On the generators of subgroups of unit groups of group rings

Ashwani K. Bhandari

Abstract. In this paper we find the generators of a subgroup of finite index in the unit group of the integral group ring of the metacyclic group of order pq given by

$$G = \langle a, x : a^p = 1 = x^q, xax^{-1} = a^f \rangle,$$

where p is an odd prime, $q \ge 2$ a divisor of p-1, and f belongs to the exponent q modulo p.

Results

Let $U = U_1(\mathbb{Z}G)$ be the group of units, having augmentation one, of the integral group ring $\mathbb{Z}G$ of a finite group G. It is a difficult problem to find generators of U. It might be easier to do the same for a subgroup of finite index. This note is a contribution towards the latter problem when G is the metacyclic group of order pq given by

$$G = \langle a, x : a^p = 1 = x^q, xax^{-1} = a^f \rangle,$$

where p is an odd prime, $q \ge 2$ a divisor of p-1 and where f belongs to the exponent $q \mod p$.

Let $k=\mathbf{Q}(\varsigma)$ with $\varsigma=e^{2\pi i/p}$, and let k_0 be the fixed field of the automorphism $\phi:\varsigma\mapsto\varsigma^f$ of k. We denote by $\mathfrak o$ and $\mathfrak o_0$ the rings of integers of k and k_0 respectively. Let $\Pi=\varsigma-1$ be the prime in $\mathfrak o$ above the rational prime p. The prime in $\mathfrak o_0$ above p is $\Pi_0=(\varsigma-1)(\varsigma^f-1)\dots(\varsigma^{f^{q-1}}-1)$. We recall that $\mathfrak o/\Pi$ $\mathfrak o=\mathbb Z/p\mathbb Z=\mathfrak o_0/\Pi_0\mathfrak o_0$.

We shall write elements of $\mathbb{Z}G$ as

$$m = m(a, x) = m_1(a) + m_2(a)x + \cdots + m_q(a)x^{q-1}$$

where $m_i(T)$ are polynomials with rational integral coefficients. It is clear that the numbers $m_i(1)$ and $m_i(\zeta)$ depend only on m and that two elements m and n of $\mathbb{Z}G$ are equal if and only if $m_i(1) = n_i(1)$ and $m_i(\zeta) = n_i(\zeta)$ for $1 \leq i \leq q$.

Let C denote the cyclic group generated by x and let N be the kernel of the homomorphism $U_1(\mathbb{Z}G) \to U_1(\mathbb{Z}C)$ which maps the unit m(a,x) to m(1,x); an element m of $U_1(\mathbb{Z}G)$ is in N if and only if

$$m_1(1) = 1, m_2(1) = 0, \ldots, m_q(1) = 0.$$

It is clear that $U_1(\mathbb{Z}G)$ is the semidirect product of N and $U_1(\mathbb{Z}C)$.

We put

$$P = egin{pmatrix} 1 & \Pi & \dots & \Pi^{q-1} \ 1 & \phi(\Pi) & \dots & \phi(\Pi^{q-1}) \ & & \dots & & \ 1 & \phi^{q-1}(\Pi) & \dots & \phi^{q-1}(\Pi^{q-1}) \end{pmatrix}$$

Let $\mathcal X$ denote the subgroup of $GL_q(\mathfrak o_0)$ consisting of matrices X which satisfy the congruence

$$X \equiv egin{pmatrix} 1 & & 0 \ & & \ * & 1 \end{pmatrix} \mod \Pi_0$$

If $\alpha_1, \alpha_2, \dots \alpha_q$ are elements of k, we put

As shown in [3], Lemma 1.4, the mapping

$$\psi: m \mapsto P^{-1} \operatorname{circ}_{\phi}(m_1(\zeta), m_2(\zeta), \dots, m_q(\zeta))P$$

is an isomorphism of N with X.

For 1 < i < q-1, we shall denote by $S_i(t_1, t_2, \dots, t_{q-1})$ the *i*th symmetric

function in $t_1, t_2, \ldots, t_{q-1}$, and we put $S_0(t_1, t_2, \ldots, t_{q-1}) = 1$. We put

$$\delta(T) = \prod_{i=1}^{q-1} (T - \phi^i(\Pi)) = T^{q-1} + \delta_1 T^{q-2} + \dots + \delta_{q-1}$$

with $\delta_i = (-1)^i S_i(\phi(\Pi), \phi^2(\Pi), \dots \phi^{q-1}(\Pi))$, and let $\delta = \prod_{i=1}^{q-1} (\Pi - \phi^i(\Pi))$. One checks easily that the matrix P has the inverse

here, for the sake of symmetry, we have put $\delta_0 = 1$.

