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On the Perron-Frobenius-Ruelle operator for
rational maps on the Riemann sphere and
for Holder continuous functions

Feliks Przytycki

Abstract. Let f 1 € s C be a rational function on the Riemann sphere, ¢ be a Holder
continuous function on the Julia set J, Pp: C(J) — C(J) denote the Perron-Frobenius-Ruelle
operator on the space of continuous functions:

Po@)(z)= D (y)expe(y).
yef~1(z)
Suppose that topological pressure P = P( f, p) satisfies P > sup . Then for every ¢ € C(J)
the family (exp P)™" P2} () is equicontinuous and there exists a probability measure n on J
and a function 9 € C(J) such that 4o > 0 and for every ¢ € C(J), f Po()dn =
(exp P) f tdn and (exp P)"" P (¥) — vo f pdn. The measure g -7 is unique equilibrium
(Gibbs) state for .

This theorem was proved recently by M. Denker and M. Urbanski. We give here a significantly
different proof of it, less ergodic but going deeper into holormophic dynamics.

We discuss also modulus of continuity of g, in particular we prove, it is bounded by

1 N
o) (_1og(1/e)>

for arbitrary N and a respective constant C(N).
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Appendix A. Proof of Theorem 1 under the assumption log A > sup ¢.
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0. Introduction, basic ideas and notation

Let f be a rational mapping of the Riemann sphere CandJ = J(f) be its Julia set.
Let ¢ be a real continuous function on J. Define the operator P,,: C(J) — C(J)
on the space of continuous functions by
Po(¥)(x) = D #(y)expo(y)
vef~(2)
(if y is a critical point we repeat it as many times as its multiplicity as the pre-
image of z).

The main aim of the paper is to give a new proof of the following theorem
proved recently by M. Denker and M. Urbariski[DU2]

Theorem 1. (Denker, Urbanski.) Suppose supp < P = P(f,p) (the topo-
logical pressure) and suppose that ¢ is Holder continuous. Then P,_p is
almost periodic, i.e. for every ¢ € C(J) the sequence of functions P}_p(¥)
is uniformly bounded and equicontinuous. There exists a positive fixed point
for Py_p namely a function 1o > O such that P,_p(%o) = o and there
exists a probability measure n on J such that for every ¢ € C(J) we have
[dn = [ Po_p()dn and P} p() — to - [ $dn as n — co.

Note that by functional analysis reasons there exist A > 0 and a probability
measure 7 such that

Pi(n) = An (1)

From Theorem 1 it follows immediately that log A = P and 5 satisfying (1)
must be the same as n in Theorem 1 (where it is obviously unique because of
its properties). In particular we deduce uniqueness of the probability measure
satisfying (1).

As a corollary we obtain in a rather standard way
Theorem 2. (Denker, Urbanski.) v = g -0 is the unique equilibrium state for

o (i.e. an f-invariant probability measure on J such that h,(f) + [, pdv =
P(f,¢), where h, stands for measure-theoretic entropy).
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Let us mention that we do not know whether o must be Holder continuous.
Nevertheless we prove in Section 4 that the modulus of continuity of g is bounded

1 N
e B N :
by C(N) (log(l/t)) or every N > 0 and a constant C(N) > 0

In Sections 1 and 2 we give a technical preparation. In Section 3 we prove
the main lemma that PJ(z)/P}}(1)(y) is uniformly bounded over all n > 0 and
z,y € J, after which everything gets easy.

In Section 4 we deduce Theorems 1 and 2.

A proof of Theorem 1 is easy if ¢ = 0, see [Lju2] or if at least

D expp(y)
vef~1(z)
is constant.
Let us comment now Denker-Urbariski’s Proof. It consists of two parts: First
part proves that log A > P, this seems to be a harder part of their paper which
uses the conformal measures technique [DU1].

Then the assumption P > sup ¢ yields log A > sup ¢, consequently the
second part of Denker-Urbaniski’s Proof of Theorem 1 is the proof of its assertions
under the assumption log A > sup ¢ (a posteriori it occurs P = log ). This is
an easier, but nice and tricky part of their paper. For completeness I will give my
variant of the proof in Appendix A. I will give some discussion of the assumptions
in Appendix B.

All [DU2] relies on Maiié’s technique [M3]. Instead we rely on simple Lemma
1 which roots can be found in [Ljul] and which is used also in [LP].

The main point is to know that for every two points most of their backward
trajectories approach each other. The authors of [DU2] ignore backward branches
f~! (on discs) meeting critical values. We consider in Lemma 1 and in the sequel,
all branches, keeping some control on what happens when we meet a critical value.

Especially Lemma 5 (“telescope” lemma) is devoted to it. This is crucial Lemma
of the paper.

