On the Perron-Frobenius-Ruelle operator for rational maps on the Riemann sphere and for Hölder continuous functions

Feliks Przytycki

Abstract. Let $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ be a rational function on the Riemann sphere, φ be a Hölder continuous function on the Julia set \mathbb{J} , $P_{\varphi}: C(\mathbb{J}) \to C(\mathbb{J})$ denote the Perron-Frobenius-Ruelle operator on the space of continuous functions:

$$\mathcal{P}_{arphi}(\psi)(x) = \sum_{y \in f^{-1}(x)} \psi(y) \exp arphi(y).$$

Suppose that topological pressure $P=P(f,\varphi)$ satisfies $P>\sup \varphi$. Then for every $\psi\in C(\mathbb{J})$ the family $(\exp P)^{-n}P_{\varphi}^n(\psi)$ is equicontinuous and there exists a probability measure η on \mathbb{J} and a function $\psi_0\in C(\mathbb{J})$ such that $\psi_0>0$ and for every $\psi\in C(\mathbb{J})$, $\int P_{\varphi}(\psi)d\eta=(\exp P)\int \psi d\eta$ and $(\exp P)^{-n}P_{\varphi}^n(\psi)\to \psi_0\cdot\int \psi d\eta$. The measure $\psi_0\cdot\eta$ is unique equilibrium (Gibbs) state for φ .

This theorem was proved recently by M. Denker and M. Urbański. We give here a significantly different proof of it, less ergodic but going deeper into holormophic dynamics.

We discuss also modulus of continuity of ψ_0 , in particular we prove, it is bounded by

$$C(N) \left(\frac{1}{\log(1/\varepsilon)} \right)^N$$

for arbitrary N and a respective constant C(N).

Contents:

- 0. Introduction, basic ideas and notation.
- 1. Introductory estimates.
- 2. Telescope Lemma.
- 3. The main estimate: $P_{\varphi}^{n}(1)(x)/P_{\varphi}^{n}(1)(y) < \text{Const}$.
- 4. Proofs of Theorems 1 and 2. Modulus of continuity of the density function ψ_0 .

Appendix A. Proof of Theorem 1 under the assumption $\log \lambda > \sup \varphi$. Appendix B. On the assumption $P > \sup \varphi$.

0. Introduction, basic ideas and notation

Let f be a rational mapping of the Riemann sphere $\widehat{\mathbb{C}}$ and $\mathbb{J}=\mathbb{J}(f)$ be its Julia set. Let φ be a real continuous function on \mathbb{J} . Define the operator $\mathcal{P}_{\varphi}:C(\mathbb{J})\to C(\mathbb{J})$ on the space of continuous functions by

$$\mathcal{P}_{arphi}(\psi)(x) = \sum_{y \in f^{-1}(x)} \psi(y) \exp arphi(y)$$

(if y is a critical point we repeat it as many times as its multiplicity as the preimage of x).

The main aim of the paper is to give a new proof of the following theorem proved recently by M. Denker and M. Urbański[DU2]

Theorem 1. (Denker, Urbański.) Suppose $\sup \varphi < P \equiv P(f,\varphi)$ (the topological pressure) and suppose that φ is Hölder continuous. Then $\mathcal{P}_{\varphi-P}$ is almost periodic, i.e. for every $\psi \in C(J)$ the sequence of functions $\mathcal{P}_{\varphi-P}^n(\psi)$ is uniformly bounded and equicontinuous. There exists a positive fixed point for $\mathcal{P}_{\varphi-P}$ namely a function $\psi_0 > 0$ such that $\mathcal{P}_{\varphi-P}(\psi_0) = \psi_0$ and there exists a probability measure η on J such that for every $\psi \in C(J)$ we have $\int \psi d\eta = \int \mathcal{P}_{\varphi-P}(\psi) d\eta$ and $\mathcal{P}_{\varphi-P}^n(\psi) \to \psi_0 \cdot \int \psi d\eta$ as $n \to \infty$.

Note that by functional analysis reasons there exist $\lambda > 0$ and a probability measure η such that

$$\mathcal{P}_{\varphi}^{*}(\eta) = \lambda \eta \tag{1}$$

From Theorem 1 it follows immediately that $\log \lambda = P$ and η satisfying (1) must be the same as η in Theorem 1 (where it is obviously unique because of its properties). In particular we deduce uniqueness of the probability measure satisfying (1).

As a corollary we obtain in a rather standard way

Theorem 2. (Denker, Urbański.) $\nu = \psi_0 \cdot \eta$ is the unique equilibrium state for φ (i.e. an f-invariant probability measure on J such that $h_{\nu}(f) + \int_{\mathbb{J}} \varphi d\nu = P(f,\varphi)$, where h_{ν} stands for measure-theoretic entropy).

Let us mention that we do not know whether ψ_0 must be Hölder continuous. Nevertheless we prove in Section 4 that the modulus of continuity of ψ_0 is bounded by $C(N)\left(\frac{1}{\log(1/t)}\right)^N$ for every N>0 and a constant C(N)>0.

In Sections 1 and 2 we give a technical preparation. In Section 3 we prove the main lemma that $\mathcal{P}_{\varphi}^{n}(x)/\mathcal{P}_{\varphi}^{n}(1)(y)$ is uniformly bounded over all $n \geq 0$ and $x, y \in \mathbb{J}$, after which everything gets easy.

In Section 4 we deduce Theorems 1 and 2.

A proof of Theorem 1 is easy if $\varphi \equiv 0$, see [Lju2] or if at least

$$\sum_{y \in f^{-1}(x)} \exp \varphi(y)$$

is constant.

Let us comment now Denker-Urbański's Proof. It consists of two parts: First part proves that $\log \lambda \geq P$, this seems to be a harder part of their paper which uses the conformal measures technique [DU1].

Then the assumption $P>\sup \varphi$ yields $\log \lambda>\sup \varphi$, consequently the second part of Denker-Urbański's Proof of Theorem 1 is the proof of its assertions under the assumption $\log \lambda>\sup \varphi$ (a posteriori it occurs $P=\log \lambda$). This is an easier, but nice and tricky part of their paper. For completeness I will give my variant of the proof in Appendix A. I will give some discussion of the assumptions in Appendix B.

All [DU2] relies on Mañé's technique [M3]. Instead we rely on simple Lemma 1 which roots can be found in [Lju1] and which is used also in [LP].

The main point is to know that for every two points most of their backward trajectories approach each other. The authors of [DU2] ignore backward branches f^{-1} (on discs) meeting critical values. We consider in Lemma 1 and in the sequel, all branches, keeping some control on what happens when we meet a critical value. Especially Lemma 5 ("telescope" lemma) is devoted to it. This is crucial Lemma of the paper.

Commenting again Section 1 let us mention that throughout it we play with ideas virtually present in [Lju1] and [Lju2] and also in [MP]. In particular we obtain slightly modified proofs of $h_{top}(f) = \deg(f)$ and that f is asymptotically h-expansive. "Telescope" lemma in Section 2 contains however an idea not

present in Ljubich papers and this it is just this lemma which allows to make a step from measures with maximal entropy investigated by Ljubich, to a larger class of measures.

Basic notation. Crit or Crit(f) is the set of all critical points of f, i.e. $\{x \in \widehat{\mathbb{C}}: f'(x) = 0\}$.

$$Critv(f^n) = \bigcup_{i=1}^n f^i$$
 ($Crit(f)$), for $n = 1, 2, ...$

S'(f) is the set of all periodic sinks for f containing a critical point in the orbit.

For every $\varepsilon > 0$ and a continuous function $g: \mathbb{J} \to \mathbb{R}$ we write

$$\operatorname{var}_{oldsymbol{arepsilon}}(g) = \sup\{|g(x) - g(y)| : \operatorname{dist}(x,y) \leq \varepsilon\},$$

dist in a fixed standard metric ϱ on $\widehat{\mathbb{C}}$.

For $x,y\in\widehat{\mathbb{C}}$ we define $\varrho_n(x,y)=\max_{i=0,\dots,n}(\mathrm{dist}(f^i(x),f^i(y)))$. We write $B_n(x,\varepsilon)$ to denote the open ball with the origin at x and radius ε in metric ϱ_n . We call x,y being (n,ε) -close if $y\in B(x,\varepsilon)$ and (n,ε) -separated if $y\notin B(x,\varepsilon)$.

A set A is called (n, ε) -separated if each two points of it are (n, ε) -separated.

Given a function φ on J we write $E_n(y) = \exp \sum_{i=0}^{n-1} \varphi(f^i(y))$.

Let us recall that topological pressure $P=P(f,\varphi)$ for any continuous function φ is defined by

$$P = \lim_{\epsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log \sup \{ \sum_{x \in A} E_n(x) \}$$

supremum being taken over all (n, ε) -separated sets $A \subset \mathbb{J}$. If one replaces $\limsup_{n\to\infty}$ by $\liminf_{n\to\infty}$ here, one obtains the same P (see [W] Th. 9.4).

If φ is Hölder continuous we fix numbers $\kappa = \kappa(\varphi)$ and $C(\varphi)$ such that $|\varphi(x) - \varphi(y)| \leq C(\varphi) (\operatorname{dist}(x,y))^{\kappa}$.

If μ is an arbitrary probability measure on $\mathbb J$ then a general theorem [Pa] says that there exists Jacobian $J_{\mu}=J_{\mu}(f)$ on a set of full measure μ . It means that there exists a set Y with $\mu(\mathbb J\backslash Y)=0$ and an integrable function J_{μ} such that for every $E\subset Y$ on which f is 1-to-1 onto an image we have $\mu(f(E))=\int_E J_{\mu}d\mu$. If $Y=\mathbb J$ we say: there exists the Jacobian of the measure μ on $\mathbb J$ or just there is a Jacobian.

Acknowledgements. Parts of this paper were done during my stays at Instituto de Mathematica Pura e Aplicada in Rio de Janeiro and SFB 170 in Göttingen in Summer 1989. I want to express my gratitude to both institutions for inviting me and creating excellent conditions to work. Finally I want to thank R. Langevin, M. Ljubich and M. Urbański for discussions which influenced the paper.

1. Introductory estimates

We begin with a simple fact (Lemma 0) which appeared already in several papers, not separated into a lemma. We leave its proof to the reader.

Lemma 0. For every $\alpha > 0$ and every neighbourhood \mathcal{V} of S'(f) there exists $r = r(\alpha) > 0$ and $n_0 > 0$ such that for every $n \geq n_0$ and $x \in \widehat{\mathbb{C}}$ such that $f^i(x) \in \widehat{\mathbb{C}} \setminus \mathcal{V}$ for each $i = 0, 1, \ldots, n$, we have:

$$\operatorname{Card}\{i \in \{0,\ldots,n-1\}: \operatorname{dist}(f^i(x),\operatorname{Crit}(f)) < r\}/n < \alpha.$$

Now, it comes the crucial:

Lemma 1. For every $\varepsilon, \delta_1, \delta_2 > 0$ there exists K > 0 such that for every $n \geq 0$ there exists U_n a covering of a neighbourhood \mathcal{A} of \mathcal{I} by discs (in a standard metric on $\widehat{\mathbb{C}}$) such that

- (i) Card $U_n < K \exp n\delta_1$; If for every $B \in U_n$ we denote by B_n the family of components of $f^{-n}(B)$, each repeated as many times as its multiplicity, then
- (ii) for every $V \in B_n$ and $0 \le i \le n$, diam $f^i(V) < \varepsilon$;
- (iii) $\operatorname{Card}\{V \in B_n : \operatorname{diam}(V) \ge \exp -n\delta_2\} \le K \exp 2n\delta_2$.

