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An abstract version of the Morse index
theorem and its application to
hypersurfaces of constant mean curvature

Hermano Frid and F. Javier Thayer

Abstract. In [5] Smale generalized the Morse index theorem (originally proved by Morse
in [3]) to elliptic partial differential systems in several independent variables. Smale’s result
was used by Simons in [4] to obtain the index theorem for minimal submanifolds. The purpose
of this paper is to give an abstract version of the Morse index theorem and use it to prove an
index theorem for hypersurfaces of constant mean curvature. This was sugested by Barbosa
and do Carmo in [1].

1. The Index Theorem for Hypersurfaces of Constant mean Cur-
vature

In [1] the hypersurfaces with constant mean curvature are characterized as critical
points of a variational problem. The bilinear form which arises as the second
variation of the variational problem is given by

1(£,0)= [ a(~A7 - (R+BI))am (L.1)

where we have an immersion M"™ — 31" with constant mean curvature, dM
and A are, respectively, the volume form and the Laplacian in the induced metric,
|| B|| is the norm of the second fundamental form of the immersion, and & is n
times the Ricci curvature of M in the direction of the normal field given by the
immersion.

For reasons inherent to the nature of the variational problem the bilinear form
I must be taken restricted to the space 7 (M) of the smooth functions f: M — R
with f | 9M =0 and | M JdM = 0 (we assume that M is a compact connected
C*° manifold with nonempty boundary), and the Jacobi fields are then defined
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as being those normal fields V' = fN, f € #(M), N a unit normal field to the
immersion, such that f € kerl, i.e., I(f,g) =0, for all g € F(M).

Following Smale in [5], we say that M’ is a domain of M with smooth
boundary if M’ is an open set of M such that the boundary M of the closure
of M' is a C* submanifold of M of codimension 1. A deformation of M is
a family of domains M; of M with smooth boundary, a < ¢t < b, such that
M, = M, and M; is properly in M, if t > s. The deformation is smooth if
dM; depends in a C* manner on t € [a, b].

Given a smooth deformation M; of M, a < t < b, we say that M, is a
conjugate boundary if I | ¥(M,) has a non- trivial Jacobi field. The nullity of
I'| 7(M), which will be denoted by n(t), is the dimension of the Jacobi fields
on M. The index of I | ¥ (M), which will be denoted by 1(t), is the dimension
of a maximal subspace of 7(M;) in which I is negative definite.

We will prove the following:

1.1 Theorem. Let M™ — M""" be an immersion with constant mean cur-
vature of the C* compact connected manifold M, with non-empty boundary,
into the riemannian manifold M. Let M; be a deformation of M, a < t < b.
Then the indices i(a) and i(b) are finite and we have the formula:

i(a) —i(®) = Y n(2).

a<t<bd

Moreover, there exists an € > 0 such that if meas(M,) < ¢, then i(b) = 0.

The first part of the above theorem will be obtained as a consequence of the
abstract index theorem which is stated below.

2. The Abstract Index Theorem

Let (E,( , )g) and (H,( , )) be two real Hilbert spaces such that E ¢ H
and the embedding £ — H is compact and dense. We denote by E' the
dual of E. We use the usual identification of H and H' and then we have the
embedding H < E' which is continuous and dense. In these conditions we say
that (E, H, E') is a triple of Hilbert spaces (t.H.s).

2.1 Definition. We say that (E;, H;, E!), a < t < b, is a deformation of the

triple of Hilbert spaces (E, H, E') if, for each t € [a,}], (E¢, H:, E}) is a t.H.s.
with E, = E, H, = H, E!, = E' and the following conditions hold:

2.1.1. if t > s, EGE,, H;GH,y;

2.1.2. if ty € (a, b] then

Eto = ﬂ E-’l
8<t0
2.1.3. if ¢o € [a,b) then
Eto = U ES)
8>t0

the closure being taken in the topology of E.

Let (E, H, E') be a t.H.s. and consider a real continuous bilinear form B: E x
E — R. We say that B is symmetric if B(e,€) = B(é,e) for all (e,¢) € Ex E
and that B is coercive if there exist # > 0 and 4 > 0 such that

B(e,e) > v|lell — Blle]® @2.1)

for all e € E. We call B a constant of coercivity for B. Let then B be a
continuous bilinear form on E which is symmetric and coercive. We say that
L:V C E — H is the representation of B if V is the set of the elements e € F
such that B(e, - )= (f, - ), for some f € H, and we define Le = £

It is clear that L is a well defined operator with domain V' dense in E and
has an unique extension to £ as a bounded operator £ — E'.

We can easily prove that if B is a continuous symmetric and coercive bilinear
form on E, B a constant of coercivity for B and L its representation, then L + 3
can be extended uniquely to a continuous bijection E — E'. If (E;, Hy, Ej),
a <t < b, is a deformation of (E, H, E') we can consider the restrictions
B | E; and, denoting by L(t) the representation of B | E;, the same thing
holds for L(t).