Commenting again Section 1 let us mention that throughout it we play with
ideas virtually present in [Ljul] and [Lju2] and also in [MP]. In particular we
obtain slightly modified proofs of hyop(f) = deg(f) and that f is asymptoti-
cally h-expansive. “Telescope” lemma in Section 2 contains however an idea not
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present in Ljubich papers and this it is just this lemma which allows to make
a step from measures with maximal entropy investigated by Ljubich, to a larger
class of measures.

Basic notation. Crit or Crit(f) is the set of all critical points of f, ie. {z €
C: f'(z) =0}

Critv(f") = Uiz, f* (Crit(f)), forn =1,2,...

S'(f) is the set of all periodic sinks for f containing a critical point in the
orbit.

For every € > 0 and a continuous function g: J — R we write

var.(g) = sup{|g(=) — g(y)|: dist(z,y) < ¢},
dist in a fixed standard metric ¢ on C.

For z,y € C we define p,(z,y) = max;=o,.. ,n(dist(f"(x),f‘(y))). We
write Byn(z,€) to denote the open ball with the origin at z and radius & in
metric g,. We call z,y being (n,e)-close if y € B(z,¢) and (n, €)-separated if
y ¢ B(z,¢).

A set A is called (n, €)-separated if each two points of it are (n, €)-separated.

Given a function ¢ on J we write E,(y) = exp S Lo (v)-

Let us recall that topological pressure P = P(f, ) for any continuous func-

tion ¢ is defined by

e 1e 1
P= ll_i!(l) lim sup — log sup{ Z E.(z)}

n—oo N z€A

supremum being taken over all (n,e)-separated sets A C J. If one replaces
limsup,,_, ., by liminf, .., here, one obtains the same P (see [W] Th. 9.4).

If o is Holder continuous we fix numbers £ = x(p) and C(p) such that
lp(z) = (y)| < C(p)(dist(z, )™

If u is an arbitrary probability measure on J then a general theorem [Pa] says
that there exists Jacobian J,, = J,(f) on a set of full measure . It means that
thiere exists a set Y with u(J\Y) = 0 and an integrable function J,, such that for
every E C Y on which f is 1-to-1 onto an image we have p(f(E)) = {s Judss.
If Y = J we say: there exists the Jacobian of the measure p on J or just there is

a Tacohian.
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1. Introductory estimates

We begin with a simple fact (Lemma 0) which appeared already in several papers,
not separated into a lemma. We leave its proof to the reader.

Lemma 0. For every o > 0 and every neighbourhood V of S'(f) there exists
r= r(a) > 0 and no > O such that for every n > ng and = € T such that
ft(z) € C\V for each i =0,1,... ,n, we have:

Card{i € {0,... ,n — 1}:dist(f*(z), Crit(f)) < r}/n < a.

Now, it comes the crucial:

Lemma 1. For every €,6;,6; > O there exists K > 0 such that for every

n > 0 there exists U,, a covering of a neighbourhood A of J by discs (in a
standard metric on C) Such that

(i) CardU, < K expnéy, If for every B € U, we denote by B,, the
family of components of f~"(B), each repeated as many times as its
multiplicity, then

(i) for every V € B, and 0 < i < n,diam f*(V) < ¢;

(iii) Card{V € By,:diam(V) > exp —nés} < K exp 2né;,.
A can be taken independent of n(and e, 6,,62) for example

A= é\ U{B(c,ro)zc € S'(f)},

with ro > 0 arbitrarily small.
Proof. Fixed n, consider as an element of Uy, a disc around each a € Critv(f™)N
A of radius 5, = exp(— exp(né;/2)).

Obviously Card(Critv(f™)) < Const -n.

Given an arbitrary C, say C > 3, we can cover the rest of 4 by discs
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B(zj,7i),j =1,-.. ,kn, such that B(z;,Cr;) N Critv(f") = @ and

C 1
- kp < Const-Card(Critv(f™)) - TogC —Tog(C = 1) -log ~ (1)
n

So for a constant depending on C
' k, < Const -n - exp néy /2 )

We prove (1) (it is similar to lemma in [Ljul] or lemma in Section 6 of
[Lju2]). For each a € Critv(f") we cover B(a,1)\B(a,,) by annuli

B(a,a- 5" )\B(a0-5)*),
1
than cover each annulus (after subtracting discs of radii (1 — —C—)" and origins

at other critical values) by discs of radii (1 — l)" and origins in the exterior
circle of the annulus. The number of discs needed to cover each annulus is at
most Const -C if they are chosen carefully enough. We consider these discs as
elements of U,,. A simple computation gives (1).

Of course (2) implies (i).