A can be taken independent of $n(and \ \epsilon, \delta_1, \delta_2)$ for example

$$A = \widehat{\mathbb{C}} \setminus \bigcup \{B(c, r_0) : c \in S'(f)\},$$

with $r_0 > 0$ arbitrarily small.

Proof. Fixed n, consider as an element of U_n a disc around each $a \in \text{Critv}(f^n) \cap \mathcal{A}$ of radius $\eta_n = \exp(-\exp(n\delta_1/2))$.

Obviously $Card(Critv(f^n)) \leq Const \cdot n$.

Given an arbitrary C, say $C \ge 3$, we can cover the rest of A by discs

 $B(x_j,r_j), j=1,\ldots,k_n$, such that $B(x_j,Cr_j)\cap\operatorname{Critv}(f^n)=\varnothing$ and

$$k_n \le \operatorname{Const} \cdot \operatorname{Card}(\operatorname{Critv}(f^n)) \cdot \frac{C}{\log C - \log(C - 1)} \cdot \log \frac{1}{\eta_n}$$
 (1)

So for a constant depending on C

$$k_n \leq \operatorname{Const} \cdot n \cdot \exp n\delta_1/2$$
 (2)

We prove (1) (it is similar to lemma in [Lju1] or lemma in Section 6 of [Lju2]). For each $a \in \text{Critv}(f^n)$ we cover $B(a,1) \setminus B(a,\eta_n)$ by annuli

$$B\left(a,(1-\frac{1}{C})^{k-1}\right)\setminus B\left(a,(1-\frac{1}{C})^k\right),$$

than cover each annulus (after subtracting discs of radii $(1-\frac{1}{C})^k$ and origins at other critical values) by discs of radii $(1-\frac{1}{C})^k$ and origins in the exterior circle of the annulus. The number of discs needed to cover each annulus is at most $Const \cdot C$ if they are chosen carefully enough. We consider these discs as elements of U_n . A simple computation gives (1).

Of course (2) implies (i).

To prove (ii) and (iii) let us make the following simple observations (we leave the proofs to the reader):

1. There exist $\beta > 0$ and $\xi > 1$ such that for every $x \in \widehat{\mathbb{C}}, \widehat{r} > 0$ and every component V of $f^{-1}(B(x,\widehat{r}))$ it holds

$$\operatorname{diam}(V) < \xi \widehat{r}^{\beta}$$

2. For every r > 0 there exists $\xi > 1$ such that for every $x \in \widehat{\mathbb{C}}$ for which $\operatorname{dist}(x,\operatorname{Crit}) \geq r$, for every \widehat{r} and for every component V of $f^{-1}(B(f(x),\widehat{r}))$

$$\operatorname{diam}(V) < \xi \hat{r}$$
.

Fix now $B = B(a, \eta_n) \in U_n$ for $a \in \operatorname{Critv}(f^n)$ and consider components V_i of $f^{-i}(B)$ such that $f(V_i) = V_{i-1}$. From the above observations and from Lemma 0 we conclude that

$$ext{diam} V_i \leq \eta_n^{eta^{lpha i}} \cdot \xi^i$$

$$\leq \exp(-\exp(n\delta_1/2 + \alpha i \log eta) + i \log \xi)$$

$$\leq \exp(-\exp(n\delta_1/3))$$

for every i < n provided α is small enough, n large enough.

This inequality yields (ii) and (iii) for $B = B(a, \eta_n), a \in Critv(f^n)$.

For each other $B=B(x_j,r_j)\in U_n$, each branch of f^{-i} for every $i=0,\ldots,n$ is a univalent function on $B(x_j,Cr_j)$. It has distortion bounded by a universal constant C_0 on $\widehat{B}=B(x_j,Cr_j/2)$, i.e. $\left|(f^{-i})'(z_1)\right|/\left|(f^{-i})'(z_2)\right|< C_0$ for $z_1,z_2\in B(x_j,Cr_j/2)$ (We rely on Koebe's Distortion Theorem, [H] Th. 17.4.6). which in Euclidean metric on $\mathbb C$ would give $C_0\leq 256$. Here it must be corrected as we deal in $\widehat{\mathbb C}$ in another metric.) This implies that length $(f^{-i}(\widehat{x_j\varsigma}))< C_0 \operatorname{diam} \widehat{\mathbb C}$ for every geodesic $(\widehat{x_j\varsigma})\subset \widehat{B}$ joining x_j with $\varsigma\in\partial\widehat{B}$. So $\operatorname{diam} f^{-i}(B)\leq \frac{C_0}{C/2}C_0\operatorname{diam}\widehat{\mathbb C}$. This is less than ε if $C>2C_0^2\operatorname{diam}\widehat{\mathbb C}/\varepsilon$.

Now obviously

$$\operatorname{Card}\left\{V\in B_n ext{: Vol } V\geq rac{1}{A} \exp{-2n\delta_2}
ight\} \leq A\cdot\operatorname{Vol}\widehat{\mathbb{C}}\cdot\exp{2n\delta_2}$$

for every A>0. By the distortion estimate $\operatorname{Vol} V \leq \frac{1}{A} \exp{-2n\delta_2}$ implies $\operatorname{diam} V \leq \frac{C_0}{\sqrt{A}} \exp{-n\delta_2} \leq \exp{-n\delta_2}$ if $C_0 \leq \sqrt{A}$. This gives (iii). \square

Lemma 2. Given any continuous function φ on J, for every $\delta > 0$ there exists C > 0 such that for every integer n > 0 there exists $x \in J$ with the property

$$\mathcal{P}_{\varphi}^{n}(1)(x) \geq C \exp n(P-\delta).$$

(Note that we do not assume Hölder continuity of φ here and in the rest of this section.)

Proof. By the definition of pressure P, given an arbitrary $\delta_0 > 0$ there exists $\epsilon_0, C_0 > 0$ such that for every $n \geq 0$ there exists an (n, ϵ_0) -separated set $\{y_t\} \subset \mathbb{J}$ such that

$$\sum_t E_n(y_t) \ge C_0 \exp n(P - \delta_0).$$

For every fixed n and $B \in U_n$ denote $T_B = \{t: f^n(y_t) \in B\}$. By Lemma 1 there exists B_0 such that

$$\sum_{t \in T_{B_0}} E(y_t) \ge \frac{C_0}{K} \exp n(P - \delta_0 - \delta_1),$$

 $(U_n, K \text{ and } \delta_1 \text{ from Lemma 1}).$

Let x be an arbitrary point in $B_0 \cap J$. Denote by \hat{y}_t an arbitrary point of the set $f^{-n}(\{x\})$ in the same component of $f^{-n}(B_0)$ as y_t . By (ii), Lemma 1 we have $\operatorname{dist}(f^i(y_t), f^i(\hat{y}_t)) \leq \varepsilon$ for every $i = 0, \ldots, n, \varepsilon$ from Lemma 1). (This

implies that provided $\varepsilon < \varepsilon_0/2$ the points \widehat{y}_t are pairwise distinct and that

$$\mathcal{P}_{\varphi}^{n}(1)(x) \geq \frac{C_0}{K} \exp n(P - \delta_0 - \delta_1 - \operatorname{var}_{\varepsilon} \varphi).$$

Remarks.

1. If $\varphi \equiv 0$ we obtain

$$(\deg f)^n \geq C \exp n(h_{\text{top}}(f|_{\mathbb{J}}) - \delta),$$

so $\log(\deg f) \geq h_{\text{top}}(f|_{\mathbb{J}})$. With some more effort one could prove it with $h_{\text{top}}(f)$ on $\widehat{\mathbb{C}}$. This is a theorem proved independently by Gromov [G] and Ljubich ([Lju1], [Lju2]). Our proof is in fact a variant of Ljubich's proof.

Given an arbitrary $\varepsilon_0 > 0$ take in Lemma 1

$$A = \widehat{\mathbb{C}} \backslash U_{p \in S'(f)} B(p, \varepsilon_0/2).$$

Every (n, ε_0) -separated set $\{y_t\}$ can be divided into $(n+2) \cdot \operatorname{Card}(S'(f))$ families $Y_{i,p}$ depending on the last $i : n \geq i \geq 0$ with $f^i(y_t) \in \mathcal{A}$ and to which $B(p, \varepsilon_0/2)$ the point $f^{i+1}(y_t)$ belongs, except for i = n. We define $Y_{-1,p} = \{y_t\} \cap B(p, \varepsilon_0/2)$. Each $Y_{i,p}$ must be (i, ε_0) -separated. In Proof of Lemma 2 we could consider y_t with $f^n(y_t) \in \mathcal{A}$ rather than \mathcal{I} . For i playing the role of n in Lemma 2 we get

$$\operatorname{Card} Y_{i,p} \leq K \exp n\delta_1 (\operatorname{deg} f)^i$$
.

Summing over i, p gives $Card\{y_t\} \leq Const \cdot (exp \, n\delta_1)(deg \, f)^n$.

2. If "for every x" could take the place of "there exists x" in the statement of Lemma 2, then it would follow that $\log \lambda \geq P$, and therefore $\log \lambda > \sup \varphi$. In this case the easy part of the proof of the paper of Denker-Urbański could be used and simplify the argument (see Appendix A).

Now let us discuss a lemma which idea comes form [M-P].

Lemma 3. For every δ there exists $C, \varepsilon > 0$ such that for every $x_0 \in \mathbb{J}$ and every n > 0 and $y_0 \in f^{-n}(x_0)$ the number of the points $z \in f^{-n}(x_0)$ which are (n, ε) -close to y_0 (i.e. such that $\operatorname{dist}(f^i(z), f^i(y_0)) \leq \varepsilon$ for every $i: 0 \leq i \leq n$) is less than $C \exp n\delta$.

Proof. Define a non-oriented graph $\mathcal{T} = \mathcal{T}(x_0)$ as follows: suppose first that $x_0 \notin \operatorname{Critv}(f^n)$. Then the vertices are pairs (z,i) where $i=0,\ldots,n,$ $f^i(z)=x_0$ and $\operatorname{dist}(f^j(z),f^{n-i+j}(y_0))<\varepsilon$ for every $j:0\leq j\leq i$, (ε will be specified later on).

We join (z_1, i_1) , with (z_2, i_2) with an edge iff

ON THE PERRON-PRODERIOS-RUELLE OF ERVIOR

$$i_2 = i_1 - 1$$
 and $f(z_1) = z_2$.

If $x_0 \in \operatorname{Critv}(f^n)$ then we take into account each (z,i) as many times as the degree of f^i at z. We find $x_0' \notin \operatorname{Critv}(f^n)$ so close to x_0 that there is a 1-to-1 correspondence of each $z \in f^{-i}(x_0')$ to the closest point of $f^{-i}(x_0)$. Then the edges of $\mathcal{T}(x_0)$ are determined by the edges of $\mathcal{T}(x_0')$.

