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Centrality properties of some abelian
by polycyclic groups

S.H. Nazzal

Abstract. We describe the structure of Z I'-modules, where T is polycyclic, and use the
result to give a direct proof of the result of Lennox and Roseblade that finitely gencrated abelian
by polycyclic groups are sn-stunted and sn-eremitic.

Introduction

In their remarkable paper [1] in 1970, J.C. Lennox and J.E. Roseblade proved
that a finitely generated abelian by nilpotent group is stunted and eremitic, and
they asked whether finitely generated abelian by polycyclic groups have such
properties.

In the same paper, some weaker properties, sn-stuntedness and sn-ercmiticity,
were shown to hold for finitely generated abelian by polycyclic groups. This is
given by Theorem E™* [1]. The proof of this theorem uses the “Fan Out Lemma”
which is designed to obtain information about the structure of Z I'-modules, where
I is a finitely generated nilpotent group.

In this paper a modified version of the “Fan Out Lemma” that deals directly
with Z I'-modules, where T' is polycyclic is established and used to obtain a
simpler proof of Theorem E*.

In a subsequent paper, this modified version of the Fan Out Lemma together
with two parallel results are used to extend Theorems A and B of [1] to the groups
that are finitely generated abelian by polycyclic where the polycyclic quotient is
either abelian by infinite cyclic or a plinth by abelian group. The proofs of all
these results make heavy use of the isolator property for suitable subgroup of a
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polycyclic group as given in Proposition 1 of [2].

1.2. Definitions and Notation

We recall from [1] that a group G is said to have upper central height « if
€4(G) = €at1(G) while £5(G) < €s+1(G) for all B < a, where €x(G) is the
ath term of the upper central series of G, and G is said to be centrally stunted
of height h if an integer k exists such that every subgroup of G has central height
at most k, and h is the least such k. A group G is called centrally eremitic of
eccentricity e if there exists a positive integer f such that for any z € G and any
n >0,

Ca(z") < Cal(a)

and e is the least such f, where Cg(z) denotes the centralizer of z in G. Let I be
any group and M a Z T'— module, the additive notation for M is used here and
mz denotes the image of m € M under the action of z € I'. But occasionally
m? is used to denote this image and the multiplicative notation for M is adopted.
Following Lennox and Roseblade in [1], we shall think of the pair (M ,T) as
being embedded in the split extension G = MT with M <G and M NT = 1.
The commuator [m, z] is identified with m(z — 1) for m € M and z € I'. For
any ordinal « and any subgroup H of T,

M,(H) = M ¢o(MH).

Thus for a positive integer n, the subgroup My, (H) of M consists of all m € M
such that [m, hy, hs,...,hn] =0; by € H, ¢+ =1,...,n. ForaZ I''module M,
the pair (M, T') is stunted if there is an integer h > O such that for all subgroups
H of T the equality M,(H) = My (H) holds for all @ > h. The least such
integer h is called the height of (M,T). We shall also say that the pair (M,T')
is sn-stunted of height h if the above equality holds for all subnormal subgroups
H of T.

Likewise the pair (M, T') is eremitic of eccentricity e if there is an integer f > 0
such that for all n > 0 and all z € T the inclusion Mj (z") < M;y(z/) holds and
e is the least such f. The pair (M,T) is sn-eremitic of eccentricity e if there
is an integer f > O such that for all n > 0 and all subnormal subgroups H of
I, M;(H") < My(H7) and e is the least such f. Here H"™ is the subgroup
(h",h € H) generated by all nth powers of elements of H.

We state here for easy reference,

Theorem E*. ([1].) If M is a Noetherian Z I'-module, where T' is a polycyclic
by finite group, then (M, T) is sn-stunted and sn-eremitic.

2.1. The isolator property

We give here the definition and the main facts of the isolator property and use it
to give a simple proof for Theorem F in [1].