To prove (ii) and (iii) let us make the following simple observations (we leave
the proofs to the reader):

1. There exist # > 0 and £ > 1 such that for every z € C,7 > 0 and every
component V of f~!(B(z,7)) it holds
diam(V) < &

2. For every r > O there exists £ > 1 such that for every z € € for which
dist(z, Crit) > r, for every 7 and for every component V' of f ~“YB(f(),7))

diam(V) < £7.
Fix now B = B(a,nn) € Uy for a € Critv(f™) and consider components
V; of f7*(B) such that f(V;) = V;_;. From the above observations and from
Lemma O we conclude that
diamV; < nf™ - ¢
< exp(— exp(né1/2 + ailog B) + ilog §)

< exp(— exp(né1/3))
for every ¢ < n provided a is small enough, n large enough.

UIN IS FEARVIN-TAVDCIUD NV LLLL UL DN LU 1vi

This inequality yields (ii) and (iii) for B = B(a,nn),a € Critv(f").

For each other B = B(zj,rj) € Uy, each branch of f=* for every i =
0,...,n is a univalent function on B(z;,Cr;). It has distortion bounded by a
universal constant Cp on B = B(z;,Cr;/2), ie. |(f~) (z1)|/[( F)(2)| <
Cy for 21,22 € B(z;,Cr;/2) (We rely on Koebe’s Distortion Theorem, [H]
Th. 17.4.6). which in Euclidean metric on C would give Cy < 256. Here it.
must be corrected as we deal in € in another metric.) This implies that length
(f "‘(a:’;})) < Codiam € for every geodesic (fo}) c B joining z; with ¢ € dB.

; : C A i A
So diam f~*(B) < C_/OZCO diam C. This is less than ¢ if C > 2CZ diam C/e.

Now obviously

1 ~
Card {V € B,:VolV > Zexp —2n52} < A-VolC - exp2né,

for every A > 0. By the distortion estimate VolV < %exp—zn& implies
Co
VA
Lemma 2. Given any continuous function ¢ on J, for every 6 > 0 there exists
C > 0 such that for every integer n > 0 there exists x € J with the property
P} (1)(z) > Cexpn(P - §).
(Note that we do not assume Hdélder continuity of ¢ here and in the rest of
this section.)

diamV < exp —nb < exp —néy if Cy < \/Z This gives (iii). O

Proof. By the definition of pressure P, given an arbitrary 6y > O there exists
€0,Co > 0 such that for every n > O there exists an (n,ep)-separated set
{y:} C J such that

Z E.(yt) > Coexpn(P — &).
t

For every fixed n and B € U, denote Tp = {¢t: f*(y:) € B}. By Lemma 1
there exists By such that

C
Z E(y) > ?0 expn(P — 6 — 61),
tETBO
(Upn, K and 6; from Lemma 1).

Let z be an arbitrary point in By N J. Denote by ¢; an arbitrary point of the
set f~"({z}) in the same component of f~"(By) as y;. By (ii), Lemma 1 we
have dist(f*(yt), f*(9:)) < € for every 1 = 0,... ,n,e from Lemma 1). (This
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implies that provided e < €o/2 the points ¢ are pairwise distinct and that

C
Py (1)(z) 2 —EO expn(P — 8 — 6 —var. ). O

Remarks.
1. If o = 0 we obtain

(deg f)* > Cexpn(hiop(fls) — 6),
so log(deg f) > hiop(f|s). With some more effort one could prove it with
hiop(f) on €. This is a theorem proved independently by Gromov [G] and
Ljubich ([Ljul], [Lju2]). Our proof is in fact a variant of Ljubich’s proof.

Given an arbitrary g > O take in Lemma 1

A = C\Upesi(s)B(p,€0/2)-
Every (n,eo)-separated set {y;} can be divided into (n + 2) - Card(S'(f))
families Y;, depending on the last i:n > 1 > 0 with f‘(yt) € A and to which
B(p,€0/2) the point f**(y;) belongs, except for ¢ = n. We define Y_1, =
{y:} N B(p,€0/2). Each Y;, must be (i,€o)-separated. In Proof of Lemma 2
we could consider y; with f™(y¢) € A rather than J. For ¢ playing the role of n
in Lemma 2 we get
CardY; p, < K expné(deg )
Summing over 1, p gives Card{y:} < Const -(exp né1)(deg f)".

2. If “for every z” could take the place of “there exists z” in the statement of
Lemma 2, then it would follow that log A > P, and therefore log A > sup ¢.
In this case the easy part of the proof of the paper of Denker-Urbarnski could be
used and simplify the argument (see Appendix A).

Now let us discuss a lemma which idea comes form [M-P].

Lemma 3. For every & there exists C,e > 0 such that for every zo € J
and every n > 0 and yo € f~"(zo) the number of the points z € f~"(zo)
which are (n,e)-close to yo (i.e. such that dist(f*(z), f*(yo)) < € for every
1:0 <1 < n) is less than C exp né.

Proof. Define a non-oriented graph T = T (zo) as follows: suppose first that
zo & Critv(f™). Then the vertices are pairs (z,¢) where 1 =0,... ,n, i) =
zo and dist(f7(2), f* 7 (yo)) < € for every 5:0 < 5 < 4, (¢ will be specified

later on).