Now, (L + B)~! viewed as an operator on H, following the diagram below
E — H
(L+8)7" N\ /
EI



is a symmetric compact operator. Then, we can use the Hilbert-Schmidt theorem
to state the existence of an orthonormal basis to H, {ep }nen, and a nonincreasing
sequence of positive numbers ay,, such that

(L + B)'en = anen, 2.2)

with o, — 0. We see by (2.2) that e,, € F, for all n € N. Hence, we obtain a
nondecreasing unbounded sequence of numbers JA,, and an orthonormal basis to
H, {en}, whose elements are all in E and such that

Leqy= Aen (2.3)
where
1
An=——-0.
Qn
Analagously, we have
L(t)en(t) = An(t)en(t) (2.4)

for a certain orthonormal basis to Hy, {en(t)}, the elements of which are all in
E}, and a certain nondecreasing unbounded sequence A, (t), for each t € [a, b].

We will need the following lemma which is an adaptation to the present
context of a classical result (see [6]).

2.2 Lemma. (min-max formula.) Let (E,H,E') be a tHs. and B be a
continuous symmetric coercive bilinear form on E. Let A, be the sequence of
eigenvalues of L, the representation of B. Then, the following holds:

An= min  max(Le,e). (2.5)
FcE e€
dimF=n |l¢||=1
We now introduce the abstract version of the concept of unique continuation (see

(2D.

2.3 Definition. Let (E,H,E') be a tHs. and B a continuous symmetric
coercive bilinear form on E. We say that B has the property of the unique
continuation if given any deformation of (E, H, E'), (E;, Ht, E}), a <t < b,
the following is satisfied:

“whenever for some e € Ey, t € (a,b], there exist A € R and s < t, such
that
L(s)e = e,

then e = 0.

We call Morse index of B and denote 1(B) the dimension of a maximal
subspace of E in which B is negative definite.

2.4 Theorem. (abstract Morse index theorem.) Let (E, H, E') be a triple
of Hilbert spaces and B a continuous symmetric coercive bilinear form on E
which has the property of the unique continuation. Then i(B) is finite and for
any deformation (E;, Hy, E}), a <t < b, of (E, H, E') we have

i(B)—i(B| Ey)= )_ dimKer(B | E,). (2.6)

a<t<b

Proof. First, it is easy to see that 1(B) is equal to the number of negative
eigenvalues of the representation L of B and so it is finite. We will prove (2.6)
by means of three lemmas which will state that the functions A,(t), n € N, are
continuous and strictly increasing on [a, b]. The result will then follows from the
elementary properties of this type of function.

2.5 Lemma. For each k € N, the function t — A(t), defined on [a,b], is
nondecreasing and right continuous.

Proof. The fact that Ag(t) is nondecreasing follows immediatly by the min-
max formula. Let us prove the right continuity. We take to € [a,b) and a
decreasing sequence {s;}ien convergirig to to. For each k € N, the sequence
{Ak(s:)}ien is nonincreasing and bounded below by Ak (to). Hence, it converges
toa X €R. Letey(to),... ,ex(to) be the orthonormal eigenvectors corresponding
to A1(20), - - - , Ak(to), respectively, and F C E;, be the space generated by these
vectors. We recall that

By, = U Es,
8>t0
so we can obtain sequences {e;(si)}ien» 7 = 1,...,k, such that, for each
1 € N, {e1(si),-.. ,ex(s;)} is a set of vectors in E,,, orthonormal in H, and
ej(si) — €;(to) in E, as 1 — oo, for each 5 = 1,... , k. Since B is continuous



in F, we have

k() = min ma.x (L(s,)e e)
FCEJ‘.
dimF=n "‘” E

= min  max B(e,e)
FCEJ'-
dimF=n llefl=1
< max B(e,e)

e€ span{e;(s;),--,ex(5;)}
[lell=1

— max B(e,€)

e€ span{e;(to),---,ex(to)}

= ’\k(to)i

as 1 — oo, by passing to a subsequence if necessary. It follows then that
hm /\k(s;) = /\k(tO)- ]
1— 00

2.6 Lemma. For each k € N, the function t — Ai(t), defined on [a,b], is
continuous.

Proof. It remains to prove the left continuity. Let to € (a,b] and consider an
increasing sequence converging to to. The sequences {);(s;)}ien are increasing
and bounded above by A;(to), 7 = 1,... ,k. So, there exist A; € R such that
/\j(s,-) =¥ Aj as1— 00,5 =1,...,k Foreach: € N, let 61(8;),... ,ek(s,-)
be the orthonormal eigenvectors associated to A;(s;),... ,Ax(s;). For each j =
1,...,k we have a sequence {e;(s;)}ien Which is bounded in H and, hence, is
also bounded in E’. By the coercivity, we have