For an algebraic number field L with ring of integers \mathfrak{o}_L , we denote by $SL_n(\mathfrak{o}_L)$ the subgroup of $GL_n(\mathfrak{o}_L)$ consisting of all matrices with determinant 1. For an ideal Q of \mathfrak{o}_L we denote by $E_n(Q)$ the subgroup of $SL_n(\mathfrak{o}_L)$ generated by all Q-elementary matrices $I + \alpha e_{ij}$, $\alpha \in Q$, $i \neq j$, and e_{ij} a matrix unit, and by $\widetilde{E}_n(Q)$ its normal closure in $SL_n(\mathfrak{o}_L)$. We need the following result due to Bass [2] and Vaserstein [7] and [8] (see also [6] and [5]).

Lemma 1.

- (i) If $n \geq 3$, then $\widetilde{E}_n(Q^2) \subset E(Q)$, in particular $[SL_n(\mathfrak{o}_L) : E_n(Q)] < \infty$.
- (ii) If n=2 and if L is not rational or imaginary quadratic field, then $[SL_2(\mathfrak{o}_L):E_2(Q)]<\infty$.

We put

$$\mathcal{W}_1=\{u_{\mu}|2\leq \mu\leq rac{p-1}{2}\},$$

with

$$u_{\mu} = (1 + a + \cdots + a^{\mu-1})^{p-1} + \frac{1 - \mu^{p-1}}{p} (1 + a + \cdots + a^{p-1}).$$

If p=3, we put $\mathcal{W}_1=\{1\}$. For any divisor d>2 of q, fix an element $x_d \in \langle x \rangle$ of order d. Let

$$\mathcal{W}_{2,d} = \{v_{d,\mu}|2 \leq \mu < rac{d}{2}, (\mu,d) = 1\},$$

with

$$v_{d,\mu} = (1 + x_d + \dots + x_d^{\mu-1})^{arphi(q)} + rac{1 - \mu^{arphi(q)}}{d} (1 + x_d + \dots + x_d^{d-1}),$$

where φ is the Euler φ -function and let $\mathcal{W}_2 = \bigcup_{\substack{d \mid q \\ d > 2}} \mathcal{W}_{2,d}$. If $q \leq 3$, we put

 $W_2 = \{1\}.$

Let $\bar{R}=\{\bar{1},\bar{2},\ldots,\overline{p-1}\}$ be the reduced residue system modulo p, and let $\bar{R}_f=\{\bar{r}_1,\bar{r}_2,\ldots,\bar{r}_{p-1/q}\}$ be the coset representatives in \bar{R} of the group generated by \bar{f} . Let $\mathcal{R}=\{0=r_0,r_1,r_2,\ldots,r_{p-1/q}\}$.

We denote by σ the automorphism of the cyclic group $\langle a \rangle$ given by $\sigma(a) = a^f$.

For each $r \in \mathcal{R}$ and for $1 \leq i, j \leq q$, $i \neq j$, $1 \leq \omega \leq q$, we define the elements $A_{i,j,r}^{(\omega)}$ of the group ring $\mathbb{Z}\langle a \rangle$ by

$$A_{i,j,r}^{(\omega)} = (-1)^{q-j} \sum_{t=0}^{q-1} \sigma^t(a^r) \cdot \Big(\prod_{\substack{s=0\\s \neq \omega-1}}^{q-1} \prod_{\ell=1}^{q-1} (\sigma^s(a) - \sigma^{s+\ell}(a)) \Big) \times$$

$$\times (a-1)^{i-1} S_{q-j}(\sigma^{\omega}(a) - 1, \ \sigma^{\omega+1}(a) - 1, \ldots, \sigma^{\omega+q-2}(a) - 1).$$

By $A_{i,j,r}^{(\omega)}(\zeta)$ we shall mean the complex number obtained on replacing a by ζ in the expression (as a polynomial in a) for $A_{i,j,r}^{(\omega)}(a)$.

We have

Theorem 2. Let $W=W_1\cup W_2\cup W_3$, where W_1 and W_2 are as defined above and where

$$\mathcal{W}_3 = \{u_{i,j,r} | 1 \leq i, \ j \leq q, \ i
eq j; \ r \in \mathcal{R}\},$$

with

$$u_{i,j,r} = 1 + A_{i,j,r}^{(1)}(a) + \sum_{\omega=2}^q A_{i,j,r}^{(\omega)}(a) x^{\omega-1},$$

and where $A_{i,j,r}^{(\omega)}$ are defined as above. Then the group generated by W is a subgroup of finite index in $U_1(\mathbb{Z}G)$.