UN 1P FERRUIN-TRUDLIVIUD "INV LLALS \J1 AN L Wi R

We join (z1,%1), with (z2,12) with an edge iff

iz = il —~1 and f(Z]_) = 22.

If zo € Critv(f™) then we take into account each (z,¢) as many times as the
degree of f* at z. We find z{, ¢ Critv(f™) so close to zo that there is a 1-to-1
correspondence of each z € f~¥(z}) to the closest point of f~*(zo). Then the
edges of T (o) are determined by the edges of T (zp).

For every vertex (z,n) denote by T (z, n) the subgraph containing the vertices
e; = (f*(z),n—1) forevery i = 0,... ,n and the edges joining them. By Lemma
0 for every « we find € and ng such that
Card{i:e; is a branch vertex of T}/n < «,

if n > ng. A branch vertex means that at least 3 edges meet at it. (e is not
precisely that one from Lemma 0. But if

f(z) = fit1(2), z# f'(2), and dist(z, f*(2)) < 2,
then there is a critical point ¢ with dist(c, f*(2)) < K2 for a constant K. So
we first find for o a number e; which plays the role of € from Lemma O, then
define € = €1 /2K.)

We conclude (as in [MP]) that for the set V,, of all the vertices of T of the
form (z,n), for n > ng
Card(V,,) < (deg f)*".

So if a were chosen so that (deg f)* < expd and C' = (deg f)™ we get
Card(V,) < Cexpné. O

Lemma 4. For any continuous function ¢ on J and for every 6 > 0 there
exists C > 0 such that for every x € Jand n > 0

P;(1)(z) < Cexpn(P +6).

Proof. By Lemma 3 for every z the set f~"({z}) can be divided into C exp né
(n, &)-separated sets (c, 8, from Lemma 3). So

Py (1)(z) < Cexpné - Crexpn(P + 61),
where C1, §; are defined by

Z En(y) < Crexpn(P + 61)
yeyY

for every n and (n, €)-separated set Y (8 is arbitrarily small by the definition of
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pressure). This proves Lemma 4. [

Remarks.
4. For ¢ = 0 we obtain the [MP] estimate hiop(f|s) > deg f.

5. Modifying Proof of Lemma 2, with the help of Lemma 3 we easily deduce the
so-called asymptotic h-expansiveness for f (we recall the definition below). It is
again a modification of Ljubich’s proof [Lju 2].

We work with ¢ = 0. Given § > 0, take C,e from Lemma 3. Then
for every € > 0, for every n, if {y;} is a family of (n,e')-separated points
such that for every t,y; € Bn(z, g), we can find By € U, with Card Tg, >
———— Card{y:} (Co,1,Uy from Lemma 1, Tp = {t: f*(y:) € B}, but
Cp exp néy

!

for € in Lemma 1 we take min (Eé)) We obtain pairwise different y; €

B,.(z, ) all with the same f"(9;) € Bo as in Proof of Lemma 2. So by Lemma
3, Card Tp, < C exp né, hence Card{y;} < CoCexpn(§+ 61). So

lim sup lim lim sup - log(sup(Card{y:})) =0,

e+0ze9e'=20 naoco N
the latter supremum being taken over all {y:}, (n,e’)-separated families in
Bulz; %) (This equality is just the definition of asymptotic h-expansiveness
with f a continuous mapping on a metric space J.)

Recall that asymptotic h-expansiveness implies the existence of an equilibrium
state for any continuous function [Mi] (but for ¢ Hoélder, in our case, we shall
prove the existence independently).

2. Telescope Lemma

Lemma 5. Given a rational map f: €C— Cand0 < X< p<1 there exists
€ > 0 such that for every N > 0 and a sequence of curves 4 = 4o,... ,IN
for which:

f maps v, 1-to-1t0o y,_; forn=1,2,...,N,
diam~o < € (diameter in a standard conformal metric g on €)
diam~, < 4" diam~o, for every n=0,1,... ,N

the following is satisfied:

WIN IMIE FOONNL YL AN A6 VAN W AN Lol sl sl s \FA LAV R A \IAN v

There exists sets V,, € €,n = 0,1,... ,N such that Vp, D 4n,Vy is a
component of f~"(Vo),Vo = B(zo,¢) for some zq € o, finally diam(V,,) <

n

e
Remarks.

1. Another version of this lemma is that for every 0 < v < u < 1and K > O,
there exists € > 0 such that if points z,,n = 0,1,... , N, satisfy f(zn) = zn_1
and

[(f") (za)| > K/A™, 3)

then there exists a sequence (V,,) satisfying the assertions above.

