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Differentiable Conjugacies of Morse-Smale
Diffeomorphisms

J. Palis and J. C. Yoccoz

Abstract. We provide in this paper a complete set of invariants for differentiable conjugacies
of Morse-Smale diffeomorphisms. In the setting of topological conjugacies, these diffeomor-
phisms play an important role similar to that of gradients whose singularities are non-degenerate
and have their stable and unstable manifolds in general position: they exhibit a simple and yet
stable dynamics, and they exist on every manifold [PS]. Our main global invariant corresponds
to a generalization of Mather’s invariant for diffeomorphisms of the interval.

1. Introduction

In many branches of Mathematics, we often aim at obtaining global structures
for the objects we are studying, once many examples and results about them are
known. A central theme then is the classification problem: to give criteria to
determine when objects in the category one is considering are isomorphic and to
describe the set of their isomorphisms classes. In particular an important question
is to determine the automorphism group of an object.

In (smooth, discrete) dynamical systems, the objects are pairs (M, f) formed
by a smooth manifold (usually also compact, boundaryless and connected) and a
smooth diffeomorphism f of M. An isomorphism between two objects (M, f),
(M, f') called dynamical systems is here a smooth diffeomorphism h from
M onto M’ which conjugates f and f’, ie. that satisfies hf = f'h. The
automorphism group of an object (M, f) is the centralizer of f in the group
Diff (M) of smooth diffeomorphisms of M.

A weaker equivalence relation between (M, f) and (M’, f') is that of topo-
logical equivalence: they are topologically conjugate, i.e. there is a homeomor-
phism h*:M — M' such that h*f = f'h*. We also say in this case that
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(M, f) and (M, f') have the same dynamics. It is clearly necessary to have
a good understanding of topological equivalence before trying the more difficult
task of differentiable conjugacy. The simplest situation with regard to topologi-
cal equivalence is, for a diffeomorphism f € Diff(M), to have an equivalence
class which is open in Diff(M): such diffeomorphisms are called structurally
stable. Although we do not know at the moment how to characterize the C*
structurally stable diffeomorphisms of a manifold M, we know (Robbin, Robin-
son, Maiié [R1, R2, M]) what are the C! structurally stable diffeomorphisms, i.e
the diffeomorphisms whose equivalence class for topological conjugacy is open in
the C! topology: they are precisely those which satisfy Axiom A and the strong
transversality condition, namely the limit set L(f) is hyperbolic and the stable and
unstable manifolds of points in L(f) are all in general position. Let A(M) be the
open subset of Diff(M) formed by the C! structurally stable diffeomorphisms.
Each equivalence class (for topological conjugacy) contained in A(M) is the
union of a certain number of connected components of A(M). The problem we
are interested in is to describe the moduli space, for differentiable conjugacy,
of such an equivalence class (this is, for instance, the analogue of Teichmiiller
theory for compact Ricmann surfaces, after a preliminary classification — by the
genus, i.e. topological equivalence — has been made).

In this paper we will only consider the differentiable conjugacy problem for
the non-empty open subset M S (M) of A(M) formed by the Morse-Smale dif-
feomorphisms of M: thosc whose limit sct is formed by a finite number of
hyperbolic periodic orbits, which have stable and unstable manifolds intersecting
transversely. When M = S (or [0,1]), one has MS(S') = A(S'), and the
differentiable conjugacy problem was settled by J. Mather (see [Y]).

In a forthcoming paper, we will study the differentiable conjugacy problem for
basic sets of diffeomorphisms of surfaces (a basic set for a diffeomorphism f of
a manifold M is a compact, invariant, hyperbolic, locally maximal subset of M):
for example, horseshoes, D.A or Plykin attractors or Anosov diffeomorphisms of
T2 (see [PdM]). This last case has already been considered by de la Llave, Marco
and Moriy6n ([LMM], [MM]), who show that the eigenvalue of the derivatives of
the map at the periodic orbits form a complete set of invariants for differentiable
conjugacy.

The principle of our differentiable classification is the same as in Mather’s
classification of hyperbolic diffeomorphisms of the interval and may perhaps be

traced to Kopell [K]; the same principle underlies the Ecalle-Voronin classification
of the germs of holomorphic diffeomorphisms at (C,0) ([E],[V]), when this
classification is considered from a geometrical point of view. What one does is
first to classify, up to smooth conjugacy, the germs of diffeomorphisms at their
periodic sources or sinks; this, in fact, gives a classification of the restrictions of
these diffeomorphisms to the basins of their periodic sources or sinks. Then, a
complete set of invariants for differentiable conjugacy is obtained by describing
how to glue the stable basins of the periodic sinks to the unstable basins of the
periodic sources.

The paper is organized as follows. In section 2, we introduce basic notations
about the groups of jets of germs of diffeomorphisms of (E,0), E being a finite
dimensional vector space. We recall some standard facts about these groups,
especially the role of resonances in the (algebraic) conjugacy problem for such
groups. In section 3, we recall how the classification of the stable basins of
periodic sinks up to smooth conjugacy is seen to be equivalent to the description
of the set of conjugacy classes in a finite dimensional Lie group (essentially
determined by the resonances between the eigenvalues at the periodic sink). In
section 4 we define our global invariant for Morse-Smale diffeomorphisms, which
is, as mentioned above, the graph of the glueing map between the stable basins
of the periodic sinks and unstable basins of the periodic sources. We then give a
precise statement of our classification theorem.