Proof. The main observation in the proof of the theorem is that the images (under ψ) of elements of W_3 in X are elementary matrices, which, in view of Lemma 1,

For each $r \in \mathcal{R}$ and for $1 \leq i,j \leq q$, $i \neq j$, let $X_{i,j,r} = I + b_r e_{ij}$ be the elementary matrix with $b_r = Tr_{k|k_0}(\varsigma^r)Nr_{k|k_0}(\delta) \in \mathfrak{o}_0$ and e_{ij} the matrix unit. Then each $X_{i,j,r} \in \mathcal{X}$. Since $\psi: N \to \mathcal{X}$ is an isomorphism, there exist a unit $n_{i,j,r} \in N$ such that $\psi(n_{i,j,r}) = X_{i,j,r}$ and

$$n_{i,j,r} = n_{i,j,r}^{(1)}(a) + n_{i,j,r}^{(2)}(a)x + \cdots + n_{i,j,r}^{(q)}(a)x^{q-1},$$

with $n_{i,j,r}^{(1)}(1)=1$, $n_{i,j,r}^{(2)}(1)=0,\ldots,n_{i,j,r}^{(q)}(1)=0$. Also, by the definition of the map ψ it follows that $n_{i,j,r}^{(\omega)}(\zeta)$, $1\leq \omega\leq q$, is the ω th element of the first row of the matrix $PX_{i,j,r}P^{-1}$.

Now, observe that

ON THE GENERATORS OF SUBGROUPS OF UNIT GROUPS

$$\begin{split} PX_{i,j,r}P^{-1} &= \Bigl(\sum_{\mu=1}^{q}\sum_{\lambda=1}^{q}\phi^{\lambda-1}(\Pi^{\mu-1})e_{\lambda\mu}\Bigr)\bigl(I + b_{r}e_{ij}\bigr)\Bigl(\sum_{\varepsilon}\sum_{\omega}\phi^{\omega-1}\bigl(\delta_{q-\varepsilon}/\delta\bigr)e_{\varepsilon\omega}\Bigr) \\ &= \bigl(I + \sum_{\lambda=1}^{q}b_{r}\phi^{\lambda-1}(\Pi^{i-1})e_{\lambda j}\bigr)\bigl(\sum_{\varepsilon}\sum_{\omega}\phi^{\omega-1}\bigl(\delta_{q-\varepsilon}/\delta\bigr)e_{\varepsilon\omega}\bigr) \\ &= I + \sum_{\lambda=1}^{q}\sum_{\omega=1}^{q}b_{r}\phi^{\lambda-1}(\Pi^{i-1})\phi^{\omega-1}\bigl(\delta_{q-j}/\delta\bigr)e_{\lambda\omega}. \end{split}$$

Thus

$$n_{i,j,r}^{(1)}(\zeta) = 1 + b_r \Pi^{i-1} \delta_{q-j}/\delta = 1 + Tr_{k|k_0}(\zeta^r) \cdot Nr_{k|k_0}(\delta) \Pi^{i-1} \delta_{q-j}/\delta$$

and for $2 \le \omega \le q$.

$$n_{i,j,r}^{(\omega)}(\zeta) = b_r \Pi^{i-1} \phi^{\omega-1}(\delta_{q-j}/\delta) = Tr_{k|k_0}(\zeta^r) Nr_{k|k_0}(\delta) \Pi^{i-1} \phi^{\omega-1}(\delta_{q-j}/\delta).$$

It follows from the above that $1+A_{i,j,r}^{(1)}(\zeta)=n_{i,j,r}^{(1)}(\zeta)$ and for $2\leq\omega\leq q$, $A_{i,j,r}^{(\omega)}(\zeta)=n_{i,j,r}^{(\omega)}(\zeta)$. Moreover, $A_{i,j,r}^{(\omega)}(1)=0$ for $1\leq\omega\leq q$ and for each i,j and r. Thus, for each $r\in\mathcal{R}$ and for $1\leq i,j\leq q,i\neq j$, $u_{i,j,r}=n_{i,j,r}$ are elements of N and $\psi(u_{i,j,r})=X_{i,j,r}=I+b_re_{ij}$.