2. If one assumes that dist(Crit f,v,) > Const > 0 or dist(Crit f,z,) >
Const > 0) or at least dist(Crit f,v,) > K(A+6)" for § > 0 arbitrarily small,
then the assertion of the lemma is well-known. One of the possible proofs is to
build a “telescope” in a Lyapunov metric. (The term “telescope” in the expanding
case has been introduced by D. Sullivan, see [S].) One gets f |Vn1-to-1. We shall
build a “telescope” also in our case.

3. Of course it is not true in our situation that {V,,} can be found so that f|y,
is 1-to-1 for every n. For example, let ¢ = ¢ be a critical, non-periodic point
with f™(c) = y being a periodic source, for some m > 0. Let ¢,,n > 0,
be a backward trajectory of ¢, f(cp) = cn—1, With the property |(f7)'(cn)| >
Const -£™, for € > 1 and every n > 0. We can take £ = zg arbitrarily close
to y and its backward trajectory z,, following the periodic trajectory of y for an
arbitrarily long time, then the trajectory f™(c), f™ 1(c),... ,c, finally c,. It is
easy to prove that (3) holds. Yet B(z,¢) contains y so some V}, contains c.

4. The following model situation provides an idea of the proof of Lemma 5: Let
(fn)n>0 be a sequence of maps f,:C — C such that f,(0) = 0, fo(2) = 2¢
if N|n and f,(2) = A;'z otherwise, for a sequence A\, > O,n = 1,2,...
and integers N > 0,d > 1. Let w, € C be a sequence of points such that
fa(wn) = wp_1 and fi(w,) = A;! and V, be a sequence of connected sets
such that each V,, is a component of f,:l(Vn_l) and each V,, contains 0 and wy,.
Then for n = kN
diamV,, < diam(V,, N £, }(B(0, |wn_1])))+

+ diam (Vi 0 £ 1 (Vieo1\B(0, |wn-1]))
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< 2[4+ | (7Y (wn-1) | diam(Va-1)
=I+1I

The estimate by the summand II follows from the concavity of r — rl/d. As
I < 2wncs 7% diam(Var) = 24|(f7) (wn-1) | - diam(Va-s),
we obtain
diam(V,)/ diam(Vy—1) < 3dAn.

If n # kN we have diam(V,,)/diam(V,—1) = An. Thus

diam(V,) < (HA) (3d) Lol s - diam(Vp).

If [Tj=; A; < A™ for some A < 1 and every n > 0, then diam(V},) converges
exponentially to 0 if N > log 3d/log A~%.

5. Observe that an assertion analogous to that of Lemma 5 but for forward
iteration is false. Concavity of r1/4 is replaced by convexity of ¢ unfortunately.

Proof of Lemma 5. Choose u; such that A < p; < u. Take go such that for
every z € C there exists a conformal chart h,: B(z, 2e0) — C with the property:

Ik, |(hz in({/u1/),2). @)

(Another condition for €o will be given later when we define another coordinates:
H)

Observe that there exists K; > 1 such that if f(z) = f(y) then there exists

a critical point ¢ (f'(c) = 0) such that
Q(C,I) < Kle(x)y) &)
(Check it in a neighbourhood of each critical point, where the map is roughly

z — 2%)

Let K, > 1 be a constant such that for every univalent map F: D — C (D-the
unit disc) the distortion:
sup  |F'(z)/F'(y)| < \/p1/A (6)
|zl,ly|<1/ K2
(K, exists by Koebe’s Distortion Theorem, [H] Th. 17.4.6.)

Take now v,,n = 0,1,..., N satisfying the assumptions of our Lemma,
(e will be specified only at the end of the proof). Choose a trajectory z, €
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Yy f(Zn) = Tn—1. Define g,:C — C,g,(0) = 0, by
g"(z) - 'n— l(hzn—l 2 f o h (Tﬂz))
where
o TB { (d%am'y,./ d%am'y,,_l)(p.l//\), if (*,) holds o
(diam~y,/diamy,_1)(#1/A) - C, otherwise,
where (*,,) denotes Crit(f) N B(zn,e1) = @. (Each number 7, is identified with
the mapping z — 7»2.) The constant C > 1 will be specified later on.

Now we will specify 7o and €;. Fix o such that

mCe* < M.

Set €1 = min(eo, r(a), 1) where r(a) satisfies Lemma 0. Take ng also from
Lemma 0. Finally take 7 such that

4sup |f'|roC™ < €.
We obtain for every n
4sup |f|ufroCmet"0 < e,
By (7) and Lemma O this gives for every n
dsup|f'|rn < p"ey ®)

Write D, = {|z| < r}. In particular (8) implies that each g,, is defined on
D;. Setnow B = 1/16K; K,. Suppose that

diam~g < fro/2. ()
Then by (7) diam~, < diam~g - 7,/70 < 7 /2.
Denote 4, = 7., hz,(vn). We conclude that
diam#¥, < 6.
Moreover diam y,_1/diam 4, > (7n—1/7s)(11/A) and by (4)
diam 31/ diam, > /A,
so there is w € Dg with |g, (w)| > ¥/u1 /X

Consider now the case g;, # 0 on Dy. Then g, is 1-to-1 on D, /8K > by (5).
Finally by (6)

gn(Dg) D clDpg. (10)

Now we consider the case of n such that there exists 25 € D; where g’,(Z) =
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0. Denote zo = h;}(rnZ0). In particular zop € B(zn,€1) ie. the second
alternative in (7) takes place.