Now comes an interesting point: in the Mather’s or Ecalle-Voronin’s situation,
or even in our situation, when the diffeomorphisms do not have periodic saddles
(north pole-south pole dynamics on spheres), the proof that the invariants one has
defined form a complete set of invariants is really trivial, because the union of the
stable basins of the sinks and the unstable basins of the sources is the whole space.
However, for Morse-Smale diffeomorphisms with periodic saddles, this union is
only open and dense, the complementary set being the union of the periodic
saddles and their heteroclinic orbits. On the other hand, it is not clear at all that
our set of invariants determine the differentiable type of the periodic saddles of
the diffeomorphism, not even for example the spectra of the derivatives at these
periodic saddles. What we need and prove is a kind of removable singularity
theorem: in rough terms, the union of the periodic saddles and their heteroclinic
orbits is “too small” (from the dynamical point of view) for the conjugacy, which
is smooth outside this set, to be singular at some of its points. The precise



statement is given in section (4.3).

In section 5 the local version of this removable singularity theorem is stated
and proved: given two germs of diffeomorphisms near fixed saddle points, any
smooth conjugacy, defined on complements of closed proper subsets of their stable
manifolds, automatically extends to a full smooth conjugacy between the two
germs. We do not need to assume that the spectra of the derivatives of the
diffeomorphisms at their fixed saddle points are equal: this follows from the
existence of this partial conjugacy.

Finally, we use this local version in section 6 to prove the global version stated
in (4.3) and conclude that the set of conjugacy invariants defined for Morse-Smale
diffeomorphisms is a complete set of invariants. It should also be mentioned that
the set of invariants do not only provide necessary and sufficient conditions for two
Morse-Smale diffeomorphims to be conjugate, but they also allow us to determine
the centralizer of a Morse-Smale diffeomorphism, i.e. its automorphism group in
the category of diffeomorphisms. In this direction we recall that in [PY] we proved
that the centralizer is usually small: for an open and dense set of Morse-Smale
diffeomorphisms the centralizer is reduced to the iterates of the diffeomorphism.

2. Jets

2.1 Let E be a real finite dimensional vector space. We denote by D(E,0)
the group of germs of C* diffeomorphisms of E at 0 which fix 0. For n € N,
let Dy, be the normal subgroup of D(E,0) whose elements are the germs having
a contact of order at least n + 1 with the identity, i.e. satisfying:

f(2) =z +o(||z]|"),

near 0 (where || || is some norm on E).

Let N = NU {oo}, and Do, = () Dy. For n € N, the group J,,(E) of
neN
n—jets is defined to be the quotient group D(E,0)/D,. One has Do = D(E,0),

so Jo(E) = {1} and J;(E) is canonically isomorphic to the linear group GL(E).
For n €N, Jn(E) is a (finite-dimensional) real Lie group; J,,11(E) is obtained
from J,(E) by an abelian extension:

Pess DL/ Dy = Jn+1(E) — Ju( B watt,

DIr'reRKEN1IADLE CUINJUUALUILED U MURDLE-DNVIALL UIrrCUMURETIIDIVID 7

and Jo, (FE) is the projective limit of the (J,(E))nen-

2.2 Canonical representation of J,(E). Let S(E) be the graded

commutative symmetric tensor algebra of E, and ST (E) be the maximal ideal of

S(E); for n € N, denote by S™(E) the component of grade n of S(E), so that

S*(E) = @ S™(E). For n > 1, let P, be the set of maps from {1,...,n}
>0

L4 .
into itself; for p € Py, i € {1,...,n}, let I(p) be the image of p, n(p) the
cardinality of I(p), n;(p) the cardinality of p~1(z).

The derivative of order n > 1 at 0 of a germ F' € D(FE, 0) is considered as
a linear map D"F:S™(E) — E. The canonical representation II: D(E,0) —
GL(S*(E)) is defined as follows; for n > 1, z1,... ,zp, € E, F € D(E,0),
let:

~

Hn(F)(zl,... FAL RS M. i} D”i(P)F( II ,zj)

| =
P n! icl(p) p(s)=i

(where the products are taken in S (E)). This defines a n— linear symmetric map
ﬁn(F): E™ — S*(E), and we take the associated linear map [["(F): S*(E) —
S*(E) as the restriction of II(F) to S™(E). Formulas for derivatives of com-
posed maps allow to check that II is indeed a representation. For n > 1,
£1,...,2n € Eand F € D(E,0), the component of IT(F)(Ilz;) in S™(E) is
zero for m > n, equal to IIDF(z;) for m = n, and equal to D" F(Ilz;) for
m=1. '

The kernel of II is exactly D.,; we denote again by IT the S,ffective repre-
sentation: Jo,(E) — GL(S*(E)). For n > 1, let S,(E) = G_BIS"‘(E); this
is an invariant subspace of the representation II, and the kernel ’gf— the restriction
of II to this subspace is D,,. We obtain in this way as effective representation
I,: Jo(E) — GL(S,h(E)), which is finite-dimensional. Obscrve that I1; is just
the canonical identification: J;(E) — GL(E).

2.3 Semi-simple and unipotent jets. Letn > 1, 5 € J,(E), then
I, (7) is semi-simple if and only if j is conjugate in J,(E) to the n—jet of a
linear semi-simple automorphism of E. On the other hand II,,(7) is unipotent if
and only if the image of j in J1(E) = GL(E) is an unipotent automorphism.