For every vertex (z, n) denote by $\mathcal{T}(z, n)$ the subgraph containing the vertices $e_i = (f^i(z), n-i)$ for every $i = 0, \ldots, n$ and the edges joining them. By Lemma 0 for every α we find ε and n_0 such that

$$\operatorname{Card}\{i: e_i \text{ is a branch vertex of } \mathcal{T}\}/n < \alpha$$
,

if $n > n_0$. A branch vertex means that at least 3 edges meet at it. (ε is not precisely that one from Lemma 0. But if

$$f(x) = f^{i+1}(z), \quad x \neq f^i(z), \quad \text{and} \quad \operatorname{dist}(x, f^i(z)) < 2\varepsilon,$$

then there is a critical point c with $\operatorname{dist}(c, f^i(z)) < K2\varepsilon$ for a constant K. So we first find for α a number ε_1 which plays the role of ε from Lemma 0, then define $\varepsilon = \varepsilon_1/2K$.)

We conclude (as in [MP]) that for the set V_n of all the vertices of \mathcal{T} of the form (z, n), for $n > n_0$

$$\operatorname{Card}(V_n) \leq (\operatorname{deg} f)^{\alpha n}$$
.

So if α were chosen so that $(\deg f)^{\alpha} < \exp \delta$ and $C = (\deg f)^{n_0}$ we get $\operatorname{Card}(V_n) \leq C \exp n\delta$. \square

Lemma 4. For any continuous function φ on \mathbb{J} and for every $\delta > 0$ there exists C > 0 such that for every $x \in \mathbb{J}$ and $n \ge 0$

$$\mathcal{P}_{\varphi}^{n}(1)(x) \leq C \exp n(P+\delta).$$

Proof. By Lemma 3 for every x the set $f^{-n}(\{x\})$ can be divided into $C \exp n\delta$ (n, ε) -separated sets (c, δ, ε) from Lemma 3). So

$$\mathcal{P}_{\omega}^{n}(1)(x) \leq C \exp n\delta \cdot C_1 \exp n(P + \delta_1),$$

where C_1, δ_1 are defined by

$$\sum_{y \in Y} E_n(y) \le C_1 \exp n(P + \delta_1)$$

for every n and (n, ε) -separated set Y (δ_1 is arbitrarily small by the definition of

pressure). This proves Lemma 4. \square

Remarks.

104

- **4.** For $\varphi \equiv 0$ we obtain the [MP] estimate $h_{\text{top}}(f|_{J}) \geq \deg f$.
- 5. Modifying Proof of Lemma 2, with the help of Lemma 3 we easily deduce the so-called asymptotic h-expansiveness for f (we recall the definition below). It is again a modification of Ljubich's proof [Lju 2].

We work with $\varphi \equiv 0$. Given $\delta > 0$, take C, ε from Lemma 3. Then for every $\varepsilon' > 0$, for every n, if $\{y_t\}$ is a family of (n, ε') -separated points such that for every $t, y_t \in B_n(x, \frac{\varepsilon}{2})$, we can find $B_0 \in U_n$ with $\operatorname{Card} T_{B_0} \geq \frac{1}{C_0 \exp n\delta_1} \operatorname{Card} \{y_t\}$ $(C_0, \delta_1, U_n \text{ from Lemma 1, } T_B = \{t : f^n(y_t) \in B\}$, but for ε in Lemma 1 we take $\min\left(\frac{\varepsilon'}{2}, \frac{\varepsilon}{2}\right)$.) We obtain pairwise different $\widehat{y}_t \in B_n(x, \varepsilon)$ all with the same $f^n(\widehat{y}_t) \in B_0$ as in Proof of Lemma 2. So by Lemma 3, $\operatorname{Card} T_{B_0} \leq C \exp n\delta$, hence $\operatorname{Card} \{y_t\} \leq C_0 C \exp n(\delta + \delta_1)$. So

$$\lim_{\epsilon \to 0} \sup_{x \in \mathbb{J}} \lim_{\epsilon' \to 0} \limsup_{n \to \infty} \frac{1}{n} \log (\sup(\operatorname{Card}\{y_t\})) = 0,$$

the latter supremum being taken over all $\{y_t\}$, (n, ε') -separated families in $B_n(x, \frac{\varepsilon}{2})$. (This equality is just the definition of asymptotic h-expansiveness with f a continuous mapping on a metric space \mathbb{J} .)

Recall that asymptotic h-expansiveness implies the existence of an equilibrium state for any continuous function [Mi] (but for φ Hölder, in our case, we shall prove the existence independently).

2. Telescope Lemma

Lemma 5. Given a rational map $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ and $0 < \lambda < \mu < 1$ there exists $\varepsilon > 0$ such that for every N > 0 and a sequence of curves $\gamma = \gamma_0, \dots, \gamma_N$ for which:

f maps γ_n 1-to-1 to γ_{n-1} for $n=1,2,\ldots,N$, diam $\gamma_0 < \varepsilon$ (diameter in a standard conformal metric ϱ on $\widehat{\mathbb{C}}$) diam $\gamma_n \leq \gamma^n$ diam γ_0 , for every $n=0,1,\ldots,N$ the following is satisfied:

There exists sets $V_n \subset \widehat{\mathbb{C}}$, n = 0, 1, ..., N such that $V_n \supset \gamma_n, V_n$ is a component of $f^{-n}(V_0), V_0 = B(x_0, \varepsilon)$ for some $x_0 \in \gamma_0$, finally diam $(V_n) \leq \mu^n$.

Remarks.

1. Another version of this lemma is that for every $0 < \gamma < \mu < 1$ and K > 0, there exists $\varepsilon > 0$ such that if points $x_n, n = 0, 1, \ldots, N$, satisfy $f(x_n) = x_{n-1}$ and

$$|(f^n)'(x_n)| \ge K/\lambda^n, \tag{3}$$

then there exists a sequence (V_n) satisfying the assertions above.

- 2. If one assumes that $\operatorname{dist}(\operatorname{Crit} f, \gamma_n) \geq \operatorname{Const} > 0$ or $\operatorname{dist}(\operatorname{Crit} f, x_n) \geq \operatorname{Const} > 0$) or at least $\operatorname{dist}(\operatorname{Crit} f, \gamma_n) \geq K(\lambda + \theta)^n$ for $\theta > 0$ arbitrarily small, then the assertion of the lemma is well-known. One of the possible proofs is to build a "telescope" in a Lyapunov metric. (The term "telescope" in the expanding case has been introduced by D. Sullivan, see [S].) One gets $f|_{V_n}1$ -to-1. We shall build a "telescope" also in our case.
- 3. Of course it is not true in our situation that $\{V_n\}$ can be found so that $f|_{V_n}$ is 1-to-1 for every n. For example, let $c=c_0$ be a critical, non-periodic point with $f^m(c)=y$ being a periodic source, for some m>0. Let $c_n, n\geq 0$, be a backward trajectory of $c, f(c_n)=c_{n-1}$, with the property $|(f^n)'(c_n)|\geq Const\cdot \xi^n$, for $\xi>1$ and every $n\geq 0$. We can take $x=x_0$ arbitrarily close to y and its backward trajectory x_n following the periodic trajectory of y for an arbitrarily long time, then the trajectory $f^m(c), f^{m-1}(c), \ldots, c$, finally c_n . It is easy to prove that (3) holds. Yet $B(x,\varepsilon)$ contains y so some V_k contains c.
- 4. The following model situation provides an idea of the proof of Lemma 5: Let $(f_n)_{n>0}$ be a sequence of maps $f_n: \mathbb{C} \to \mathbb{C}$ such that $f_n(0) = 0$, $f_n(z) = z^d$ if N|n and $f_n(z) = \lambda_n^{-1}z$ otherwise, for a sequence $\lambda_n > 0$, $n = 1, 2, \ldots$ and integers N > 0, d > 1. Let $w_n \in \mathbb{C}$ be a sequence of points such that $f_n(w_n) = w_{n-1}$ and $f'_n(w_n) = \lambda_n^{-1}$ and V_n be a sequence of connected sets such that each V_n is a component of $f_n^{-1}(V_{n-1})$ and each V_n contains 0 and w_n . Then for n = kN

$$\operatorname{diam} V_n \leq \operatorname{diam}(V_n \cap f_n^{-1}(B(0,|w_{n-1}|))) + \\ + \operatorname{diam}(V_n \cap f_n^{-1}(V_{n-1} \setminus B(0,|w_{n-1}|))$$

$$\leq 2|w_{n-1}|^{1/d} + \left| (f_n^{-1})'(w_{n-1}) \right| \operatorname{diam}(V_{n-1})$$

= $I + II$.

The estimate by the summand II follows from the concavity of $r \mapsto r^{1/d}$. As $I \leq 2|w_{n-1}|^{1/d-1}\operatorname{diam}(V_{n-1}) = 2d\Big|(f_n^{-1})'(w_{n-1})\Big| \cdot \operatorname{diam}(V_{n-1}),$ we obtain

$$\operatorname{diam}(V_n)/\operatorname{diam}(V_{n-1}) \leq 3d\lambda_n$$

If $n \neq kN$ we have $\operatorname{diam}(V_n)/\operatorname{diam}(V_{n-1}) = \lambda_n$. Thus

$$\operatorname{diam}(V_n) \leq \left(\prod_{j=1}^n \lambda_j\right) (3d)^{[n/N]+1} \cdot \operatorname{diam}(V_0).$$

If $\prod_{j=1}^n \lambda_j \leq \lambda^n$ for some $\lambda < 1$ and every n > 0, then diam (V_n) converges exponentially to 0 if $N > \log 3d/\log \lambda^{-1}$.

5. Observe that an assertion analogous to that of Lemma 5 but for forward iteration is false. Concavity of $r^{1/d}$ is replaced by convexity of r^d unfortunately.

Proof of Lemma 5. Choose μ_1 such that $\lambda < \mu_1 < \mu$. Take ε_0 such that for every $x \in \widehat{\mathbb{C}}$ there exists a conformal chart $h_x : B(x, 2\varepsilon_0) \to \mathbb{C}$ with the property:

$$|h_x'|, \left| (h_x^{-1})' \right| \le \min\left(\sqrt[3]{\mu_1/\lambda}, 2\right). \tag{4}$$

(Another condition for ε_0 will be given later when we define another coordinates: H.)

Observe that there exists $K_1 > 1$ such that if f(x) = f(y) then there exists a critical point c(f'(c) = 0) such that

$$\varrho(c,x) \le K_1 \varrho(x,y) \tag{5}$$

(Check it in a neighbourhood of each critical point, where the map is roughly $z \to z^d$.)

Let $K_2>1$ be a constant such that for every univalent map $F\colon \mathbb{D}\to \mathbb{C}$ (\mathbb{D} -the unit disc) the distortion:

$$\sup_{|x|,|y| \le 1/K_2} |F'(x)/F'(y)| < \sqrt[3]{\mu_1/\lambda}. \tag{6}$$

 $(K_2 \text{ exists by Koebe's Distortion Theorem, [H] Th. 17.4.6.})$

Take now $\gamma_n, n=0,1,\ldots,N$ satisfying the assumptions of our Lemma, $(\varepsilon \text{ will be specified only at the end of the proof)}$. Choose a trajectory $x_n \in$

$$\gamma_n, f(x_n)=x_{n-1}$$
. Define $g_n:\mathbb{C}\to\mathbb{C}, g_n(0)=0$, by
$$g_n(x)=\tau_{n-1}^{-1}(h_{x_{n-1}}\circ f\circ h_{x_n}^{-1}(\tau_n x)),$$

where

$$\tau_{n}/\tau_{n-1} = \begin{cases} (\operatorname{diam} \gamma_{n}/\operatorname{diam} \gamma_{n-1})(\mu_{1}/\lambda), & \text{if } (*_{n}) \text{ holds} \\ (\operatorname{diam} \gamma_{n}/\operatorname{diam} \gamma_{n-1})(\mu_{1}/\lambda) \cdot C, & \text{otherwise,} \end{cases}$$
 where $(*_{n})$ denotes $\operatorname{Crit}(f) \cap B(x_{n}, \varepsilon_{1}) = \emptyset$. (Each number τ_{n} is identified with the mapping $z \to \tau_{n} z$.) The constant $C > 1$ will be specified later on.