Let us supply now the missing condition on €. Suppose that g is small
enough that for every ¢ € Crit(f) there exist holomorphic charts

H.1:(B(c,2¢0),c) — (C,0)
and
H.2:(B(f(c),2e0), f(c)) — (C,0)
such that
L

JER)| 22, =12

and H, 30 f o H;}(2z) = a.2?, with a coefficient a. € C and d = d(c) degree
of fate.

For
Gi=7110H

= | RS, | -1
z210h o and Ga=1, 0H, 90h, orny (11)

0

we have

®,(2) =Gzogpo Gl—l(z) = ;_llazo(rnz)d = (T,‘fr,:_llazo)zd.

We denote the latter coefficient by Ty, s0 ®,(2) = Tnz%.

Observe that GI,G’I_1 are well-defined on D3, G2,G4 1 are well-defined on j
gn(D2) U D, and ®,,(D2) respectively and

GiL|(GYy| <4 i=12 (12)

Similarly as in the non-singular case we prove that there exists w € Dy such
that |g/(w)] > C. So by (12) |®}(G1(w))| > C/16. But ®;(G1(w)) =
d-Tp(G1(w))4! and by (12), |G1(w)| < 8. So

T, > C/16-8%71.4.

By (12) we have diam(G2(Dg)) < 4B. So each component C of
@, 1(c1G2(Dg)) has diameter less than </4ﬂ - 16 - 84-1d/C. To assure
G7}(C) c Dy for the component C such thatG7*(C) 3 0, (13)

it is enough to assume (again in view of (12)) that
#/48.16-84-1d/C < B/4, here with d = deg f. (14)

This is the missing condition for C.
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The inclusions (10) and (13) prove Lemma 5. We have diam h;'}rn(l[)ﬁ) <
27,8 < p"e; and h;)lro(Dg) contains the ball B(zo,708/2), which we pick as
V. Our Lemma holds for € = 793/2. O

3.. The main estimate P](1)(z)/P}(1)(y) < Const.

Now we are able to give the key improvement of Lemma 2 (cf. Remark 2 after its
statement) and in consequence the estimate mentioned in the title of this section.

Lemma 6. For every § > 0, there exists C > 0 such that for every n > 0
andz € J
Pp(1)(z) > Cexpn(P - §). (1)

Proof. Step 1. By Lemma 2 we know that fixed an arbitrary n, there exists
zo € J satisfying (1) (even with §/2 in place of §). Take an arbitrary z € J and
join z with zg by a curve 4 C £ hitting at most once each element of U; for every
1 =0,...,n (cf. Lemma 1). A curve v has these properties if it is close to a
shortest geodesic joining z with o and the balls of U,, and balls complementary
to A are small enough.

For every 5:0 < 5 < n define T'; a family of curves such that for the union
we have UT'; = f=7(y), f maps each 5 € T, to v 1-to-1 and the families
are compatible, i.e., for each 7 € T';, f(§) € T;_1. (T; can be constructed by
induction. Having § € T';_; we consider lifts by f~!. Meeting a critical value
for f in 4 we have a choice of lifting.) For each 5 € T'; we denote by y(7) the
point in 5 mapped by f7 to zo.

Let us order the family T',, by T', = (v*)¢=1,.. 7, where T = (deg f)". For
each ¢ the point z € ' such that f*(z) = zo or z, is denoted by zf or z*
respectively.

Fix 6y > O (we shall specify it in Step 3). For each 7 = 0,... ,n denote
A; ={te{1,...,T}:diam(f7(v%)) > exp —(n — 7)o
and

diam(f*(7%)) < exp—(n — )8 for every i:0 <1 < j5}.

n
Awrt =0 TR LAy,
=
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For each § € T',_; we denote A(j,7) = {t € A;: f1(+*) =7}
We shall prove now that there exists C; > 0 depending only on & (and f, ©)
such for each j and each § € T'p,_; and y = y(7)
t
Zicau) Bn(=0) o Eny(y)
Pe)(=o) = PZ (1) (20)
It is sufficient to consider n and n — 7 large. Then for t € A;,
diam(f?(v*)) < sup|f'| - exp(~(n — 5 + 1)bo)
is small. So Lemma 5 is applicable to the curve 4o = % and each sequence of
its pre-images ending with ~*,¢t € A(4,4). Consider &, and V; from Lemma
5. Observe that there exists Cy depending only on & such that for A = {w €

f~(=9)({2o}) NVo}, where we repeat each w as many times as degree of f™~7
at w, we have

2

Pe 7 (1)(z0) < C2 ) Enj(w) 3)

weA
This is so because for ng such that f™ (Vo) D J(f) for every z € J we have

5 Enj(w) 2 exp (moljaf o)) - (P57 (1) (a0) >

weA
> exp (no(inf ¢(4))) (P (1)(@0))/ sup Po(1)(v).