For j € J,(E), we denote by j, (resp. j,) the semi-simple (resp. unipotent)
component of 7 in J,(E), so we have § = 7,74 = Jujs. We can still define
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JssJu € Jo (E) for j € Jo(E), going to the projective limit. For a germ F €
D(E,0), this means that we can find H € D(E,0), A € GL(E), F; € D(E,0)
such that:
OBEREV = R
(ii) A is semi-simple;
(iii) DFy(0) is unipotent;
(iv) F1A — AF; is flat at 0.

24 Resonances. We have just seen that, up to conjugacy, every jet j €
J*(E) belongs to the centralizer in J (E) of the co—jet of some semi-simple
lincar automorphism A of E. We denote by Z(A) the centralizer of A in J* (E).

To describe Z(A), we first complexify the objects: we denote by E¢, Ac,
J& (E) the complexifications of E, A, Joo(E) and by Z¢(A) the centralizer of
Ac in JE(E); then Z(A) will be equal to the subgroup of Z¢(A) formed by
the real jets (i.e. invariant under complex conjugation). Let Al,y. .., A, be the
distinct eigenvalues of A¢ and E, ... , E, the corresponding eigenspaces, so that
Ec = é E;. Associated to this decomposition of E¢, one has a corresponding
decomf)gslilion of ST (E¢):

stE)= @ [[s™(E),

neN’—{0} i=1

where S™i(E;) is considered as a subspace of S(E¢) and ﬁ S™ (E;) is the
§=i

¥
subspace of S(Ec) generated by the products []y;, v € S™i(E;); actually,
i=1
r r
[1.5™(E;) is a subspace of SI™(Ec), with |n| =) " n,.
i=1 §=i
Let p:ST(Ec) — E¢ be the canonical projection. It is clear from the
definition of the representation IT that pIl¢ is an homeomorphism from J& onto

GL(Ec) x L (és’"(Ec),Ec) ;

m=2
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Moreover, we have the decomposition:

r r
1| @smime)pe| = ® e (Ilsw(m.5).
m>2 neN' j:l =1
In|>2
The centralizer Z¢(A) is now determined by its image under pIlg; first, one
defines the resonance set R4 of A as formed by the pairs (n,5) € N"x{1,... ,r}

such that |n| > 2 and:

Then one has:

r r
pllc(Zc(A)) = [[GL(E)x €@ L (HS":’(E.-),E,-) .
=1 (nj)eR, \i=1
As mentioned before, the centralizer Z(A) is obtained by considering the real
elements in Z¢ (A) or in pIlc(Z¢(A)).

The problems of conjugacy or centralizers for jets in J,, (E) having scmi-
simple part A are now reduced to the same problems in the (generally much
smaller) group Z(A). More precisely, two jets j,3' € Z(A), with semi-simple
part A, are conjugate in J,(E) if and only if they are conjugate in Z (A); and
the centralizer of 5 in J (F) is contained in Z(A). Indeed, a conjugacy between
J and j' (with 3 = j for centralizers) must conjugate their semi-simple parts,
hence it belongs to Z(A).

3. Contractions

3.1 Let E be areal finite dimensional vector space, Diff(E) the group of C*
diffeomorphisms of E, and Diff (£, 0) the subgroup formed by the diffcomor-
phisms which fix 0. We say that f € Diff(E,0) is a contraction of E if the
following conditions are satisfied:

@ lim f*(z)=0 VzeE

n—+oo

(ii) all eigenvalues of Df at 0 have modulus strictly smaller than 1.

We now recall how the conjugacy problem for contractions, and the determi-
naiion of their centralizers in Diff(E) are reduced to the same problems in finite
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dimensional Lie groups.

3.2 Let A be a linear semi-simple automorphism of E, whose eigenvalues
(over C) have modulus strictly smaller than 1. The resonance set R4 is finite,
hence Z(A) is a finite-dimensional Lie subgroup of Jo,(E). We embed Z(A)
into Diff(E,0) associating to a jet j € Z(A) the unique polynomial map from
E to E whose jet at 0 is 5. We still denote by Z(A) the image subgroup in
Diff(E,0). The main results about contractions are summarized in the following
proposition.

Proposition.

1. Let f be a contraction of E such that the semi-simple part of Df at 0 is
equal to A. Then there exists h € Diff(E,0) such that h=' o f o h belongs
to Z(A).

2. Let Fy, Fy be two elements of Z(A) having semi-simple part A. Then,
any G € Diff(E,0) which conjugates Fo and F in Diff(E,0) belongs to
Z(A).

As special cases of the second part of the proposition, the centralizer in

Diff(E) of a diffeomorphism F € Z(A) with semi-simple part A is contained
in Z(A); the centralizer of A in Diff(E) is exactly Z(A).

3.3 We recall briefly the proof of the proposition. Let f be a contraction of E
such that D f(0) has semi-simple part A. By Borel’s theorem and (2.3) above,
we can assume that the co—jet of f at O belongs to Z(A), hence we can write
f=fo+ o, fo€ Z(A)and p flatat 0. With f; = fo+tpfor 0 <t < 1, we
look for a diffeomorphism h; satisfying f; o hy = hq o fo, hg = idg, obtained by
integrating a time-dependent vector field X; flat at 0. The equation for X is

p=Xto ft — Dfi X;
with solution:

Xe=-)_ Dfi" o fleo ),

n=0

and this proves the first part of the proposition.