Now we will specify τ_0 and ε_1 . Fix α such that

$$\mu_1 C^{\alpha} < \mu$$
.

Set $\varepsilon_1 = \min(\varepsilon_0, r(\alpha), 1)$ where $r(\alpha)$ satisfies Lemma 0. Take n_0 also from Lemma 0. Finally take r_0 such that

$$4\sup|f'|\tau_0C^{n_0}\leq\varepsilon_1.$$

We obtain for every n

$$4\sup|f'|\mu_1^n\tau_0C^{n\alpha+n_0}<\mu^n\varepsilon_1.$$

By (7) and Lemma 0 this gives for every n

$$4\sup|f'|\tau_n<\mu^n\varepsilon_1\tag{8}$$

Write $\mathbb{D}_r = \{|z| < r\}$. In particular (8) implies that each g_n is defined on \mathbb{D}_1 . Set now $\beta = 1/16K_1K_2$. Suppose that

$$\operatorname{diam} \gamma_0 \le \beta \tau_0 / 2. \tag{9}$$

Then by (7) diam $\gamma_n \leq \operatorname{diam} \gamma_0 \cdot \tau_n/\tau_0 \leq \beta \tau_n/2$.

Denote $\hat{\gamma}_n = \tau_n^{-1} h_{x_n}(\gamma_n)$. We conclude that

diam
$$\widehat{\gamma}_n \leq \beta$$
.

Moreover diam $\gamma_{n-1}/\operatorname{diam} \gamma_n \geq (\tau_{n-1}/\tau_n)(\underline{\mu_1/\lambda})$ and by (4)

$$\operatorname{diam} \widehat{\gamma}_{n-1}/\operatorname{diam} \widehat{\gamma}_n \geq \sqrt[3]{\mu_1/\lambda},$$

so there is $w \in \mathbb{D}_{\beta}$ with $|g'_n(w)| \geq \sqrt[3]{\mu_1/\lambda}$.

Consider now the case $g'_n \neq 0$ on \mathbb{D}_1 . Then g_n is 1-to-1 on $\mathbb{D}_{1/8K_1}$, by (5). Finally by (6)

$$g_n(\mathbb{D}_{\beta}) \supset \operatorname{cl} \mathbb{D}_{\beta}.$$
 (10)

Now we consider the case of n such that there exists $\hat{z}_0 \in \mathbb{D}_1$ where $g'_n(\hat{z}_0) =$

0. Denote $z_0 = h_{x_n}^{-1}(\tau_n \hat{z}_0)$. In particular $z_0 \in B(x_n, \varepsilon_1)$ i.e. the second alternative in (7) takes place.

Let us supply now the missing condition on ε_0 . Suppose that ε_0 is small enough that for every $c \in Crit(f)$ there exist holomorphic charts

$$H_{c,1}$$
: $(B(c, 2\varepsilon_0), c) \rightarrow (\mathbb{C}, 0)$

and

$$H_{c,2}$$
: $(B(f(c), 2\varepsilon_0), f(c)) \rightarrow (\mathbb{C}, 0)$

such that

$$\left|H'_{c,i}\right|, \left|(H^{-1}_{c,i})'\right| \leq 2, \quad i = 1, 2$$

and $H_{c,2}\circ f\circ H_{c,i}^{-1}(z)=a_cz^d$, with a coefficient $a_c\in\mathbb{C}$ and d=d(c) degree of f at c.

For

 $G_1 = \tau_n^{-1} \circ H_{z_0,1} \circ h_{\tau_n}^{-1} \circ \tau_n$ and $G_2 = \tau_{n-1}^{-1} \circ H_{z_0,2} \circ h_{\tau_n}^{-1} \circ \tau_{n-1}$ (11) we have

$$\Phi_n(z) = G_2 \circ g_n \circ G_1^{-1}(z) = \tau_{n-1}^{-1} a_{z_0} (\tau_n z)^d = (\tau_n^d \tau_{n-1}^{-1} a_{z_0}) z^d.$$

We denote the latter coefficient by T_n , so $\Phi_n(z) = T_n z^d$.

Observe that G_1, G_1^{-1} are well-defined on $\mathbb{D}_2, G_2, G_2^{-1}$ are well-defined on $g_n(\mathbb{D}_2) \cup \mathbb{D}_2$ and $\Phi_n(\mathbb{D}_2)$ respectively and

$$|G_i'|, |(G_i^{-1})'| < 4, \quad i = 1, 2.$$
 (12)

Similarly as in the non-singular case we prove that there exists $w \in \mathbb{D}_1$ such that $|q'_n(w)| > C$. So by (12) $|\Phi'_n(G_1(w))| > C/16$. But $\Phi'_n(G_1(w)) =$ $d \cdot T_n(G_1(w))^{d-1}$ and by (12), $|G_1(w)| < 8$. So

$$T_n > C/16 \cdot 8^{d-1} \cdot d.$$

By (12) we have $\operatorname{diam}(G_2(\mathbb{D}_{\beta})) < 4\beta$. So each component C of $\Phi_n^{-1}(\operatorname{cl} G_2(\mathbb{D}_{\theta}))$ has diameter less than $\sqrt[d]{4\beta \cdot 16 \cdot 8^{d-1}d/C}$. To assure

 $G_1^{-1}(\mathcal{C}) \subset \mathbb{D}_{\mathcal{B}}$ for the component \mathcal{C} such that $G_1^{-1}(\mathcal{C}) \ni 0$, (13)it is enough to assume (again in view of (12)) that

$$\sqrt[d]{4\beta \cdot 16 \cdot 8^{d-1}d/C} < \beta/4$$
, here with $d = \deg f$. (14)

This is the missing condition for C.

The inclusions (10) and (13) prove Lemma 5. We have diam $h_{xn}^{-1}\tau_n(\mathbb{D}_{\beta}) \leq$ $2\tau_n\beta \leq \mu^n\varepsilon_1$ and $h_{x_0}^{-1}\tau_0(\mathbb{D}_\beta)$ contains the ball $B(x_0,\tau_0\beta/2)$, which we pick as V_0 . Our Lemma holds for $\varepsilon = \tau_0 \beta/2$. \square

3.. The main estimate $\mathcal{P}^n_{\omega}(1)(x)/\mathcal{P}^n_{\omega}(1)(y) < \text{Const}$.

Now we are able to give the key improvement of Lemma 2 (cf. Remark 2 after its statement) and in consequence the estimate mentioned in the title of this section.

Lemma 6. For every $\delta > 0$, there exists C > 0 such that for every n > 0and $x \in J$

$$P_{\varphi}^{n}(1)(x) \geq C \exp n(P - \delta).$$
 (1)

Proof. Step 1. By Lemma 2 we know that fixed an arbitrary n, there exists $x_0 \in J$ satisfying (1) (even with $\delta/2$ in place of δ). Take an arbitrary $x \in J$ and join x with x_0 by a curve $\gamma \subset A$ hitting at most once each element of U_i for every $i = 0, \dots, n$ (cf. Lemma 1). A curve γ has these properties if it is close to a shortest geodesic joining x with x_0 and the balls of U_n and balls complementary to A are small enough.

For every $j:0 \le j \le n$ define Γ_i a family of curves such that for the union we have $\cup \Gamma_i = f^{-j}(\gamma), f^j$ maps each $\widehat{\gamma} \in \Gamma_i$ to γ 1-to-1 and the families are compatible, i.e., for each $\hat{\gamma} \in \Gamma_j$, $f(\hat{\gamma}) \in \Gamma_{j-1}$. (Γ_j can be constructed by induction. Having $\hat{\gamma} \in \Gamma_{i-1}$ we consider lifts by f^{-1} . Meeting a critical value for f in $\hat{\gamma}$ we have a choice of lifting.) For each $\hat{\gamma} \in \Gamma_i$ we denote by $y(\hat{\gamma})$ the point in $\hat{\gamma}$ mapped by f^j to x_0 .

Let us order the family Γ_n by $\Gamma_n = (\gamma^t)_{t=1,\ldots,T}$, where $T = (\deg f)^n$. For each t the point $z \in \gamma^t$ such that $f^n(z) = x_0$ or x, is denoted by x_0^t or x^t respectively.

Fix $\delta_0 > 0$ (we shall specify it in Step 3). For each $j = 0, \ldots, n$ denote

$$A_{j} = \{t \in \{1, \ldots, T\}: \operatorname{diam}(f^{j}(\gamma^{t})) > \exp{-(n-j)\delta_{0}}\}$$

and

$$\operatorname{diam}(f^{i}(\gamma^{t})) \leq \exp{-(n-i)\delta_{0}}$$
 for every $i: 0 \leq i < j$.

$$A_{n+1} = \{1,\ldots,T\} \setminus \bigcup_{j=0}^n A_j.$$

10

For each $\widehat{\gamma} \in \Gamma_{n-j}$ we denote $A(j,\widehat{\gamma}) = \{t \in A_j : f^j(\gamma^t) = \widehat{\gamma}\}.$

We shall prove now that there exists $C_1 > 0$ depending only on δ_0 (and f, φ) such for each j and each $\hat{\gamma} \in \Gamma_{n-j}$ and $y = y(\hat{\gamma})$

$$\frac{\sum_{t \in A(j,\widehat{\gamma})} E_n(x_0^t)}{\mathcal{P}_{\varphi}^n(1)(x_0)} \le C_1 \frac{E_{n-j}(y)}{\mathcal{P}_{\varphi}^{n-j}(1)(x_0)}.$$
 (2)

It is sufficient to consider n and n-j large. Then for $t \in A_j$,

$$\operatorname{diam}(f^j(\gamma^t)) \leq \sup |f'| \cdot \exp(-(n-j+1)\delta_0)$$

is small. So Lemma 5 is applicable to the curve $\gamma_0 = \widehat{\gamma}$ and each sequence of its pre-images ending with $\gamma^t, t \in A(j, \widehat{\gamma})$. Consider ε, μ and V_0 from Lemma 5. Observe that there exists C_2 depending only on ε such that for $A = \{w \in f^{-(n-j)}(\{x_0\}) \cap V_0\}$, where we repeat each w as many times as degree of f^{n-j} at w, we have

$$\mathcal{P}_{\varphi}^{n-j}(1)(x_0) \le C_2 \sum_{w \in A} E_{n-j}(w)$$
 (3)

This is so because for n_0 such that $f^{n_0}(V_0)\supset \mathbb{J}(f)$ for every $z\in \mathbb{J}$ we have

$$\begin{split} \sum_{w \in A} E_{n-j}(w) &\geq \exp\left(n_0(\inf_{v \in \mathbb{J}} \varphi(v))\right) \cdot \left(\mathcal{P}_{\varphi}^{n-j-n_0}(1)(x_0)\right) \geq \\ &\geq \exp\left(n_0(\inf_{v \in \mathbb{J}} \varphi(v))\right) \left(\mathcal{P}_{\varphi}^{n-j}(1)(x_0)\right) / \sup_{v \in \mathbb{J}} \mathcal{P}_{\varphi}^{n_0}(1)(v). \end{split}$$

Now by Lemma 5 for every $w \in A$ and every $t \in A(j,\widehat{\gamma})$ there exists $w^t \in \mathbb{J}$ such that $f^j(w^t) = w$ and for every $i : 0 \le i \le j \operatorname{dist}(f^i(x_0^t), f^i(w^t)) < \mu^{j-i}$. (Some points w^t may coincide but we take care that w^t are taken with right multiplicities when we sum over them in the definition of $\mathcal{P}_{\varphi}^j(1)(w)$.)