Since the \mathbb{Z} -linear combinations of $b_r, r \in \mathcal{R}$ form an ideal Q of \mathfrak{o}_0 , it follows that the elements of \mathcal{W}_3 generate a subgroup of N which is isomorphic to $E_q(Q)$, the subgroup of $SL_q(\mathfrak{o}_0)$ generated by all Q-elementary matrices. We observe that in case $q=2, k_0$ is the maximal real subfield of $k=\mathbf{Q}(\varsigma)$. Hence, by Lemma 1, $[SL_q(\mathfrak{o}_0) \cap \mathcal{X} : E_q(Q)] < \infty$.

$$\begin{pmatrix} u_0 & 0 & \dots & 0 \\ 0 & u_0 & \dots & 0 \\ & & \dots & \\ 0 & 0 & \dots & u_0 \end{pmatrix}$$

where u_0 is a unit of o_0 and $u_0 \equiv 1 \pmod{\Pi_0}$. Hence $\mathcal{Z}(\mathcal{X})$ is isomorphic to the group $U_1(\mathfrak{o}_0)$ consisting of those units which are congruent to 1 module Π_0 . Also, it follows (from the isomorphism ψ) that $\mathcal{Z}(\mathcal{X}) \subset U_1(\mathbb{Z}\langle a \rangle)$. Since by [1]. Theorem 4, (or see [4], page 156) the elements of W_1 generate a subgroup of finite index in $U_1(\mathbb{Z}\langle a\rangle)$, the group generated by W_1 contains a subgroup isomorphic under ψ to a subgroup of finite index in $\mathcal{Z}(\mathcal{X})$. Also, $[\mathcal{X}:(SL_q(\mathfrak{o}_0)\cap$ $(\mathcal{X})\mathcal{Z}(\mathcal{X})$ < ∞ , as the determinant map induces an embedding $(\mathcal{X}/(SL_a(\mathfrak{o}_0)))$ $\chi \chi \chi = U_1(\mathfrak{o}_0)/(U_1(\mathfrak{o}_0))^q$, we get that $W_1 \cup W_3$ generate a subgroup of finite index in N. Finally, since W_2 generate a subgroup of finite index in $U_1(\mathbb{Z}C)$ ([1], Theorem 4), and since N is a normal subgroup of $U_1(\mathbb{Z}C)$, therefore, the group generated by $W = W_1 \cup W_2 \cup W_3$ is of finite index in $U_1(\mathbb{Z}G)$. \square

Example 3. Let G be the group of order 21 given by

$$G = \langle a, x : a^7 = 1 = x^3, xax^{-1} = a^2 \rangle.$$

Then W_3 consists of 18 elements given for $1 \le i, j \le 3, i \ne j; r = 0, 1, 3$, by

$$u_{i,j,r} = 1 + (-1)^{j+1} (a^r + a^{2r} + a^{4r}) (a-1)^{i-1} [((a^2 - a^4)(a^2 - a)(a^4 - a) \times (a^4 - a^2) S_{3-j}(a^2 - 1, a^4 - 1) + (a - a^2)(a - a^4)(a^4 - a)(a^4 - a^2) \times S_{3-j}(a^4 - 1, a - 1) x + (a - a^2)(a - a^4)(a^2 - a^4)(a^2 - a) \times S_{3-j}(a - 1, a^2 - 1) x^2].$$

 W_1 consists of 2 elements

$$u_1 = (1+a)^6 - 9(1+a+\cdots+a^6)$$

= -8 - 3a + 6a² + 11a³ + 6a⁴ - 3a⁵ - 8a⁶

and

$$u_2 = (1 + a + a^2)^6 - 104(1 + a + \dots + a^6)$$

= 23 - 8a - 33a² - 33a³ - 8a⁴ + 23a⁵ + 37a⁶,

and We consists of the element 1. These 21 elements generate a subgroup of finite

index in $U_1(\mathbb{Z}G)$.

Acknowledgments

THE OPTIONS OF SONOWOOLD OF OTHER DROOFS

I am indebted to S.K. Sehgal for suggesting this problem, and for several helpful discussions.

References

- 1. H. Bass, The Dirichlet unit theorem, induced characters and Whitehead groups of finite groups, Topology 4 (1966), 391-410.
- 2. _____, K-Theory and stable algebra, Publ. Math. I.H.E.S. 22 (1964), 5-60.
- 3. A.K. Bhandari and I.S. Luthar, Torsion units of integral group rings of metacyclic groups, J. Number Theory 17 (1983), 270-283.
- 4. G. Karpilovsky, "Commutative Group Algebras," Marcel Dekker, Inc., 1983.
- 5. B. Liehl, On the subgroup SL_2 over orders of arithmetic type, J. Reine Angew. Math. 323 (1981), 153-171.
- 6. U. Rehmann, A survey of the congruence subgroup problem in Algebraic K-Theory, Springer Lecture notes in Math 966 (1982), 197-207.
- 7. L.N. Vaserstein, On the subgroup SL₂ over Dedekind rings of arithmetic type, Math USSR Sbornik 18 (1972), 321-332.
- 8. _____, The structure of classical arithmetic groups of rank greater than one, Math. USSR Sbornik 20 (1973), 465-492.

Ashwani K. Bhandari Department of Mathematics Paniab University Chandigarh - 160 014 India