Under the assumptions in the second part, we know from (2.4) that the co—jet
of G at O belongs to Z(A). We may therefore assume that Fy = Fy (so G
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commutes with Fp) and that G — idg = ¢ is flat at 0. From the commutation
equation:

Yo fo=FyoG - Fy,

we see that for some constant ¢ > 0 one has.

[¥(Fo(2))l| 2 cllg(=)ll, z€E

and this is not compatible with the flatness of ) at O unless ¢ = 0. O
3.4 Stable basins.

Definition. A stable basin of dimension n is a pair (V,F), where V is a
C* manifold diffeomorphic to the disjoint union of a finite number of copies
of R™, and F is a C* diffeomorphism of V' having the following property: for
any connected component Vy of V, if m > 1 is the smallest integer such that
F™(Vp) = Vg, then F™ | V; is smoothly conjugate to a contraction in R™. There
is a natural notion of isomorphism between stable basins, namely an isomorphism
between (V, F) and (V', F') is a smooth diffeomorphism H:V — V' such that
HF = F'H. A stable basin (V, F) is irreducible if F acts transitively on
o(V'), the number m of components of V' is then the period of (V,F); if
h:R™ — Vj is a C* diffeomorphism of R™ onto some component of V', sending
0 to the fixed point of F™ | Vg, then h=1(F™ | Vy)h is a contraction of R™, and
the conjugacy class of h™1(F™ | Vo)A in Diff(R",0) only depends on (V, F);
it is called the type of (V, F).

A finite disjoint union of stable basins (of the same dimension) is a stable
basin. Any stable basin is the disjoint union of its irreducible subspaces.

3.5 The classification of stable basins and their automorphisms
groups. Two isomorphic irreducible stable basins have the same period and
type. Conversely, let (V, F), (V', F') be two irreducible stable basins having the
same period m and the same type, let Vj (resp. V{j) be a component of V' (resp.
V') and ho be a diffeomorphism from Vj onto V{ such that ho(F™ | Vp) =
(F'™ | Vg)ho; then we define an isomorphism H of (V, F) onto (V', F') by

H|F*¥Vy) = F*hoF*, 0<k<m.

We, therefore, obtain the following proposition.
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Proposition 1.
1. Irreducible stable basins are classified by their period and type.

2. Let (V,F) be an irreducible stable basin, m its period, Aut(V,F) its
automorphism group; choose a component Vo of V' and denote by Zy the
centralizer of F™/Vy in Diff(Vy). Then one has an exact sequence

1— Zy — Aut(V,F) — Z/mZ — 1,

where Zo embeds as the subgroup of Aut(V, F) which leaves V; invariant,
and H(Vo) = F™(Vo) if the image of H € Aut(V, F) in Z/mZ is the class
of n.

By the proposition in (3.2), Z is a finite-dimensional real Lie group, hence the
same is true for Aut(V, F'). Let ¥ be the set of conjugacy classes of contractions
in R", and ¥* = ¥ x N*; we can consider X* as the set of isomorphism classes
of irreducible stable basins of dimension n.

For a (non-necessarily irreducible) stable basin (V, F), and o € &*, let V,
be the disjoint union of the irreducible components of (V, F') which belong to o
and n(o) the number of these irreducible components.

Proposition 2.

1. The isomorphism type of a stable basin (V, F) is determined by the family
(n(a))aeE‘-
2. The automorphism group of a stable basin is the direct product of the

automorphism groups of its isotypic components V,,; namely, any auto-
morphism must preserve each isotypic component.

3. Let (V, F) be an isotypic stable basin, isomorphic to the disjoint union
of n copies of an irreducible stable basin (Vo, Fy). We have an exact
sequence:

1 — [Aut(Vo, Fo)]* — Aut(V,F) — S, — 1,

where Sy, is the symmetric group of order n, [Aut(Vo, Fo)|™ embeds as the
subgroup of Aut(V, F) preserving each irreducible component of (V, F),
and an automorphism H € Aut(V, F) acts on the set of these irreducible
components according to its image in Sy,.

Proofs are immediate. Propositions 1 and 2 show that Aut(V, F') is a finite-
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dimensional real Lie group, whose determination is reduced to the determination of
centralizers in the Lie groups Z (A) introduced in (3.2). The number of connected
components of Aut(V, F) is finite.

4. A complete set of conjugacy invariants for Morse-Smale diffeo-
mor phisms

4.1 The local invariants.  Let (M, f) be a pair formed by a compact
connected C'* manifold of dimension n and a C* Morse-Smale diffeomorphism
f of M. We want to classify these pairs up to C* conjugacies.

For any periodic point p of f, we denote by W *(p) (resp. W*(p)) the stable
(resp. unstable) manifold of p. The union of the stable (resp. unstable) manifolds
of all the periodic sinks (resp. sources) of f is an open and dense subset of M
which we denote by V*(f) (resp. V*(f)). This subset is also invariant under
f»and (V*(f), f) (esp. (V¥(f), f~1)) is a stable basin of dimension n, whose
automorphism group is denoted by Z*(f) (resp. Z*(f)).

The product J(f) = V*(f) x V¥(f) is called the Jacobian space of f. The
product Z(f) = Z*(f) x Z*(f) of the automorphism groups of (V*(f), f) and
(V¥(f), f71) is called the structural group of f. It acts effectively on J(f).
Considered as an element of Z(f), the diffeomorphism f is called the special
element of Z(f) (or automorphism of J(f)). The isomorphism types, as stable
basins, of (V*(f), f) and (V*(f), f~1) are the local invariants of (M, f). The
structural group Z(f) is determined by these invariants; it is a finite-dimensional
real Lie group with a finite number of connected components.