Let H be a subgroup of a group G and the set I[(H) ={z € G :z" € H
for some n # 0}. I(H) is called the isolator of H in G and if it is necessary to
emphasize the group G then we write I (H). We say G has the isolator property
if for every subgroup H of G, I(H) is a subgroup. H is said to be isolated in
G if Ig(H) = H. Observe that if G is polycyclic and I(H ) is a subgroup then
|I(H) : H| < oo. Proposition 1 of [2] shows that a polycyclic group G has a
normal subgroup Gy of finite index with the isolator property. Other properties
of Gg from [2] are:

(i) Fitt(Go) and all centralizers in G are isolated-and
(ii) For any subgroup H < Gy,
I(ng,(H)) = ng,(1(H)),
where nG(H ) is the normalizer in G of the subgroup H.
These facts will be used in what follows without further mention. We give

now an alternate proof of the following:

Theorem F. ([1].) Suppose A is a subgroup of a polycyclic group I'. There is a
positive integer d = d(T', A) such that |H : H N A| divides d for all subgroups
H of T for which |H : H N A is finite.

Proof. If T is finite the result is clear, so assume I' infinite and find a subgroup
T'p of finite index in I' that has the isolator property.
If d(T'p,Tp N A) exists then we can take

d(T,A) = |T' : To|d(To,To N A),

thus we may assume I' to have the isolator property. Now given A and H
subgroups of T so that |H : HNA| < oo then I(A)NH = H, since I(A)NH
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is isolated in H and AN H < I(A)N H < H. Thus H < I(A).

Since |I(A) : A| < oo, we can find an integer n = n(A,T) so that I(A)" <
A. Now |H : HNA| divides |H : HN I(A)"| hence we only need to show that
|H : H N I(A)?| divides some integer d = d(T',A). But |H : HN I(A)"| =
|I(A)*H : I(A)"| and the latter number divides |I(A) : I(A)"| which depends
on I' and A only. This completes the proof.

3.1. The “Fan Out Lemma’ a modified version

We give in this section the statement of the modified Fan Out Lemma and use it
to give a simple and direct proof of Theorem E* [1]. The proof of the Fan Out
Lemma will be given in Section 5.

Let T be a torsion-free polycyclic group with the isolator property and M
any Z I'-module. Define the set X (M,T') of subgroups of T as follows:

A subgroup X of T'is in X(M,T) if X is maximal with respect to having
the following properties:

(1) X snI' (X is subnormal in I')
2) My(X)#0
3) If X < H <T and H has (1) and (2) then

|H : X| < o0

4) X = I(X)" for some n > 0.
For M and T' as above we have,
3.2 Lemma. If T has a non-trivial subnormal subgroup H such that My (H) #
0, then X (M,T) contains non-trivial elements.

The proof of this lemma follows the same reasoning as Lemma 2 [1], and is
not stated here, it rests on the following.

3.3 Lemma. If T is torsion-free polycyclic with the isolator property and H
is any subgroup of T then there is a subgroup K C H such that K = I (K)"
for some n > 0 and np(K) is isolated. :

Proof. Since |I(H) : H| < oo, I(H)" < H for some n > 0 and I(H)" # 1
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unless H = 1. Let K = I(H)", then |H : K| < oo hence I(H) = I(K) and
I(K)* = I(H)" = K.

Now K is fully invariant in I(K), hence K < np(I(K)) = I(np(K)). It
follows that

I(nr(K)) = np(K).

Hence np(K) = I(nr(K)) as required.

3.4. Some elementary proprties of elements of X (M,T) are collected here.
Their verification is straightforward and is omitted.

Lemma. For M and T as in (3.1), if X € X(M,T) then
1) X*e X(M,T)forallaeT

(2) There is a subnormal series from X to T

X=X04X14---aX, =T, suchthat

X1,Xa,..., X areallisolated in T.

(3) If X < A and A is isolated and subnormal in T', then X €
X(M,A).

3.5 Lemma. Let M be any Z T-module, where T is a torsion-free polycyclic
group with the isolator property. Let 1 # X € X (M,T') and N = np(X) and
T a set of coset representatives of N inT. Let U = My(X) andY =U(ZT)
then,
) Y=Ut
teT
" (ii) U is ZN-Noetherian if M is 7 T'-Noetherian

(iii) Yp(H) = @ Un(H)t, for all H<T and all n > 0.
teTy

Here Ty = {t€ T : H < N*}

(iv) The pair (M,T') is sn-stunted and sn-eremitic whenever
(U,N) is so.