So $E_j(x_0^t)/E_j(w^t) < C_3$, where $C_3 = C_4/(1-\mu^{\kappa})$, where C_4 and κ are Hölder continuity constants for φ .

Hence

$$\frac{E_{n-j}(w)}{E_{n-j}(y)} < C_3 \frac{\sum_{t \in A(j,\widehat{\gamma})} E_n(w^t)}{\sum_{t \in A(j,\widehat{\gamma})} E_n(x_0^t)}.$$

Summing over $w \in A$, taking inverses and using (3) we obtain (2) with $C_1 = C_2 \cdot C_3$.

Step 2. For $0 \le k \le n$ we have

$$C_5 \exp n(P - \delta_0) \leq \mathcal{P}_{\varphi}^n(1)(x_0) \leq \mathcal{P}_{\varphi}^k(1)(x_0) \cdot \sup \mathcal{P}_{\varphi}^{n-k}(1) \leq$$
$$\leq \mathcal{P}_{\varphi}^k(1)(x_0) \cdot C_6 \exp(n-k)(P + \delta_0)$$

with $C_5=C$ from Lemma 2, $C_6=C$ from Lemma 4 and δ_0 common for both Lemmas, so

$$\mathcal{P}_{\varphi}^{k}(1)(x_{0}) \geq \left(C_{5}/C_{6}\right) \cdot \exp k \left(P - \delta_{0}\left(\frac{2n}{k} - 1\right)\right) \tag{4}$$

Step 3. Denote $G_j = \{ \widehat{\gamma} \in \Gamma_j : \operatorname{diam}(\widehat{\gamma}) \geq \exp -j\delta_0 \}$. To estimate $\operatorname{Card} G_j$ we use Lemma 1 with $\delta_1 < \delta_2$. By (iii) for every $B \in U_j$ intersecting γ , the number of "bad" $\widehat{\gamma}$'s in Γ_j i.e. such that the component of $f^{-j}(B)$ (more precisely element of B_j) intersecting $\widehat{\gamma}$ has diameter $\geq \exp -j\delta_2$, is at most $K \exp 2j\delta_2$. So the number of "bad" $\widehat{\gamma}$'s for at least one B is by (ii) at most $K \exp 2j\delta_2 \cdot K \exp j\delta_1$.

The others, "good" $\hat{\gamma}$'s, have diameter at most $(\exp -j\delta_2) \cdot K \exp j\delta_1$. So for $\delta_0 < \delta_2 - \delta_1$ and a constant K_1 depending on δ_0 we have

$$\operatorname{Card} G_j \leq K_1 \exp j(2\delta_2 + \delta_1).$$

Then for every j:

$$\sum_{\widehat{\gamma} \in G_{n-j}} E_{n-j}(y(\widehat{\gamma})) \leq \operatorname{Card}(G_{n-j}) \cdot \exp((n-j)\sup \varphi) \leq$$

$$\leq K_1 \exp(n-j)(2\delta_2 + \delta_1 + \sup \varphi).$$

Fix an arbitrary α : $0 < \alpha < 1$. Then by (2), the above and by (4) we obtain (square brackets stand for "integer part")

$$rac{\sum\limits_{j=0}^{[lpha n]}\sum\limits_{t\in A_j}E_n(x_0^t)}{\mathcal{P}_{arphi}^n(1)(x_0)}\leq C_1\sum\limits_{j=0}^{[lpha n]}rac{K_1\exp(n-j)(2\delta_2+\delta_1+\suparphi)}{\mathcal{P}_{arphi}^{n-j}(1)(x_0)}\leq$$

$$\leq C_1 \sum_{j=0}^{\lfloor \alpha n \rfloor} \frac{K_1 \exp(n-j)(2\delta_2 + \delta_1 + \sup \varphi)}{(C_5/C_6) \exp(n-j) \left(P - \delta_0 \left(\frac{2n}{n-j} - 1\right)\right)} \leq$$

$$\leq C_7 \sum_{j=0}^{[\alpha n]} \exp(n-j) \left(\sup \varphi - P + 2\delta_2 + \delta_1 + \delta_0 \left(\frac{2n}{n-[\alpha n]} - 1 \right) \right),$$

for $C_7 = C_1 K_1 C_6 / C_5$.

If δ_1, δ_2 and δ_0 are chosen small enough (given α) then due to the assumption $P > \sup \varphi$ the last expression is less than

$$C_7 \sum_{j=0}^{\lfloor \alpha n \rfloor} \exp(n-j) \left(\frac{\sup \varphi - P}{2} \right) \le \frac{1}{2}$$
 (5)

for n large enough.

Step 4. For each $t \notin \bigcup_{j=0}^{\lfloor \alpha n \rfloor} A_j$ we have

$$\frac{E_n(x_0^t)}{E_n(x^t)} \le \exp(I + II),\tag{6}$$

where

$$I = \sum_{i=0}^{[lpha n]} \left(arphi(f^i(x_0^t)) - arphi(f^i(x^t))
ight),$$

and

$$II = \sum_{i=\lceil lpha n
ceil + 1}^{n-1} \left(arphi(f^i(x_0^t)) - arphi(f^i(x^t))
ight).$$

The summand I is bounded by a constant, say by 1, for n large enough. This is because $\operatorname{dist}(f^i(x^t), f^i(x_0^t)) \leq \exp{-(n-i)\delta_0}$ for $i \leq [\alpha n]$ and φ is Hölder continuous.

The summand II is bounded by $\exp((1-\alpha)n \operatorname{var} \varphi)$.

Step 5. (Conclusion). By Step 3 and then by Step 4:

$$egin{aligned} \mathcal{P}_{arphi}^n(1)(x_0) &\leq 2\sum_{j=[nlpha]+1}^{n+1}\sum_{t\in A_j}E_n(x_0^t) \ &\leq 2\exp(1+(1-lpha)n\operatorname{var}arphi)\cdot\mathcal{P}_{arphi}^n(1)(x). \end{aligned}$$

Taking α sufficiently close to 1 we get (1). \square

Remark. Lemmas 4 and 6 imply that for every $x \in J$

$$\lim_{n\to\infty}\frac{1}{n}\log\mathcal{P}_{\varphi}^{n}(1)(x)=P(f,\varphi),$$

in particular the limit exists. This generalizes the equality $\log(\deg f) = h_{\text{top}}(f|_{\mathbb{J}})$ (cf. Remark 1 in Section 1).

Lemma 7. There exists C > 0 such that for every $x_0, x_1 \in J$ and every $n \geq 0$

$$\mathcal{P}_{\varphi}^{n}(1)(x_0)/\mathcal{P}_{\varphi}^{n}(1)(x_1) < C$$

Proof. Repeat the proof of Lemma 6. Instead of (4) we can use now, due to Lemma 6, the better estimate:

$$\mathcal{P}_{\varphi}^{k}(1)(x_0) \geq C \exp k(P-\delta).$$

So in Step 3 we can consider $\sum_{j=0}^{n-k_0}$ for a constant k_0 large enough, instead of

 $\sum_{j=0}^{\lfloor \alpha n \rfloor}$. So in Step 4 both summands are bounded by constants. \square

4. Proofs of Theorems 1 and 2. Modulus of continuity of the density function ψ_0 .

Consider the operator \mathcal{P}_{φ}^* conjugate to \mathcal{P}_{φ} on $C(\mathbb{J})$. As mentioned in Introduction there exists a number $\lambda > 0$ and a probability measure η on \mathbb{J} such that

$$\mathcal{P}_{\varphi}^{*}(\eta) = \lambda \eta, \quad (\text{cf.[B]}).$$
 (1)

Proposition 1. $\lambda = \exp P$. The measure η is $\lambda \exp(-\varphi)$ -conformal (i.e. $J_{\eta} = \lambda \exp(-\varphi)$, where J_{η} is Jacobian on \mathbb{J} namely $\int_{E} J_{\eta} d_{\eta} = \eta(f(E))$ for every Borel set $E \subset \mathbb{J}$ on which f is 1-to-1 to the image).

Proof. We have by (1) $\int \mathcal{P}_{\varphi}^{n}(1)d\eta = \lambda^{n}$. So by Lemma 7 and Remark preceding it

$$\log \lambda = \lim_{n \to \infty} \frac{1}{n} \log \int \mathcal{P}_{\varphi}^{n}(1) d\eta = P.$$

Now if f is 1-to-1 on E, then

$$\int \chi_E(\lambda \exp(-\varphi))d\eta = \int \mathcal{P}_{\varphi}(\chi_E \cdot \exp(-\varphi))d\eta$$

$$= \int \exp(\varphi \circ (f|_E)^{-1}) \cdot \exp(-\varphi \circ (f|_E)^{-1}) \cdot \chi_{f(E)}d\eta$$

$$= \eta(f(E)),$$

so $\lambda \exp -\varphi$ is Jacobian for f, η . \square

Proof of Theorem 1. (Stated in Introduction.) Write $\widehat{\mathcal{P}} = \mathcal{P}_{\varphi - P}$ (= $\mathcal{P}_{\varphi}/\lambda$ by Proposition 1). For every $\psi \in C(\mathbb{J})$ we have $\int \psi d\eta = \int \widehat{\mathcal{P}}(\psi) d\eta$. Observe that for $\psi \in C(\mathbb{J})$ and $n \geq 0$

$$\sup \left|\widehat{\mathcal{P}}^{n}(\psi)\right| \leq \sup |\psi| \cdot \sup \widehat{\mathcal{P}}^{n}(1)$$

But we have

$$\int \widehat{\mathcal{P}}^{n}(1)d\eta = \int 1d\eta = 1.$$

This and Lemma 7 imply that all $\widehat{\mathcal{P}}^n(\psi)$ are uniformly bounded.

Now we shall prove equicontinuity. We shall again repeat the considerations from Proof of Lemma 6, there will be a simplification however, no need to apply Lemma 5, due to the possibility to use the result of Lemma 7.

Given $x_0, x_1 \in J$ let $\gamma = \gamma(x_0, x_1)$ be a curve joining x_0 with x_1 , similar to

the curve joining x_0 with x in Proof of Lemma 6. We keep the notation Γ_j as in Lemma 6, Step 1 (here n is not fixed however, so j goes from 0 to ∞).

Let $a: \mathbb{R}^+ \to \mathbb{R}^+$ be an arbitrary positive, increasing function with $a(\varepsilon) \to 0$ and $a(\varepsilon) \ge \varepsilon^{\alpha}$ for every $\alpha > 0$ and ε small enough (depending on α).