4.2 The global invariant. With (M, f) as above, let V(f) = V*(f) n
V*¥(f). Then V (f) embeds diagonally in the Jacobian space J(f) and we denote
the image by ©(f). We observe that ©(f) is a n—dimensional submanifold of
the 2n—dimensional manifold J(f), which is invariant under the special auto-
morphism in Z(f). The submanifold ©(f), or more precisely the orbit of this
submanifold under the action of the structural group Z( f), is the global invariant
of f.

Theorem 1. Let (M, f), (M', f') be two pairs as above. Then, there exists
a smooth conjugacy h:M — M' between f and f' if and only if there
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exist isomorphisms H,:(V*(f),f) — (V°(f'), f') and Hy: Ve, Y -
(V(f"), f'~1) of stable basins such that H, x Hy(8(f)) = 6(f').

In other words, necessary and sufficient conditions for smooth conjugacy are
the following:

(i) the stable basins (V*(f), f) and (V*(f'), f') are isomorphic;

(ii) the unstable basins (V*(f), f~!) and (V¥(f"), f'~!) are isomorphic;

(iii) choosing some isomorphisms h,:(V*(f),f) — (V*(f'),f') and h,
(Ve(f), f) — (V¥(f'), "), there exists an element g in the structural
group Z(f') of f' such that:

he X hu(6(f)) = g - B(f").

Theorem 2. Let (M, f) be as above. The centralizer of f in Diff(M ) is
canonically isomorphic to the stabilizer of ©( f) for the action of the structural
group Z(f) on J(f).

The stabilizer of ©(f) means here the subgroup of those g € Z(f) such that
g -©(f) = ©(f). The image of f under this canonical automorphism is the
special automorphism in Z( f).

4.3 A removable singularity theorem for conjugacies. The proofs of
theorems 1 and 2 are easily reduced to the following result, which will be proved
in the next sections.

Let (M, f), (M', f') two pairs as above. We define:
U(f) =VI(HUVH, T =V()nVH),

so that M — U (f) is the nowhere dense, closed, f-invariant subset of M consisting
of the saddle periodic points of f and the heteroclinic orbits associated to these
saddle periodic points.

Theorem 3. Let h:U(f) — U(f') be a C* diffeomorphism satisfying hf =
f'h. Then h extends (uniquely) to a smooth conjugacy M — M " between f
and f'.

This theorem explains why we did not have to consider, in our set of con-
jugacy invariants, the local invariants (such as eigenvalues of the derivative) at

the periodic saddle points. This type of information is in fact contained in the
global invariant 6( f).

One half of theorem 1 is trivial: with (M, f), (M, f') as in the theorem, a
smooth conjugacy h: M — M’ between f and f' defines, by restriction, isomor-
phisms H,, H, as desired such that H, X Hy(©(f)) = ©(f'). This also gives
one half of theorem 2, namely that the centralizer of f in Diff(M) embeds into
the stabilizer of ©(f) in Z(f).

Conversely, given isomorphisms H,:(V*(f),f) — (V*°(f'),f') and
Hy:(VE(f), 1) — (VE(f'), f'~1), the relation H, X Hy(6(f)) = O(f)
means that H, and H, coincide on the intersection V' (f) = V*(f) N V¥(f),
so they define a diffeomorphism h: U(f) — U(f') which conjugates f and f’.
Therefore the second halves of theorems 1 and 2 are consequence of theorem
3. The next section is essentially devoted to a local version of theorem 3. The
theorem itself will be proved in section 6.

5. Saddles

5.1 Let E be a finite-dimensional real vector space of dimension at least 2,
and E = E* @ E* a nontrivial decomposition of E into a direct sum of linear
subspaces E*, EY.

We consider in this section C* diffeomorphisms f from a neighbourhood of
E*U E* onto a neighbourhood of E°U E*, such that f(E®) = E® and f(E*) =
E*. If we identify two diffeomorphisms which coincide in a neighbouhood of
E* U E*, we obtain a group of germs of diffeomorphisms which we denote by
D(E®, E*).

An element f of D(E*, E¥) is called a saddle if the following properties
hold:

(i) Df(0) is hyperbolic, with stable eigenspace equal to E° and unstable
eigenspace equal to E*;

A . k o 8.
(ii) k_lew ff(z)=0, VzeFE®
(iii) | lim f¥(z)=0, VzeE“

The stable manifold (resp. unstable manifold) of O is therefore equal to E*
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(resp. E*).

The main result concerning the classification of saddles up to C* conjugacy
is due to Sternberg [S]:

Theorem. Two saddles in D(E®, E*) are conjugated in D(E*,E*) if and
only if their co—jets at 0 are conjugated in J,(E).

5.2 Let f be a saddle in D(E®, E*), and A € GL(E) the semi-simple part
of Df(0). According to (2.3), we can assume (after possibly conjugating f in
D(E®, E*)) that the oo-jet of f at 0 commutes in J,,(E) with A. Actually,
something stronger is true:

Lemma. There exists h € D(E®, E*), with h—idg flat at 0, such that hfh~!
commutes with A in D{E*, E%).

