < 7 < m.
Since J is an interval contained in a unstable manifold, diminishing its diameter
grants diam(f~"(J)) < & for all n > 0. This means that if K is the set of the
family {K1,..., Ky} that contains f~"(z), then f~™(J N A) C K; because
diam f~"(J N A) < d(f~™(z),A — K;) and f~"(J N A) C A. On the other
hand, if 6 € B*(A), the point h(f) satisfies

f*(h(0)) € Ky(n)

for all n € 7. Hence, if h(6o) and h(01) are contained in J, it follows that
01(—n) = 6o(—n) for all n > 0 because, for all n > 0

f7"(h(60)) € Koo(-n)

f7"(h(61)) € Ko,(-n),
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and, as we explained above, these two properties plus the fact that h(6o), h(81) €
J, imply fp(—n) = 0;(n). Now suppose that F(z;) = F(z2). This means that
rh~1(zy) = 7h~1(z2) and then h=1(z1)(n) = h~1(z;)(n) for all n > 0. But
we also have h=1(z1)(n) = h~1(z2)(n) for all n < 0 because h(h~1(z1)) =
zy € J and h(h™Y(z;)) = z; € J and therefore h=1(z1)(n) = 6p(n) =
h~1(z2)(n) for all n < 0. This completes the proof of the injectivity of F.
Now take J being open. We claim that F(J N A) is an open subset of B (A).
Take y € J. Given € > 0O there exists N > 0 such that §(n) = h~1(y)(n)
for all n < N implies h(0) € W(y). Therefore, since J is open, there exists
N > 0 such that if § € B(A) satisfies 6(n) = h~1(y)(n) for all n < N
then h(f) € J N A. To prove that F(J N A) is open we shall show that if
6 € B*(A) is close to F(y) then § € F(J N A). If 8 is close to F(y) =
mh~1(y) then (n) = h1(y)(n) for 0 < n < N. Define § € B(A) by
f(n) = h~!(y)(n) for n < 0 and (n) = f(n) for n > 0. Observe that this
definition is correct because h~1(y)(0) = (vh~1(y))(0) = F(y)(0) = 6(0).
Hence (n) = h™*(y)(n) for all n < N because it is true for n < 0 by definition
and f(n) = (n) = h~*(y)(n) for 0 < n < N. Then h(f) € J N A. Hence
6=0/7" = h='(h(0))/2* = nh~'(h(8)) = F(h(6)) completing the proof of
the openess of F(J N A). Since J N A is a Cantor set we can take J such that
J N A is open and compact. Then F:J N A — F(J N A) is a homeomorphism.
Define a measure u on the Borel g-algebra of J N A by u(S) = v(F(S)) where
v = vsry is given by 1.1. Since F(J N A) is open, u(F(J NA)) > 0. Hence
p(J NA) is positive and < 1. To show that u satisfies the inequalities of part (c)
of Lemma 2.3, define, for u € J N A,

Ss(y,n) = {p € J N A|d(F*(p), f*(y)) < 6 for 0< k< n}

and, if § € BT (A) define B(#,n) = {a € B*(A)|a(5) = 0(5) for 0 < 5 < n}.
Let us prove that there exist §; > 0 and N > 0 such that:

F(S5,(v,m)) € B(F(y),n) C F(S5,(y,n — N))

forally € JN A and n > N. Choose any §; satisfying 0 < 8 where &
satisfies, as above, the property d(K;, K;) > & for all 1 < 1 < 57 < m. Then,
by the same arguments used before, if p,y € J N A and d(f*(p), f*¥(v)) < &
for 0 < k < n, it follows that f*(p) and f¥(y) are contained in the same atom of
the partition {K1, ..., Ky} for all 0 < k < n. Hence h~}(p)(n) = h™1(y)(n)
for all 0 < k < n and then F(p) € B(F(p),n) forall p€ JN A and n > 0.

To prove the second inclusion, take € > O such that W¥(z) C J for all y €
J C A (recall that J N A is compact and J is open). Take N > 0 so large
that a(n) = B(n) for n < N implies h(a) € W2 (h(B)). Moreover take €
smaller than &y, so that the last relation in particular implies d(h(cx), h(8)) < 81.
Then, a(n) = B(n) for n < N implies d(h(c),h(8)) < é1. Given § €
B*(F(y),n),n > N,y € JNA, define § € B(A) by 6(m) = 6(m) form >0
and 6(m) = h~*(y)(m) when m < 0. Arguing as before, 0 is well defined and
h(8) € W2 (y). Since Wr(y) c J it follows that h(f) € J N A. If we show that
h(8) € Ss,(y,n — N) it will follow that 9 (that satisfies § = F(h(6))) belongs
to F(Ss,(y,n — N)). Hence 8 € F(Ss,(y,n — N)) thus proving the inclusion
B(F(y),n) € F(Ss,(y,n — N)). To prove that h(6) € Ss, (y,n — N) observe
that f*(h(6)) = h(c*(8)) and o*(8)(m) = 6(m + k) for all m and k. Hence
HOG) =06+ k) =K W)+ )
when 0 < 7+ k < n. Hence
a*(0)(4) = R (W) (G + k) = (W) ()
for0<j<n-—k. Then,if n—k> N:
d(h(a*(9)), f*(¥)) = d(h(o*(8)), A(h7*(F*(¥))) < &1
Since h(a*(6)) = f*(h(9)):
d(F*(r(6)), f*(v)) < &
when n — k > N, or, what is the same, k < N — n. This means h(8) €
Ss,(y,n — N). This completes the proof of B(F(y),n) C F(Ss,(y,n)). These
inclusions can be written as

B(F(y),n) € F(Ss,(y,s)) € B(F(y),n— N)
and then
v(B(F(y),n)) < u(F(Ss,(y,n)) < v(B(F(y),n — N)).