This is a variation of the Fan Out Lemma in [1] and as in [1], it plays a key
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role in the proofs of the other results.

4.1. Proof of Theorem E* ([1])

By induction on the Hirsch length A(T). If A(T') = O then T' is finite and since
£(MT) < oo where &(G) is the least upper bound of orders of all torsion elements
of G, the pair (M,T) is actually stunted and eremitic by Corollaries 16 and 17
of [1].

Thus assume h(I') > 0 and the obvious induction hypothesis. Let I'o be a
subgroup of finite index in I which is torsion frce and has the isolator property then
MT has max —n the maximal condition on normal subgroups (Theorem 15:3:1
[3]), and by Lemma 13 [1], e(MT,) < oo. By analogues of Corollaries 16
and 17 [1], the pair (M, T) will be sn-stunted and sn-eremitic if (M, T'o) is so,
therefore assume T' a torsion-free polycyclic group with the isolator property. If
(M,T) is not sn-stunted and not sn-cremitic then let D be a submodule of M
maximal such that (M/D,T) is not sn-stunted or not sn-eremitic. We assume
D = 0 and will obtain a contradiciton. In other words, we are assuming that for
any nonzero I-submodule Y of M, the pair (M/Y,T) is both sn-stunted and
sn-eremitic. So, to reach a contradiction, it is enough by Lemma 4 [1], to show
that there is a nonzero submodule Y of M such that (Y,T') is both sn-stunted
and sn-cremitic. By assumption, there is a nontrivial subnormal subgroup H of I’
such that M (H) # 0, thus by Lemma 3.2 the set X (M, T') contains a nontrivial
element X say.

Let N = np(X) and T a set of coset representatives of T in I'. Let U =
M;(X)and Y =U(Z T). '

By Lemma 3.5 (ii), U is N-Noetherian, and since X centralizes U, we have
U is N/X-Noetherian. Now (U, N) is sn-stunted and sn-eremitic if and only if
(U, N/X) is so. However h(N/X) < h(T), therefore by the induction hypoth-
esis (U, N/X) and hence (U, N) is sn-stunted and sn-eremitic. By Lemma 3.5
(iv) the pair (Y,T) is sn-stunted and sn-eremitic, completing the proof.

5.1. Proof of Lemma 3.5

Part (ii) follows from (i) in the same way as Lemma 5 [1] follows from F.1 [1]. Part
(iii) also follows from (i) as F.3 [1] follows from F.1 [1]. Part (iv) follows from
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(iii) in the same way as shown in the last paragraph of the proof of Theorem A*
and B* on p. 411 of [1]. Thus we only have to establish part (i). We follow the
scheme used by Lennox and Roseblade in [1] and shall restate Lemma 3.5 with
some more items that are not used directly in the proof of Theorem E*.

3.5.1 Lemma. If M is any Z T'-module, where T is a torsion-free polycyclic
group with the isolator property then,
FOL (1): If X € X(M,T) and T is a set of coset representatives of
N = np(X) then

M;(X) = €D My(X)t.
teT

FOL (2): If X € X(M,T) and B is a submodule of M then

BNM(X)(ZT)#0 onlyif By(X)#0.

We shall use X, X1, X2,... to denote elements of X (M,T') and U =
M, (X),
Uy = Myi(X1), Uz= M(X3z),... and
Y=U@ZT), 1 =U1(zT), Y2=U,(ZT),....

Also N = np(X) and T is a set of coset representatives of N in I' and Ty =
{teT:H< N

To prove FOL (1) and FOL (2) we need some of its consequences which we
state as:

5.2 Lemma. If FOL (1) and FOL (2) hold then so does:
FOL (3): For X € X(M,T)
Yo(H)= € Un(H)t, forall n>0
teTy
andall H <T.
FOL (4): If X5 (X € A) are elements of X (M,T') mutually inconjugate in
T then,

(Ya, A€ A) = PV
A€EA
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FOL (S): If Xa,..., X, are elements of X (M,T) mutually inconjugate in
T and if B is a submodule of M such that BN (EBI=1 Y) £0
then By(X;) # O for some 1 <1 <r.