Proof. Let ¢ = foA— Ao f, which is flat at 0; one can solve ¢ = Aop—poA,
with a C* map ¢ flat at 0; then f + ¢ belongs to D(E*, E*), commutes with
A, and is conjugated to f in D(E*®, E*) by Sternberg’s theorem. O

5.3 Let f be a saddle in D(E*, E*), commuting in D(E*, E*) with the semi-
simple part A of Df(0). We denote by Z(f) the centralizer of f in D(E*®, E).

The image of Z(f) into Jo(E) is equal to the centralizer of the co—jet
of f at 0 in J(E); in particular, it is contained in the group Z(A) studied
in (2.4). For contractions, this map: Z(f) — Z(A) is injective; this is no
longer true for saddles, the kemel being even always infinite-dimensional. On
the other hand, from the study of contractions, one knows that the restriction of
any diffeomorphism g to E* (resp. E*) belongs to a certain finite-dimensional
Lie group of polynomial diffeomorphisms of E* (resp. E*) which is completely
determined by the co—jet of f at 0. Something slightly stronger is actually true:

Lemma. For any k > 1, any g € Z(f), the restrictions of D*q to E* and
E* are polynomial maps:

D*q/E*: E°* — L(S*(E),E)
D*g/E*: E* — L(S*(E),E)

determined by the co—jet of g at 0.

In particular, if the co—jet of g at 0 is 1;_ (), then not only g is the identity
on E* and E but the co—jet of g at any point of E° or E* is the jet of the
identity map.

Proof. Let k and g as in the lemma. We will prove that for £ a big enough
integer (depending only on A and k), we have:

k L
Dk+lgz (Hv; X Hw,) =0;
1=1 =1

for z € E*, v; € E, w; € E°. This, together with the corresponding statement
for EY, clearly implies the conclusion of the lemma.

For h:U — V a C* diffeomorphism between open sets in E, and zo € U,
we define:

hz,(t) = h(zo + t) — h(=0);
then h,, € D(E,0) and we denote by ju(h,z0) € Jn(E) (n € N) and
M, (h,z0) € GL(Sn(E)) the corresponding n—jets and automorphisms (see .
(2.2)).

We choose a norm | | on E and constants 0 < ¢ < 1 < C such that:
A(w)| < clw|, [A@)|<C|, |aA7()|<Cll,
forve E, we E°.

On the other hand, we write f = Af; = f; A, where IIx4¢(f1,0) is unipotent
for any £ > 0; we fix some integer £ > O to be determined later and choose a
norm || || on Sk4¢(E) such that

”H)H_g( ihl,O)H <12,

Next, we choose a neighbourhood U of 0 in E and a constant K > 1 such that:

HI'I,,H(ff‘l,z)“ <3, zeU,;

k+e " k+e
[[o:| <Kl Iwil, weE
=1 i=1
”nk-i-l(g)z)” < K) zE U,
lp(v)| < K ||v]], v € Skye(E),

where p is the canonical projection p: Si4¢(E) — E. Observe that U, K depend
on £ but not ¢, C.
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We now write ¢ = f~"gf™ = A "f{"gf{'A", near a point z € E°,
where n > 0 is big enough to have f{*A"(z) € U for 0 < m < n and
fi™gfrA™(z) € U for 0 < m < n. Then one has, for vy,... ,vx € E,
wiy,... ,wp € E*:

| D*+eg, (Tly; x Thwy)| < C* | DHH(f7 g f A" (T X Tw;)
< C™K |Mye(f7 "9 ST A", 2)(Tv; x Twj)|
< C"K23% ||y o(A™, z) (TTv; X TTw;)||
k ¢
< k31T loil I lwil;
s =11 i=1
choosing £ such that 9C*+1¢¢ < 1 and letting n go to infinity, we get the desired

conclusion. [OJ

We will not use the lemma until later, but the line of argument used in the
proof will now give us a more striking result.

5.4 Removable singularities for conjugacies of saddles. Let f, f' €
D(E,, E,): be two saddles. Assume we are given neighbourhoods V, V' of
E* U E*, aclosed f—invariant (resp. f'—invariant) subset F' (resp. F') of E®,
distinct from E*, and a C* diffeomorphism h from V' — F onto V' — F' such
that:

(i) h(E®* — F) = E* — F';
(i) h(E* - {0}) = E* - {0};
@iii) ho f = f'ohin W — F, with W some neighbourhood of E* U E*.

Theorem. Under these assumptions, h extends (uniquely) in a C* diffeomor-
phism: V. — V' which conjugates f and f' in D(E*, E*).

Proof. We claim that it is sufficient to show that for any k > 0, D*h|(V — F)
extends to a continuous function from V into L(S*(E), E). Indeed, it will then
follow from Taylor’s formula that h extends to a C* map: V' — V", necessarily
unique as V — F dense in V, and conjugating f and f' for the same reason.
As we can interchange f, f', replacing h by h~!, the extension will be a C*
diffeomorphism, as desired.

Next, to show that D¥h | V — F extends continuously, it is sufficient to prove

that there exists an integer £ such that:

k L
Dthzﬂ, (Hvi X ij)

=1 i=1

goes to 0 as y € E¥ — {0} goes to 0, uniformly when z, w; belong to bounded
subsets of E* and v; belong to a bounded subset of E. Indeed, we then get the
desired extension by integrating £ times D**th in the E*—direction from a point
zo € E* — F (in the neighbourhood of which h is smooth).