Now by Lemma 5 for every w € A and every t € A(J,7) there exists w’ € J
such that f7(w?) = w and for every 1:0 < ¢ < 7 dist(f*(z}), f{(w')) < p? .
(Some points w* may coincide but we take care that w' are taken with right
multiplicities when we sum over them in the definition of PZ(1)(w).)

So E;(z)/Ej(w') < Cs, where C3 = C4/(1 — p*), where Cy and « are
Hoélder continuity constants for ¢.

Hence

Bn-j(w) _ o, Zieasd) En(w?)
E._i(y) ZteA(,',:;) En(z})
Summing over w € A, taking inverses and using (3) we obtain (2) with
C1=Cy-Cs.
Step 2. For 0 < k < n we have
Cs expn(P — 6) < P2(1)(zo) < PE(1)(zo) - sup PZ~*(1) <
< PF(1)(z0) - Cs exp(n — k)(P + bo)
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with Cs = C from Lemma 2, C¢ = C from Lemma 4 and 6 common for both
Lemmas, S0

PE(1)(z0) > (Cs/Ceé) - expk (P - bo (E’; = 1)) “)

Step 3. Denote G; = {7 € T';:diam() > exp —j6}. To estimate Card G;
we use Lemma 1 with 6; < &82. By (iii) for every B € Uj; intersecting 7,
the number of “bad” 4’s in T'; i.e. such that the component of f~7(B) (more
precisely element of B;) intersecting 7 has diameter > exp —76;, is at most
K exp 2762. So the number of “bad” 4’s for at least one B is by (ii) at most

K exp276; - K exp 561.

The others, “good” J’s, have diameter at most (exp —782) - K exp 76;. So
for 6y < 62 — 61 and a constant K; depending on §y we have

Card GJ’ < K; expj(252 + 51).

Then for every j:

Z Bysk ) < Card(G,.—;) - exp((n — j)sup ) <

'1€Gn_]

< Kjexp(n — 5)(28; + 61 + supp).
Fix an arbitrary a:0 < o < 1. Then by (2), the above and by (4) we obtain

(square brackets stand for “integer part”)
[an]

Z > En(z) [an)] ]
]=0tiAj C Z Kjexp(n — J)(252 + 61 + sup p) <
Pz (1)(zo) i=0 P~ (1)(z0)

[an]

lol Kj exp(n — 7) (262 + 61 + sup )
: :z% (Cs/Cs) exp(n — ) (P bo ( - 1))

<

[an]

: 2
< Cr ) exp(n - j) <SUP90—P+252+51+50 (—"—]—1))

= n— [an
for C7 = CIKICG/CS-
If 61, 62 and &g are chosen small enough (given «) then due to the assumption

P > sup ¢ the last expression is less than

lan]

P
C7)_ exp(n — j) (__supg; ) < % ®)
i=0
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for n large enough.

[an]
Step 4. For each t ¢ |J A; we have
i=0

g:g{))) < exp(I+ II), (6)
where
[an] . s |
=3 (e(r'(ab) - e(r'(a"),
and
=Y (e(f(a4) - e(fi(=")).
i=[an]+1

The summand I is bounded by a constant, say by 1, for n large enough. This is
because dist(f*(z"), f*(zh)) < exp—(n — )6 for i < [an] and ¢ is Holder
continuous.

The summand 7 is bounded by exp((1 — a)n var ).

Step 5. (Conclusion). By Step 3 and then by Step 4:
n+1 |

FoW(@o) <2 ), 3 En(ah) |

j=[nal+1 teA;

< 2exp(l+ (1 - a)nvarp) - P2 (1)(z). 1
Taking « sufficiently close to 1 we get (1). O

Remark. Lemmas 4 and 6 imply that for every z € J
. -
Aim —log £7(1)(2) = P(f,¢),

in particular the limit exists. This generalizes the equality log(deg f ) = hiop(fls)
(cf. Remark 1 in Section 1).