The proof of this lemma is analogous to that of Lemma 10 [1] with a small
modification in the proof of FOL (4), which we record in

5.3. Proof of FOL (4) from FOL (1) and FOL (2)

By induction on r, if r = 1 then there is nothing to prove, so assume r > 1 and
r r

B=YY;,=@Y;buBnY; #0.
i=2 i=2
By FOL (2) B;(X;1) # 0 and since B is a direct sum, Y; ;(X)1) # O for some

2 < 1 < r. To simplify the notation we write X for X; and Y for Y;.

For 1 > 2 we have X and X; are inconjugate in T and Yi(X;) # O.
Since FOL (1) is assumed to hold, FOL (3) holds too, thus

i(X1) = @ Ui(Xu)t
teTx,

and therefore

utn Ml(Xl) = Ul(Xl)t #0

for some t € Tx,. In other words, My (X*)NMi(X;) # 0and M; ((X*, X1)) #
0. Let H = (X%, X;) then X* < H and X; < H since both X* and X are in
X (M,T). (Note: up to this point the proof is as in F4, p. 415 [1]).

Now H snI by Theorem 13.1.9 [3], so H has properties (1) and (2) in the
definiton of X (M,T), hence |H : X*| and |H : X;| are both finite. It follows
that I(H) = I(X*) = I(X;). Let m and m; be positive integers such that
I(XH)™ = X* and I(X;)™ = X; and let d = g.c.d.(m,m;). Then X; =
I(X1)™ < I(X1)* = I(H)% and similarly X* < I(H)® hence H < I(H)%.
On the other hand, if d = sm + tm, s and t integers, then

I(H) = (¢%, g¢e€I(H))

— (gamgtm’ g€ I(H))
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SHEY™,  HHE)™)
={I(X)™,  I(X1)™)
= (X', X)) = B2

Thus H = I(H)%, d > 0and H € X(M,T) contradicting the maximality of
X, with respect to being an element in X (M, T). This establishes FOL (4).

S.4. To prove FOL (1) and FOL (2) we note here that much of the following
proof is analogous to that of F.1 and F.2 in [1]. The proof is by induction on the
Hirsch length h(T).

If A(T') = 1 then h(X) = h(T) for any 1 # X € X (M,T), hence |I" :
X| < ocoand T' = N since N is isolated in T' by Lemma 3.3. Thus X T
and FOL (1) and FOL (2) follow trivially, so assume h(I') > 1 and the obvious

induction hypothesis. Let X € X(M,T), by Lemma 3.4, there is a subnormal
series from X to I' consisting of isolated subgroups,

X=X94X14X34---4X;=T.

If k =1 then X 4T and the result follows so assume k > 1 and let A = X_;.
Then X < A and A is isolated and subnormal in T'. Hence X® € X (M, A) for
all a € T by Lemma 3.4,

Since h(A) < h(T), by the induction hypothesis FOL (1) and FOL (2) hold
for the pair (M, A), so if R is a set of coset representatives of N N A in A then,

(*) M (X)A =P M(X)r... .
reR
Let S be a set of coset representatives of NA in T, then it is easy to see that
the elements {X°,s € S} of X(M, A)}
(%)

are all mutually inconjugate in A

Now since FOL (1) and FOL (2) hold for (M, A) so does FOL (4), thus

(%) (Mi(X*)A,s € S) =P Mi(X*)A .
s€S

Let T'= RS then T is a set of coset representations of NinT' and ' = NT. It



78 D.H. NALLAL

follows that,
My(X)Z T = My(X)NT = My(X)NRS
= M (X)AS
= (M;(X)As, s€S)

= (M;(X*)A, s€S) since A is normal in T

=@M1(X")A by (%% %)

SES

= @(Ml(X)A)" since A is normal in T'

seS

=P (P Mi((X)r)* by (%)
seS reR

=P Mi(X)(rs) = P Mi(X)t
seS teT
réeR

This proves FOL (1). The rest of the proof of FOL (2) is analogous to that in the
proof of F.2 in [1] and is omitted.
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