To prove the last assertion, we proceed in a way similar to the proof of (5.3).
We may assume (at the beginning of the proof) that f (resp. f') commutes in
D(E*, E*) with the semi-simple part A (resp. A') of Df(0) (resp. D f'(0)).
We choose a norm | | on E and constant 0 < ¢ < 1 < C such that:

Aw)| <clul, |A@)<Ch|, [A7@)|<Cll, O

forve E, w € E°.

Let B be a bounded subset of E*, we choose € > 0 and a compact subset G
of V — E* such that for z € B, y € E* with 0 < |y| < ¢, one has f*(z+y) € G
for some integer n = n(z + y); observe that n(z + y) goes to infinity (uniformly
in z) when |y| goes to 0.

We write f = Afy = fi4, f' = A'f{ = f{A’ and fix an integer £, 10 be
determined later.

As Tli1¢(f1,0) and Ix4e(f1,0) are unipotent, we can find norms ||
| | on Sk+e(E) such that:

’

I Me+e(f1,0)]| <2
[mereri 20| <22

Next, we choose a neighbourhood U of 0 in E and a constant K > 1 such that:

M+ e(f1,2)]| < 3, zeU; 2)
!
[Mese(sih0)| <3, zeu; )
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IMk+e(A)]| < K; )

IIHIH-C(AI-I)” < K; &)
Tk +e(h, 2)|| < K, z €G; (©6)
ol < K ||v], v € Skte(E); )
k+¢€ k+¢€
Mo <&[Tlwl, wekE ®)
=1 =1
lp(v)| < K ||of]", v € Skre(E), ©)

where p is the canonical projection: Siy¢(E) — E.

Let z € B, y € E* — {0} with |y| < &, n = n(z + y) and m be the integer
part of (n(z + y))'/% if |y| is small enough, the points f] A"~ ™(z + y) and
fi?A~™hf"(z+ y) belong to U for 0 < j < n.

Under this assumption, we write:
h = fl—nhfn L Alm—nf{—nAl—mhAmf{lAn—m

and with vy,... ,vx € E, wy,... ,wg € E%, |v;] = |wj|] =11 < ¢ <k,
1< 7 < 8), we write:

k /s
Vo = [Jvi x [[ws € S¥*4(E) C Sk E),
i=1 j=1

Vi = iy o(A™™) (Vo) € S*Y(E) C Sere(B),

Vy = Migo(fT, A" ™ (2 + y)) (V1) € Si+e(E),

Vs = Mye(A™, [P A™™(2 + y))(V2) € Sk+e(E),

Vg = Mgre(h, (2 + 9)) (V) € Sk+e(E),

Vs = M1 o(A™™, f"h(z + y))(V4) € Sk+e(E),

Vo = Iise(f17 ", [T A" ™h(z + ) (V5) € Sk+e(E),
Vi =p(Ve) € E,

Vg=A"""(V7) € E.

Then we have the following estimates:

[Vall < K(C*e¥)*™™, by (1) and (8);
V2|l < 3" [l by (2);

Vsl < K™ |[Va]|, by (4);
[Vall' < K ||[Va|| < K*|[Vs||, by (6) and (7);
Vsl < K™ |IVall', by (5);
Vel < 3™ sl by (3);
Vel < K |[Vell', by (9);
[Vs| < C™* "™ |VA|, by (1).

Putting this together, we get:
‘D"“hzﬂ,(Vo)‘ < K4(gck+1ce)n(ch-k-1c—¢)m_
We choose £ such that 9C*+1¢ < 1. Then, as |y| goes to 0 (so n(z + y) goes

to infinity), the right-hand term in the last estimate goes to zero; this gives the
result we were looking for. O

6. Proof of theorem 3

6.1 Correspondence between periodic points. Let (M, f), (M', f'),
U(f),U(f') and h:U(f) — U(f') be as in the hypothesis of theorem 3.

We choose a multiple N of all the periods of the periodic points of f or f’
and-fet F'= N Ft =N,
We order the set P of fixed points of F by the relation:
p<qg=W(p)\WH(9) # 2,

and do the same for the set P’ of fixed points of F'. For p in P (or P') one has:

we(p)= U W),

we(p) = J W(9)-

Lemma. There exists an isomorphism h,: P — P' of ordered sets such that,
forany p€ P:

rW () U(A)) =W’ (h(p)) U,
RW(p) U () =W (h.(p)) (NU(f).
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Proof. For z € U(f), let A*(z) be the set of y € U(f) such that for any
€ > 0, kg > 0 there exist k > ko, z' in an e—neighbourhood of z and y' in an
e—neighbourhood of y with y' = F¥(z'). We define similarly A*(z) with F~!
instead of F and A®(z'), A%(z') for z' € U(f') relatively to F', F'~1.

For z € W*(p), p € P, one has:

() =T 00) = (u w"m) )

q<p

hence the set A*(z) determines to which stable manifold z belongs. On the other
hand, as h is a conjugacy between F and F' on U(f), one has:

h(A*(z)) = A°(h(2)), =z €U(f).

These two relations show that there exists a map h? from P to P’ satisfying:

h(W*(p)(U(f)) c W*(h(p)) (U (S’ p€ P;

exchanging F' and F’, we see that h? is a bijection and that we have equality in
the last relation. The formula above for A*(z) also shows that h? and (h$)~!
are order preserving.