Let for every $\varepsilon > 0$, $k(\varepsilon)$ be the maximal integer such that for every x_0, x_1 with $\operatorname{dist}(x_0, x_1) \le \varepsilon$ and every $\widehat{\gamma} \in \Gamma_j$ for $j \le k(\varepsilon)$ we have $\operatorname{diam}(\widehat{\gamma}) \le a(\varepsilon)$. These definitions clearly guarantee $k(\varepsilon) \to \infty$ for $\varepsilon \to 0$.

After these preparations consider a continuous function $\psi \in C(\mathbb{J})$. We can assume it is positive as every ψ is with ψ^+ , ψ^- positive. Observe that if $\mathrm{dist}(x,y) < \varepsilon$ then

$$rac{\psi(x)}{\psi(y)} = 1 + rac{\psi(x) - \psi(y)}{\psi(y)} \leq 1 + (\operatorname{var}_{\varepsilon} \psi) / \inf \psi.$$

Fix n, x_0 and x_1 with $\operatorname{dist}(x_0, x_1) = \varepsilon$ and use the notation from Lemma 6: $\gamma^t, x_0^t, x_1^t, A_j$ for $j = 0, \ldots, n+1$. Write for q = 0, 1:

$$L_j(x_q) = \sum_{t \in A_j} \psi(x_q^t) E_n(x_q^t).$$

We shall estimate in the sequel

$$\frac{\widehat{\mathcal{P}}^{n}(\psi)(x_{0})}{\widehat{\mathcal{P}}^{n}(\psi)(x_{1})} = \frac{\mathcal{P}^{n}_{\varphi}(\psi)(x_{0})}{\mathcal{P}^{n}_{\varphi}(\psi)(x_{1})} = \frac{\sum\limits_{j=0}^{n+1} L_{j}(x_{0})}{\sum\limits_{j=0}^{n+1} L_{j}(x_{1})}$$
(2)

First, show as in Step 3 of Proof of Lemma 6 that $L_j(x_q)$ are neglectible, for $j=0,1,\ldots$, but j not too close to n. As in Proof of Lemma 7 we do not need to stop at $j=[\alpha n]$. We do the estimates for each j separately. (The first of the sequence of three inequalities in Step 3 uses (2) section 3, which is trivial now, when one can refer to Lemma 7.) We get

$$L_j(x_q) \le C(\exp{-(n-j)\delta}) (\mathcal{P}_{\varphi}^n(\psi)(x_q)) \frac{\sup{\psi}}{\inf{\psi}}$$
(3)

for constants $C, \delta > 0$ and every $j = 0, \ldots, n+1$.

Finally for every $j \ge n - k(\varepsilon)$ and every $l: j - 1 \ge l \ge n - k(\varepsilon) - 1, l > 0$

$$\frac{L_j(x_0)}{L_j(x_1)} \le Q_1 \cdot \exp(Q_2 + Q_3),\tag{4}$$

where

$$Q_1 = 1 + rac{\left(\operatorname{var}_{b(e)}\psi
ight)}{\inf\psi},$$

$$egin{aligned} Q_2 &= \sum_{i=0}^l \mathrm{var}_{\exp{-(n-i)\delta}}(arphi), \ Q_3 &= (n-l)\, \mathrm{var}_{a(arepsilon)}\, arphi, \end{aligned}$$

and

$$b(\varepsilon) = \left\{ egin{array}{ll} \exp{-\delta n} & ext{if } n > k(\varepsilon), \ a(\varepsilon) & ext{if } n \leq k(\varepsilon). \end{array}
ight.$$

The factor Q_1 is responsable for the variation of ψ from x_0^t to x_1^t . The summand Q_2 corresponds to I in (6) section 3, Q_3 corresponds to II.

Take now any function $l: \mathbb{R}^+ \to \mathbb{Z}^+$ such that $l(\varepsilon) \leq k(\varepsilon)$ $l(\varepsilon) \to \infty$ and $l(\varepsilon) \cdot \operatorname{var}_{a(\varepsilon)} \varphi \to 0$ for $\varepsilon \to 0$.

When $\varepsilon \to 0$ we estimate (2) by using (3) for all $j \le n - l(\varepsilon)$, just getting rid of $L_j(x_q)$. For $j > n - l(\varepsilon)$ we use (4) with $l = n - l(\varepsilon)$. We conclude that the ratio in (2) is bounded by $1 + c_1(\varepsilon)$ for all x_0, x_1, n with some $c_1(\varepsilon) \to 0$ for $\varepsilon \to 0$, what proves the equicontinuity, (for more concrete estimates see Proof of Proposition 3).

The operator $\widehat{\mathcal{P}}$ satisfies also another property: it is primitive namely for every $\psi \geq 0$ there exists n > 0 such that $\widehat{\mathcal{P}}^n(\psi) > 0$.

Now we can refer to a general theorem about positive operators, almost periodic and primitive (see [B] and [LL] th. 8.3):

For every such operator not contracting to 0 there is an eigenfunction ψ_0 with the eigenvalue 1. We have $\hat{P} = P_1 + P_2$ where P_1 is the projector to span ψ_0 , ker P_1 is invariant for \hat{P} and $\hat{P}^n(\psi) \to 0$ for every $\psi \in \ker P_1$.

As $\mathcal{P}_1 = F \cdot \psi_0$ for a continuous functional F and $\widehat{\mathcal{P}}$ is η -invariant (i.e. $\int \psi d\eta = \int \widehat{\mathcal{P}}(\psi) d\eta$), we have $\ker \mathcal{P}_1 = \ker \eta$. As $F(\psi_0) = \eta(\psi_0) = 1$, we have $F = \eta$.

So for every $\psi \in C(\mathbb{J})$, $\widehat{\mathcal{P}}(\psi) = \eta(\psi) \cdot \psi_0 + \widehat{\mathcal{P}}^n(\psi - \eta(\psi) \cdot \psi_0) \to \eta(\psi) \cdot \psi_0$. (By the way, $F = \eta$ proves the uniqueness of the probability measure satisfying (1).) \square

Proposition 2. The measure η satisfying (1) is the only probability $\lambda \exp(-\varphi)$ -conformal measure on \mathbb{J} .

Proof. Let η_1 be any probability measure on J with Jacobian $J_{\eta_1} = \lambda \exp{-\varphi}$. Let f be 1-to-1 on a Borel set E. Then by the definition of Jacobian, for every

integrable function h on f(E), in particular for $h = \exp \varphi \circ (f|_E)^{-1}$ one has $\int_{f(E)} h d\eta_1 = \int_E (h \circ f) \cdot J_{\eta_1} d\eta_1$. So

$$egin{aligned} \mathcal{P}_{arphi}^*(\eta_1)(E) &= \int \mathcal{P}_{arphi}(\chi_E) d\eta_1 = \int_{f(E)} \exp arphi \circ (f|_E)^{-1} d\eta_1 \ &= \int_E (\exp arphi \circ (f|_E)^{-1} \circ f) \cdot \lambda \exp -arphi d\eta_1 = \lambda \eta_1(E). \end{aligned}$$

It is easy to see that J can be decomposed into a finite number $(= \deg f)$ of Borel sets E_i on each of which f is 1-to-1 to its image. Then for each E

$$egin{aligned} \mathcal{P}_{m{arphi}}^*(\eta_1)(E) &= \sum_i \mathcal{P}_{m{arphi}}^*(\eta_1)(E \cap E_i) \ &= \sum_i \lambda \eta_1(E \cap E_i) = \lambda \eta_1(E). \end{aligned}$$

Proof of Theorem 2. f_* -invariance of $\nu = \psi_0 \cdot \eta$ is standard [B]. We recall the proof: for every $h \in C(\mathbb{J})$

$$\eta(\psi_0 \cdot h) = \eta(((\mathcal{P}_{\varphi}/\lambda)(\psi_0)) \cdot h) = \eta((\mathcal{P}_{\varphi}/\lambda)(\psi_0 \cdot (h \circ f))) = \eta(\psi_0 \cdot (h \circ f)).$$
 Then we estimate measure entropy:

$$egin{split} h_{
u}(f) &\geq \int \log J_{
u}(f) d
u = \int \log J_{\eta}(f) d
u + \int \log (\psi_0 \circ f) d
u - \int \log \psi_0 d
u \ &= \int \log J_{\eta} d
u = \log \lambda - \int arphi d
u = P(f, arphi) - \int arphi d
u \end{split}$$

for Jacobians $J_{\nu}(f)$, $J_{\eta}(f)$ for the measures ν and η respectively.

The first inequality follows from

$$h_
u(f) \geq H_
u(arepsilon|f^{-1}(arepsilon)) = \int \log J_
u(f) d
u$$

where ε is the partition into points.

So $h_{\nu}(f) + \int \varphi d\nu \geq P(f, \varphi)$. Actually we have equality here due to the inequality to the other side: the so-called variational principle [B].

Now we prove uniqueness of the equilibrium state for φ . We rely on the following claim told to us by M. Ljubich (the claim seems to be known in various versions from a long time, see for example [Le]).

Claim. Let u be a continuous function on \mathbb{J} such that for every $x \in \mathbb{J}$

$$\sum_{y \in f^{-1}(x)} \exp u(y) = 1. \tag{5}$$

If a measure ν is an equilibrium state for u and there is a finite entropy generating partition (i.e. a countable partition \mathcal{A} such that $\bigvee_{n=0}^{\infty} f^{-n}(\mathcal{A}) = \varepsilon, \nu$ -a.e.) then

 ν has Jacobian on J satisfying: $J_{\nu} = \exp -u$.

Proof of the claim. For every $y \in J$ denote $A(y) = f^{-1}(f(\{y\}))$. There is a system of conditional measures for the partition $f^{-1}(\varepsilon)$, [Ro]. A conditional measure of this system on ν -a.e. A(y) is denoted by $\nu_{A(y)}$. We have

$$egin{aligned} P(f,u) &= h_{
u}(f) + \int u d
u = H_{
u}(arepsilon|f^{-1}(arepsilon)) + \int u d
u \ &= \int \left(\sum_{z \in A(y)}
u_{A(y)}(\{z\})(-\log(
u_{A(y)}\{z\}) + u(z))
ight) d
u(y). \end{aligned}$$

The latter expression is always negative except for the case $\nu_{A(y)}(z) = \exp u(z) \nu$ -a.e. (this is a crucial calculus lemma in the theory of equilibrium states, see [B] L.1.1). But $P(f,u) \geq 0$ by Lemma 4 because $\mathcal{P}_u^n(1) = 1$. So for a set $Y = f^{-1}(f(Y))$ of full measure ν , every $y \in Y$ and every $z \in A(y)$ we have

$$\nu_{A(y)}(z) = \exp u(z).$$

So for every Borel set $E \subset Y$ such that f is 1-to-1 on it

$$egin{aligned}
u(f(E)) &=
u(f^{-1}(f(E))) = \int_{f^{-1}(f(E))} \left(\int_{A(y)} 1 d
u_{A(y)} \right) d
u(y) \ &= \int_{f^{-1}(f(E))} \left(\int \chi_E /
u_{A(y)} (E \cap A(y)) d
u_{A(y)} \right) d
u(y) \ &= \int_E \exp{-u} d
u. \end{aligned}$$

Finally $\nu(f(\mathbb{J}\backslash Y))=0$ because $\mathbb{J}\backslash Y=f^{-1}(f(\mathbb{J}\backslash Y))$ and ν is f_* -invariant. The claim is proved.