Now recall that if ¢ € C7(B*(A),R) then, if v, is given by 1.1, then there
exists C; > 0 such that for all § € B*(A) and n > O:

Cr A(p) " exp(Snp)(9) < vp(B(8,n)) < C1A() ™" exp(Sap) (6)-
Then, if log A(6T'¢) = P(6T) = 0, it follows that
Cy ! exp(Sp8T4)(0) < v(B(0,n)) < Crexp(Sn8TY)(6) 2



for all § € B*(A) and n > 0. From (1) and (2) it follows that there exists
C2 > 0 such that for all y € J and n > 0:

Cy " exp(Sn6TY)(F(y)) < w(F(Ss,(y,n))) < Crexp(Sa8T¥)(F(y)).
But since we can write
(TY)or=t¢p+uoo—u
where u € C°(B(A),R), it follows that there exists A > 0 satisfying
|(SnT)(x(6)) — (Sn)(8)] < A
for all n > 0 and # € B(A). Since F = rh~1, we obtain,
(ShT9)(F () - () (A )] < 4.

But clearly

(S-9) (A7 (v) = - log (/™)' (v)/ B

Hence
C—l & p’(‘s&l (y)n))
Ty () /B T

for all n > 0 and y € A. Define p(y,n) = d(y,J — Ss, (y,n)). By well known
arguments (that require f to be at least C?), there exists C3 > 0 such that

oyl < diam Sy, (y, n)
|(m)(v)/ B

<Cs @)

03—1 S p(yan)
() (v)/

forally € JN A and n > 0. Given a small r > 0 take n > O such that

=5 L3 )

p(y,n+1) <r < p(y,n).

Then, by (3) and (5),
p(B(y)) < 1(Ss, (y,n))
< G|(") (v)/ By
< C2C3p(y,n)°

p(y,n)\°
— C'3C§r6 (—’ )

-6

5

é
< C,C!t .s( p(y,n) >
A AN Sy, )

Cs|(1"Y (v)/ By

cs|(r+1) (v) /By

U Epni)|

Hence, if C,, is an upper bound for |f'(z)/E¥|™", z € A, it follows that
u(B.(y) < Cr’

with C = C;C3*Cy°. In a similar way, but taking the maximum n such that
Ss,(y,n) C Br(y)

and using (4) instead of (5), a lower estimate of the form u(B,(y)) > C'
obtained, completing the proof of Lemma 2.3.

< Czc§r5

= CyC30r¢

s

Proof of Lemma 2.4. Let m be the dimension of the fibers of the unstable
subbundle E* of the hyperbolic set A. Let G be the Grassmannian bundle of
m-dimensional subspaces of the fibers T, M, i.e. G is the set of pair (z, E)
with £ € M and F being an m-dimensional subspace of T, M endowed with
its natural structure of smooth manifold. Associated to every f € Diff" (M) we
have a diffeomorphism Fy € Diff"~1(G) defined by Fy(p, E) = (f(p), f'(p) E).
The map Diff' (M) > f — F; € Diff™™}(G) is C*. Given 0 < v < 1 and
g € Diff"(M), r > 2, define $,: C7(A,G) « by

8,(€)(z) = Fy(§(f71(2)))-

When v = 0 it is easy to check through standard techniques that the map & €
CO(A, G) defined by &o(z) = (z, E¥) is a hyperbolic fixed point of the C"~! map
@;. Moreover the map Diff" (M) x C°(A,G) > (£,9) — 2,(€) € C°(A,G)



is C™~1. Hence there exists a C" neighborhood U of f and a C™~! map U >
9 — & € C°%(A,G) such that &; = & and &,(£,) = &, for all g € p. Let
7n:G — M be defined by x(p, E) = p. Then, well known methods show that
7§ = hg:A — M is a topological equivalence between f|A and g|A, and if
E*(g) is the unstable subbundle of Ay, then &;(z) = (hy(z), E} (2) (9))- From
this it follows that the map U > g — |(det(g'/E“(g)) o hy| € CO(A,R) is
CT1, thus proving (c). To prove (b) recall that it is well known that, since r
is > 2, taking 0 < 4 < 1 sufficiently small, the map & is a hyperbolic fixed
point of the C™~% map @;: C7(A,G) «. Then, if  is small enough, the map
&, obtained above is a C""2 map U > g — € € C7(A,G). Then the map
U>g— |(det(g'/E¥(g)) o hy| € C(A,R) is C™~2.
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