In the same way, we may define hY, with similar properties. To see that
in fact h® = h¥, we observe that h(p) > h¥(p) for any p € P: indeed, for
z € W (p)NU(f). y € W¥(p)NU(f), one has y € A,(z), h(z) € W*(hi(p)),
h(y) € W*(hi(p)) and:

h(y) € A°(h(z)) = U(f)) ( U W"(q)) :

q<hi(p)

Similarly (h2)~1(p') > (h¥)~!(p') for p' € P'. Therefore h{ is equal to hY,
which we indicate simply by h,. O

6.2 We enumerate the points py,... ,pr+s+¢ Of P insuch a way that py,... ,p,
are the sinks, py4+s+1,--- ,Pr4+s+¢ are the sources and p; < p; happens only for
£t <jJ.
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Let p! = h.(pi) for 1 <1 < r+ s+t and define, for 0 < £< st

)
=U(f")u (L:J prﬂ)-

Then U, is open (and dense) in M, it is invariant under F, and we have Uy =
U(f), Us = M. Similar properties hold for Uj.

Cf\

b3

Theorem 3 will follow if we show that, for 0 < £ < s, h extends to a smooth
diffeomorphism between U, and Uj: this extension will be a conjugacy between
f and f' by continuity.

The proof is by induction on £, the case £ = 0 being the hypothesis of theorem
3. We now assume that h is a smooth diffeomorphism between U,_; and U,_,
(with 1 < £ < s). With p = pryy, p' = p),, we will extend h to a smooth
diffeomorphism from U, = U,_1 UW?*(p) onto U, = U;_, UW?*(p').
Observe that WH(p) — {p} (resp. W*(p') — {p'}) is contained in U W*(q)
a<p
(resp. U W?(q')) and, hence, in U,_y (resp. U,_;).- We claim that the re-

g'<p’
striction of h to W*(p) — {p} is a smooth diffeomorphism onto W*(p') — {p'}.

Indeed, one has h(W¥(p) N U(f)) = W¥(p') N U(f') by definition of p’, and
this implies, as W*(p) N U(f) is dense in W¥(p), that

(W (p) - {p}) cWe(p) = U W*(q
I<p
Fdr the same reasons, for ¢’ < p’, one has:
@) U wre.
a<hT(q')
This implies that h(W*(p) — {p}) € W*(p') — {p'}, and we have in fact equality
because we can exchange F' and F', proving the claim.

Denote by n the dimension of M and by k the dimension of W*(p). As Uy is
open in M, contains W *(p) and W*(p), and these manifolds do not accumulate
onto themselves, we can choose a neighbourhood W C U, of W*(p) U W*(p)
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invariant under F and an embedding K of W into R” = R"~* @ RF such that:
K(W*(p)) =R"*,
K(W"(p)) = R".

We choose similarly W', K' for p', F'. Then, with the notations of (5.1), ® =
KFK-1and ® = K'F'K'~! are saddles in D(R"~¥,RF).

The set 7 = K (Uy — Up_1) is a closed subset of R™~¥, invariant under &,
distinct from R™~* (actually with empty interior in R™~¥); the same is true for
F'= K'(U, — U,_,) in relation to ®'.

Now, there exist open neighbourhoods V, V' of R¥ U R™~¥ such that H =
K'h K1 is a smooth diffeomorphism from V' — ¥ onto V' — 7' and is a (partial)
conjugacy between ¢ and ¢'. We are in position to apply the theorem in (5.4)
and conclude that H extends to a smooth diffeomorphism from V' onto V'; this
in turn implics that h extends to a smooth diffeomorphism from U, onto U,.

This finishes the induction step, and also the proof of theorem 3. [

6.3 Rigidity of centralizers.  We recall that in [PY], we showed that
a C* diffcomorphism of a compact connected manifold which commutes with
a C1 structurally stable diffeomorphism, and is equal to the identity on some
non-empty open set, must be equal to the identify on the whole manifold.

Using the lemma in (5.3), we are here able to prove a stronger rigidity property
when the diffeomerphism commutes with a Morse-Smale diffeomorphism.

Proposition. Let M be a compact connected manifold, and g a C* diffeo-
morphism of M. We assume that there exists a fixed point zo of g where
the co—jet of g is the jet of the identity, and that g commutes with a C*
Morse-Smale diffeomorphism f of M. Then g is equal to the identity on M.

Proof We distinguish two cases:

1) zo belongs to the stable manifold of a periodic sink or to the unstable
manifold of a periodic source of f.

Assume for example that zo € W*(p), with p being a periodic sink of f of
period m. We have seen in section 3 that one can find a smooth diffeomorphism
H from W*(p) onto R such that the centralizer of Hf"H ™" in Diff(R") is
a group of polynomial diffeomorphisms. Such diffeomorphisms are determined
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by their jets at any point. Now gf™ = f™g, hence g(W*(p)) = W*(p) and
HgH™! = idgn. Finally, g = idps by our previous rigidity theorem.

2) zq belongs to the stable manifold of a periodic saddle p of f, of period
m.

As g(zo) = zo, we have g(p) = p and g(W*(p)) = W*(p), 9(W*(p)) =
W*(p). Using twice the lemma in (5.3), we first conclude that the co—jet of g at p.
is the jet of the identity, and second that g fixes every point zg in W* (p) UW *(p),
with the supplementary property that the co—jet of g at z, is the jet of the identity.
Choosing z;, in the stable manifold of a periodic sink of f, we are back to case
(1.0
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