Proof of uniqueness. Let ν be any equilibrium measure for φ . We set $u(x) = \varphi(x) - \log \psi_0(f(x)) + \log \psi_0(x) - \log \lambda$. The property (5) results from an easy computation with the use of the equality $(P_{\varphi}/\lambda)(\psi_0) = \psi_0$. The measure ν is also an equilibrium state for u. Observe that

$$h_{
u}(f) = P(f, \varphi) - \int \varphi d\nu \ge P(f, \varphi) - \sup \varphi > 0.$$

Now the existence of a finite entropy generating partition follows from $h_{\nu}(f) > 0$ by Mañé's construction [M1], [M2], see also [P] section 3. (The partition is countable, maybe not finite).

From the claim we conclude that

$$J_{
u} = \lambda (\exp -arphi) rac{\psi_0 \circ f}{\psi_0}.$$

So $J_{(1/\psi_0)\cdot\nu}=\lambda\exp-\varphi$, hence $(1/\psi_0)\nu=\eta$ by Proposition 2. So $\nu=\psi_0\cdot\eta$.

Proposition 3. Modulus of continuity of ψ_0 , namely the function $\mathcal{M}(\psi_0): \mathbb{R}^+ \to \mathbb{R}^+$ defined by

$$\mathcal{M}(\psi_0)(arepsilon) = \sup_{x,y \in \mathrm{J}} \{|\psi_0(x) - \psi_0(y)| : \mathrm{dist}(x,y) \leq arepsilon\}$$

satisfies the inequality

$$\mathcal{M}(\psi_0)(arepsilon) < C(N) \left(rac{1}{\log rac{1}{arepsilon}}
ight)^N,$$

for N arbitrarily large and a constant C(N) depending on N.

Proof. Let us proceed with more precision in Proof of Theorem 1. Take for $a(\varepsilon)$ considered there, the function $a(\varepsilon) = \left(\frac{1}{\log \frac{1}{\varepsilon}}\right)^M$ for an arbitrarily large integer M > 0. Now we shall precise $l(\varepsilon)$. To have

$$l(\varepsilon) \leq k(\varepsilon)$$
 and $l(\varepsilon) \cdot \operatorname{var}_{a(\varepsilon)}(\varphi) \to 0$,

l cannot be too large. To assure the latter convergence it is enough to assume for ε small enough

 $l(\varepsilon) < \left(\log \frac{1}{\varepsilon}\right)^{M\kappa/2},\tag{6}$

where $\kappa = \kappa(\varphi)$ is the Hölder continuity exponent for φ . Indeed (6) gives

$$l(\varepsilon) \operatorname{var}_{a(\varepsilon)}(\varphi) < \left(\frac{1}{\log \frac{1}{\varepsilon}} \right)^{M \kappa/3},$$

(3 rather than 2 to swallow the Hölder coefficient $C(\varphi)$ for ε small)).

Let us estimate now $k(\varepsilon)$ from below. We have

$$\varepsilon^{(1/\deg f)^{\alpha k(\varepsilon)}} \ge \left(\frac{1}{\log \frac{1}{\varepsilon}}\right)^M$$

for $\alpha > 0$ arbitrarily small and for ε small enough. This uses Lemma 0, diameters of curves in Γ_j with growing j multiply by a constant or root with degree $\leq \deg f$ in α -th part of time. So

 $k(\varepsilon) \geq rac{1}{lpha \log(\deg f)} \left(\log\lograc{1}{arepsilon} - \log\log\left((\lograc{1}{arepsilon})^M
ight)
ight) \geq A\log\lograc{1}{arepsilon},$

for A arbitrarily large. Thus to have (6) satisfied we just take $l(\varepsilon) = A \log \log \frac{1}{\varepsilon}$.

Compute finally that for every $\hat{\delta} > 0$

$$\exp -l(arepsilon)\widehat{\delta} = \left(rac{1}{\lograc{1}{arepsilon}}
ight)^{A\widehat{\delta}}$$

We conclude from this preparation using (3) and (4) that if $\mathrm{dist}(x_0,x_1)\leq arepsilon$ then

$$\frac{\widehat{\mathcal{P}}^{n}(1)(x_{0})}{\widehat{\mathcal{P}}^{n}(1)(x_{1})} \leq (1 + C \exp{-l(\varepsilon)\delta}) \times (1 + C \exp{-l(\varepsilon)\delta\kappa}) \times \times (1 + l(\varepsilon) \operatorname{var}_{a(\varepsilon)}(\varphi)) = X,$$
(7)

for a constant C > 0, (the first factor due to (3), two next related to Q_2 and Q_3 in (4)). We continue the estimates:

$$X \leq \left(1 + \left(rac{1}{\lograc{1}{arepsilon}}
ight)rac{\min\left(A\delta,A\kappa\delta,M\kappa/3
ight)}{2}
ight).$$

Because A and M can be chosen arbitrarily large this proves that all functions $\widehat{\mathcal{P}}^n(1)$ have moduli of continuity bounded by the same $C(N)(\frac{1}{\log \frac{1}{\epsilon}})^N$ for arbitrary N. So the same expression bounds also the modulus of continuity for the limit function ψ_0 . \square

Remarks.

1. It is easy to see that the space

$$\mathcal{C}_{M} = \{g \in C(\mathbb{J}(f)) \colon (\sup_{x,y \in \mathbb{J}(f)} |g(x) - g(y)|) / \left(\frac{1}{\log \frac{1}{\epsilon}}\right)^{M} = \|g\|_{\mathcal{C}_{M}} < \infty \}$$

is invariant under $\widehat{\mathcal{P}}$. Observe that if ψ is Hölder continuous then the sequence $\widehat{\mathcal{P}}^n(\psi)$ is uniformly bounded in the norm $\|\cdot\|'_{\mathcal{C}_M} = \max(\sup |\cdot|, \|\cdot\|_{\mathcal{C}_M})$. Indeed in (7) one should consider additionally the terms corresponding to Q_1 in (4),

$$(1+C\operatorname{var}_{a(\varepsilon)}\psi)(1+C\exp{-l(\varepsilon)}\kappa(\psi)\delta),$$

which can be coped with as corresponding terms for φ . However I see no reason that the sequence $\widehat{\mathcal{P}}^n(\psi)$ is bounded in $\|\cdot\|'_{c_M}$ for each $\psi \in \mathcal{C}_M$. In particular maybe the spectrum of $\widehat{\mathcal{P}} - \mathcal{P}_1$ (\mathcal{P}_1 is the projection to span ψ_0 , see Proof of Theorem 1.) intersects S^1 (unlike for hyperbolic f and the space of Hölder continuous functions with a given exponent)?

2. Theorems 1 and 2 hold for every function φ satisfying

$$\sum_{n=0}^{\infty} \operatorname{var}_{\exp{-n\delta}}(\varphi) < \infty \quad \text{for} \quad \delta < \frac{1}{2} (P(f,\varphi) - \sup{\varphi}).$$

In particular it is sufficient to assume about the modulus of continuity that

$$\mathcal{M}(\varphi)(\varepsilon) \leq (\frac{1}{\log \frac{1}{\varepsilon}})^M$$

for an arbitrary M > 1.

- 3. Hölder continuity of ψ_0 would follow from the following property:
- (8) There exists L > 1 and $\tau, \varepsilon_0 > 0$ such that for every $x \in \mathbb{J}, \varepsilon < \varepsilon_0, n \ge 0$ and every component V of $f^{-n}(B(x,\varepsilon)), \operatorname{diam}(V) \le L^n \varepsilon^{\tau}$.

Indeed we can take then $a(\varepsilon) = \varepsilon^{\alpha}(\alpha < \tau)$ will be specified later). The property (8) gives $k(\varepsilon) \geq \frac{1}{\log L}(\tau - \alpha)\log \frac{1}{\varepsilon}$. We take the latter expression as $l(\varepsilon)$, what gives

$$l(\varepsilon)a(\varepsilon) \le \varepsilon^{\alpha-\vartheta}(\vartheta > 0 \text{ arbitrarily small})$$

and

$$\exp -\delta \cdot l(\varepsilon) \le \varepsilon^{(\tau-\alpha)\delta/\log L}$$

So

$$\mathcal{M}(\psi_0) \leq arepsilon^{oldsymbol{eta} \kappa}$$

where β is an arbitrary number satisfying $\beta < \min(\alpha, (\tau - \alpha)\delta/\log L)$. So we can take any $\beta < \beta_0$ where $\beta_0 = \frac{\tau \widehat{\delta}/\log L}{1 + \widehat{\delta}/\log L}$ ($\beta_0 = \alpha$: the solution of the equation $\alpha = (\tau - \alpha)\widehat{\delta}/\log L$ with $\widehat{\delta} = \frac{1}{2}(P - \sup \varphi)$).

For example ψ_0 is Hölder continuous ((8) is satisfied) if $\omega(\operatorname{Crit}) \cap \operatorname{Crit} \cap J = \emptyset$ (ω denotes the limit set under forward iterations for f).

Indeed for a backward trajectory of components $\{V_n\}$, where V_n is a component of $f^{-n}(B(x,s)), f(V_n) = V_{n-1}$, we have $\operatorname{diam}(V_{n+1})/\operatorname{diam}(V_n) < L$ for a constant L until for some $n=n_1$ the set V_{n_1} is close to a critical point. Then after a few steps V_{n_2} is contained in a large disc D such that all branches f^{-m} on say twice larger disc are univalent. Using Koebe's Distortion Theorem one deduces that $\operatorname{diam}(f^{-n_2-m}(V_{n_2}))/\operatorname{diam}(V_{n_2})$ stays bounded (with a universal bound) for $m\to\infty$.

4. All the results of the paper hold for any map of the circle $f: S^1 \to S^1$ which

is strictly increasing, $\deg f \geq 2$, of class C^1 and each critical point is not flat. The function φ is defined on \mathbb{J} which can be defined as $S^1 \setminus \{x: f^n(x) \to S'(f), \text{ as } n \to \infty\}$ or any smaller set X such that $f^{-1}(X) = X$.

Here we do not need to use bounded distortion to prove Lemma 1. We denote $S = \operatorname{Crit}(f) \cup \{e^{2\pi i k \epsilon}: k = 0, \dots, [\frac{1}{\epsilon}]\}$ and U_n is the family of (closed) arcs joining consecutive points of $\bigcup_{i=0}^n f^i(S)$, (the idea is taken from [LP]).

(We do not know only whether the result of Remark 3 is true in this situation, because our proof that $\omega(\operatorname{Crit}) \cap \operatorname{Crit} \cap \mathbb{J} = \emptyset$ yields (8), hence Hölder continuity of ψ_0 , uses "bounded distortion property".)

Appendix A.

Proof of Theorem 1 under the assumption $\log \lambda > \sup \varphi$. Step 1 We claim the following:

Given $\delta > 0$ there exists C > 0 such that there exists a dense, full measure η , subset $\Lambda \subset J$ with the following properties:

1. For every n > 0 there exists a set of continuous branches of f^{-n} on Λ , $\mathcal{T}_n = \{f_t^{-n}: t \in \{1, \ldots, d^n\}\}, d = \deg f$, such that for k > l $f_t^{-k} \in \mathcal{T}_k \Rightarrow f^{k-l} \circ f_t^{-k} \in \mathcal{T}_l$ (i.e. the branches are compatible over n).