((Aj(s:) + B)ej(s:), 5(si)) = ((Li + B)ej(si), e5(s:)) > clles(s:)llg »

50 {e;(si)}ien is a bounded sequence in E, y =1,... , k. Hence, there exists a
subsequence of {e;(s;)}, which we will denote also by {e;(s;)}, which converges
to f; in H, passing to a subsequence if necessary. Let V;, = D(L(to)). For all
§ € Vi,, we have

(L(to)f;,€) = (Lf;, &) = ({f;, LE)
= lim (;(s:), L€) = lim (;(s:)e;(s:), €)
= (A fi, €)-

AN ADOIINALL VIMWOIVIY UL LI IVANINDI LS AAVASI A 2 LALs\sANiava —

Then, it follows that
Lito)f; =if; » j=1..,k

So Ag,...,Ax are k eigenvalues of L(to) and, further, A; < Xj(to),
7=1,... k. We then conclude that

/\j:Aj(to) s 3=1,...5k O

2.7 Lemma. For each k € N, the function t — Ag(t) is strictly increasing.

Proof. We will prove this by contradiction. So, we assume that there exist p € N
and t1 < t2 such that

Ap(t1) = Ap(t2) = A
Let {e;(t1)}jen and {e;(t2)};en be the orthonormal sets of vectors which satisfy
L(ti)ej(t,') = /\_,,-(t.-)e,-(t,-) , JEN | g ="1,2:
Let F C E;, be the subspace generated by {ej(tz),... ,ep(t2)}. We have that
there exists u € F, ||u]| = 1, such that

(u,ej(t1)>=0 , j:].,...,p—l.

Now, u € E; , since E;, C E; , and, hence, we can write

(e o]
Z u, e;(t1))e;(t1).
i=p

From this, we have

©o

(Lu, u) Z (t1) [{u, €5(£2))]* = Aplts) = A (2.6)

On the other hand, u € F, then
p
Z u CJ t2 CJ t2)
=1

and so

(Lu,u) Ep: (u ej(tz))|2 < Apltz) = A

J=1
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From (2.6) and (2.7) we conclude that
(Lu,u) = 3 Ai(t1) [(u, €5 (t2))[* = Ap(t)-
j=p

But the above equality is possible only if Aj(t1) = Ap(t1) for all 7 such that
(u,ej(t1)) # 0. Then, we have

L(t1)u = Au.
Since u € Ey,, by the property of the unique continuation, we obtain that
u=0.

which gives a contradiction and proves the lemma. O

3. Proof of the Index Theorem for Hypersurfaces of Constant
mean Curvature

We consider the following Sobolev spaces on M:

H'(M)={f e L*(M) st. |Vfl€L M)},

HY(M) = {f € L} (M) st. Afe L*(M)},
and let H~1(M) be the dual of H'(M). We denote by F(M), F}(M), F*(M)
and F~1(M) the closures of 7(M) in L*(M), H'(M), H*(M) and H (M)
respectively. It is easy to see that (F}(M), F(M), F~(M)) is a triple of Hilbert
spaces. It is also immediate that the bilinear form I defined in (1.1) can be

extended to a continuous bilinear form in F1(M). Let L°: H*(M) — L*(M)
be the operator

L°f = -Af - (R+||B|")f. 3.
The representation of I in F!(M) is the operator L: F*(M) — F(M) given by
1
0 0
— — dM. 3.2
Li . L meas(M) ./M(L /) e

The first part of Theorem 1.1 will then follow from Theorem 2.4 if we prove that
I is symmetric coercive and has the property of the unique continuation.

That the form [ is symmetric is obvious. The coercivity can be proved in the
same way that Simons [4] proved this property for the second variation of the area
for minimal submanifolds. It remains to prove that the form I has the property

AN ABD IKAUL1 YCMOIVIY U 1M1 IVIVNOL UYAJLA 1LY ~

of the unique continuation. So, suppose that there existe t; < tz in [a,b], A € R
and ¢ € F1(M,) such that

L(t1)¢ = Aé.
Since ¢(z) = 0 for z € My, \ Ms,, by (3.2) we see that

L°¢dM;, = 0.
My,

Hence,

LO(t1)¢ = L(t1)¢ = 2¢.
But L9 has the property of the unique continuation in the classical sense (see [4])
and then ¢ = 0, which proves the desired result.

The last part of Theorem 1.1 is a direct consequence of Lemma 3.5 of the
paper of Smale [S].

We finally would like to remark that from what we have seen above, the Jacobi
fields along hypersurfaces with constant mean curvature are those normal ficlds
V = fN, f € ¥(M), which satisfy

L°f =¢

for some constant ¢ € R.
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