2. If we set
$$T_n' = \{f_t^{-n} \in T_n : \operatorname{diam} f_t^{-n}(\Lambda) \ge \exp{-n\delta}\}$$
 then
$$\operatorname{Card} T_n' < C \exp{3n\delta}$$
 (2)

Proof of the claim. Order all critical values of f into p_1,\ldots,p_m . Join p_1 with p_2 by a shortest geodesic γ_1^1 (or a line close to a geodesic). Then join p_3 with γ_1^1 by a shortest geodesic γ_1^2 , etc. Denote $\gamma_1=\bigcup_{i=1}^{m-1}\gamma_1^i$ and $W=\widehat{\mathbb{C}}\backslash\gamma_1$. Now construct γ_n and W_n for every $n\geq 1$ by induction. Given W_{n-1} order all critical values of f^n not being critical values of f^{n-1} into $p_1^n,\ldots,p_{m(n)}^n$, join p_1^n with ∂W_{n-1} by γ_n^1,p_2^n with $\partial W_{n-1}\cup\gamma_n^1$ by γ_n^2 etc. Define $\gamma_n=\bigcup_{i=1}^{m(n)}\gamma_n^i$ and $W_n=W_{n-1}\backslash\gamma_n$. Finally $\Lambda=\bigcap_{n\geq 1}W_n\cap J$. Now the branches f_t^{-n} are defined as continuous branches on W_n .

Observe that we can assure for every i, j that $\eta(\gamma_i^j) = 0$ because η has no atoms (otherwise it would be infinite) and we have a freedom of choosing our geodesics. It is not hard to see that this implies $\bigcup \gamma_i^j$ is nowhere dense in J.

The key observation is that for each n due to the construction and the fact that for the set $Critv(f^n)$ of all critical values for f^n

$$Card(Critv f^n) \le C_1 n$$
, for a constant $C_1 > 0$,

 $\bigcup_{m\leq n}\gamma_m$ dissects each set of U_n (cf. Lemma 1) into at most C_1n+1 components. (As each geodesic dissects a small disc into at most 2 components.) Now intersections of the sets from U_n with W_n give a new covering \widehat{U}_n of a neighbourhood \widehat{W}_n of Λ .

Let us use Lemma 1. For every
$$B \in \widehat{U}_n$$
 we have (iii) satisfied, so $\operatorname{Card}\{f_t^{-n} \in \mathcal{T}_n : \operatorname{diam} f_t^{-n}(\widehat{W}_m) > \operatorname{Card} \widehat{U}_n \cdot \exp -n\delta_2\} \le \le \operatorname{Card} \widehat{U}_n \cdot K \exp 2n\delta_2.$

If δ_1, δ_2 are chosen so that $0 < \delta < \delta_2 - \delta_1$, $3\delta > 2\delta_2 + \delta_1$, then we obtain (2).

Step 2. (Denker, Urbański). We consider $g_n = \mathcal{P}_{\varphi - \log \lambda}^n(1)$ leaving considering $\mathcal{P}_{\varphi - \log \lambda}^n(\psi)$ for an arbitrary ψ to the reader.

By the definition of η and λ

$$\int g_n d\eta = 1, \quad \text{for every } n. \tag{3}$$

Denote

$$\widehat{E}_n(z) = \exp\left(\sum_{i=0}^{n-1} \left(arphi(f^i(z)) - \log \lambda
ight)
ight).$$

Because $\sup \varphi < \log \lambda$, there exists $\nu: 0 < \nu < 1$, such that $\widehat{E}_n(z) < \nu^n$ for every $z \in \mathbb{J}$ and $n \geq 0$. Finally fix an integer $n_0 > 0$ (to be specified later on) and denote for $x \in \Lambda$

$$\widehat{g}_n(x) = \sum \{\widehat{E}(f_t^{-n}(x)): f^k \circ f_t^{-n} \notin \mathcal{T}'_{n-k} \text{ for every } 0 \le k \le n - n_0\}.$$
 Suppose now that for some $K > 0$, for every $x \in \mathbb{J}, m < n$

$$|g_m(x)| \le K \tag{4}$$

Then for every $x \in \Lambda$

$$egin{aligned} |g_n(x)| & \leq |\widehat{g}_n(x)| + \sum_{k=0}^{n-n_0} \sum_{f_t^{-n+k} \in {\mathcal T}_{n-k}'} \left| \widehat{E}_{n-k}(f_t^{-n+k}(x)) \cdot g_k(f_t^{-n+k}(x)) \right| \ & \leq |\widehat{g}_n(x)| + \left[\sum_{n=0}^{n-n_0}
u^{n-k} \cdot \operatorname{Card} {\mathcal T}_{n-k}' \right] \cdot K. \end{aligned}$$

The coefficient in the square bracket is < 1 if $3\delta + \log \nu < 0$ (by (2)) and if n_0 is large enough.

It is clear from the construction and Hölder continuity of φ that $|\widehat{g}_n(z)/\widehat{g}_n(w)| < C_1$ so by (3) $|\widehat{g}_n(z)| < C_1$ for a constant $C_1 > 0$ independent of n and every $z, w \in \Lambda$. So if K is chosen large enough (4) for all m < n implies (4) for m = n and every $x \in \Lambda$. By the density of Λ in $\mathbb J$ we conclude (4) for every $x \in \mathbb J$.

Let us prove now that $g_n(x) \ge \text{Const} > 0$ for every x, n. Fixed n, due to (3) there exists $x_0 \in \Lambda$ such that $g_n(x_0) \ge 1$. We have

$$|g_n(x_0)| \leq |\breve{g}_n(x_0)| + A_{n_1} \cdot \sup_{m,x} |g_m(x)|$$

for

$$A_{n_1} = \sum_{k=0}^{n-n_1} \nu^{n-k} \operatorname{Card} \mathcal{T}'_{n-k}$$

similarly to (5). We write \check{g}_n instead of \widehat{g}_n because now it depends on n_1 maybe different from n_0 . If n_1 is large enough that $A_{n_1} \cdot \sup_{m,x} |g_m(x)| = B < 1$, we deduce that $|\check{g}_n(x_0)| \geq 1 - B > 0$ (the estimate independent of n). So the same holds with another B < 1, for every x by $|\check{g}_n(z)/\check{g}_n(w)| < \text{Const. Having } 0 < C^{-1} < |g_n(x)| < C$ for every n, x, a proof of the equicontinuity of $\{g_n\}$ is standard, see Section 4. \square

Appendix B.

The assumption $P > \sup \varphi$ seems to have been introduced for the first time by Urbański in [U]. This assumption is essential. Indeed, take for example Blaschke product $f(z) = (\frac{3z+1}{3+z})^2$ and $\varphi = -\log |f'|$. There is a neutral fixed point p=1. We have $\varphi(p)=0$ and $P(f,\varphi)=0$, (the latter follows from [U], Corollary 3.7). In this example neither $\{P_{\varphi}^n(\psi)\}$ for any continuous function ψ is equicontinuous nor an equilibrium state equivalent to the |f'|-conformal measure (which is just the length measure on the unit circle) exist. The latter follows from [T] and implies the preceding.

The reader may ask why not to assume $\log \lambda > \sup \varphi$ from the beginning? The matter is that this assumption seems usually uncheckable. The condition $P > \sup \varphi$ is easier to check. For example it follows ([U], Remark 2) from $h_{\text{top}}(f) > \sup \varphi - \inf \varphi$, (the condition introduced in [H-K]). The latter, as

124 PELINS PRZ I I CAI

 $h_{\text{top}}(f) = \deg f$, has plenty of examples. (I owe most of the above remarks to M. Urbański.)

References

- [B] R. Bowen, "Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms," Lect. Notes in Math. 470, Springer, Berlin, 1975.
- [DU1] M. Denker, M. Urbański, The existence of conformal measures, to appear in, Trans. Amer. Math. Soc..
- [DU2] ______, Ergodic theory of equilibrium states for rational maps, preprint. Göttingen (1989)
 - [G] M. Gromov, On the entropy of holomorphic maps, preprint. IHES (1978)
 - [H] E. Hille, "Analytic Functions Theory," Ginn and Company, Boston, 1962.
- [HK] F. Hofbauer, G. Keller, Equilibrium states for piecewise monotone maps, Ergodic Th. & Dyn. Sys. 2 (1982), 23-43.
- [LP] R. Langevin, F. Przytycki,. to appear
- [Le] F. Ledrappier, Principle variationnel et systémes dynamiques symboliques, Z. Wahrscheinlichkeitsth. verw. Gebiete 30 (1974), 185-202.
- [Lju1] M. Ljubich, Entropy of analytic endomorphisms of the Riemann sphere, Funkcj. An. i ego pril. 15.4 (1981), 83-84.
- [Lju2] ______, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Th. & Dyn. Sys. 3 (1983), 351-386.
- [LL] Yu. Ljubich, M. Ljubich, Perron-Frobenius theory for almost periodic operators and representations of semigroups, Teoria Funkcij, Funkc. An. i pril. 46 (1986), 54-72. (in Russian)
- [M1] R. Mañe, A proof of Pesin's formula, Ergodic Th. & Dyn. Sys. 1 (1981), 95-102.
- [M2] _____, On the uniqueness of the maximizing measure for rational maps, Bol. Soc. Bras. Mat. 14 (1983), 351-386.
- [M3] _____, On the Bernoulli property for rational maps, Ergodic Th. & Dyn. Sys. 5 (1985), 71-88.
- [Mi] M. Misiurewicz, Topological conditional entropy, Studia Math. 55.2 (1976), 175-200.
- [MP] M. Misiurewicz, F. Przytycki, Topological entropy and degree of smooth mappings, Bull. Acad. Pol. Sci., ser. Math. 25 (1977), 573-574.
- [Pa] W. Parry, "Entropy and Generators in Ergodic Theory," W. A. Benjamim Inc., New York, 1969.
- [P] F. Przytycki, Hausdorff dimension of harmonic measure on the boundary of an attractive basin for a holomorphic map, Invent. Math. 80 (1985), 161-179.
- [PUZ] F. Przytycki, M. Urbański, A. Zdunik, Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps, Part I in Annals of Math. 130 (1989), 1-40. Part II, to appear in Studia Math. 97.3

- [Ro] V. A. Rohlin, Lectures on the entropy theory of transformations with invariant measures, Usp. Mat. Nauk 22.5 (1967), 3-56. (Russ. Math. Surv. 22.5 (1967), 1-52)
- [S] D. Sullivan, Seminar on conformal and hyperbolic geometry, Notes by M. Baker and J. Seade. Preprint IHES (1982)
- [T] M. Thaler, Estimates of the invariant densities of endomorphisms with indifferent fixed point, Isr. J. Math. 37.4 (1980), 303-314.
- [U] M. Urbański, Invariant subsets of expanding mappings of the circle, Ergodic Th. & Dyn. Sys. 7 (1987), 627-645.
- [W] P. Walters, "An introduction to Ergodic Theory," Springer, New York, 1982.

Feliks Przytycki Institute of Mathematics Polish Academy of Sciences 00950 Warsaw, Poland

ON THE FERROIT-PRODERIUS-RUBLES OF ERATOR

and

Mathematical Institute Warsaw University