Lemma 7. There exists C > 0 such that for every zo,z, € J and everyn > 0
Po () (z0)/ PF(1)(z1) < C

Proof. Repeat the proof of Lemma 6. Instead of (4) we can use now, due to
Lemma 6, the better estimate:

PE(1)(z0) > Cexp k(P — 6).

n—ko

So in Step 3 we can consider E,’:o for a constant kg large enough, instead of

2.[1.‘1'3. So in Step 4 both summands are bounded by constants. [J

4. Proofs of Theorems 1 and 2. Modulus of continuity of the
density function .

Consider the operator P conjugate to P, on C(J). As mentioned in Introduction
there exists a number A > 0 and a probability measure 5 on J such that

Po(n) = An, (cf.[B). 1)

Proposition 1. A\ = exp P. The measure n is Xexp(—g)-conformal (i.e.
J, = Aexp(—p), where Jy is Jacobian on J namely [ J,d, = n(f(E)) for
every Borel set E C J on which f is 1-to-1 to the image).

Proof. We have by (1) [ P}(1)dn = A™. So by Lemma 7 and Remark preceding
it 1 ‘,
log A = nlLrEO : log/ Pp(1)dn = P.
Now if f is 1-to-1 on E, then
[ xs(rexp(=e))dn = [ Po(xz - exp(~p))dn

= /eXP(<P° (fle)™") -exp(—p o (fl) ") - xs(E)dn
=n(f(E)),
S0 Aexp — is Jacobian for f,n. O

Proof of Theorem 1. (Stated in Introduction.) Write P = Pop (= PofA by
Proposition 1). For every ¢ € C(J) we have [ ydn = [ P(4)dn. Observe that
foryeC(J)andn >0

sup | B(¥)| < sup [y] - sup (1)
But we have

/7’”(1)dq’ = / ldn = 1.

This and Lemma 7 imply that all P*(+)) are uniformly bounded.

Now we shall prove equicontinuity. We shall again repeat the considerations
from Proof of Lemma 6, there will be a simplification however, no need to apply
Lemma 5, due to the possibility to use the result of Lemma 7.

Given zg, z; € J let ¥ = v(zo, z1) be a curve joining zo with z;, similar to



the curve joining zo with z in Proof of Lemma 6. We keep the notation I'; as in
Lemma 6, Step 1 (here n is not fixed however, so 7 goes from O to oco).

Let a:RT — R* be an arbitrary positive, increasing function with a(g) — 0
and a(e) > €“ for every o > 0 and ¢ small enough (depending on «).

Let for every € > 0, k() be the maximal integer such that for every zo, z;
with dist(zo, z1) < € and every § € T'; for j < k(e) we have diam(9) < a(e).
These definitions clearly guarantee k(e) — oo for € — 0.

After these preparations consider a continuous function ¢ € C(J). We
can assume it is positive as every v is with ¢+, ¢~ positive. Observe that
if dist(z,y) < € then

Y(z) _ . (=) - ¥(y)
¥(y) ¥(y)

Fix n,zy and z; with dist(zo, z1) = € and use the notation from Lemma 6:
7, zh, 28, A; for 5 =0,... ,n+ 1. Write for ¢ =0, 1:

Li(zq) = Z ¢(z;)E,,(x;).

1+ <1+ (vare )/ inf 4.

We shall estimate in the sequel
n+1

Pr(w)m)  PW)mo) oI
5

"$)(z)  PE()(=) g‘ Lj(z1)

2)

First, show as in Step 3 of Proof of Lemma 6 that L;(z,) are neglectible, for
7=0,1,..., but 7 not too close to n. As in Proof of Lemma 7 we do not need
to stop at j = [an]. We do the estimates for each j separately. (The first of the
sequence of three inequalities in Step 3 uses (2) section 3, which is trivial now,
when one can refer to Lemma 7.) We get

; - su
L (24) < Clexp ~(n = D)5 () a2)) oy ®
for constants C,6 > O and every 5 =0,... ,n+ 1.
Finally for every j > n—k(e) andevery l: 5 —1>1>n—k(e) - 1,1 >0
L;(zo)
V0] . :
L;(5) = Q1-exp(Q2 + Q@s), “)
where :
Ol (vary(e) ¥)

infyy

l
Q2= E Varexp —(n—1)é (@),

i=0
Qs = (n — 1) var,(e) ¥,

d
™ exp —én if n > k(e),

oke) = { a(e) if n < k(e).
The factor Q; is responsable for the variation of 4 from z{, to z4. The summand
Q3 corresponds to I in (6) section 3, @3 corresponds to I1.

Take now any function /:Rt — Z* such that I(e) < k(e) I(¢) — oo and
I(€) - var,(,) ¢ — 0 for € — 0.

When & — 0 we estimate (2) by using (3) for all § < n — [(€), just getting
rid of L;(z,). For j > n —I(e) we use (4) with | = n —I(e). We conclude that
the ratio in (2) is bounded by 1 + ¢1(¢) for all zg,z1,n with some c;(e) — O
for € — 0, what proves the equicontinuity, (for more concrete estimates see Proof
of Proposition 3).

The operator P satisfies also another property: it is primitive namely for every
¢ > 0 there exists n > 0 such that Pr(y) > o.

Now we can refer to a general theorem about positive operators, almost peri-
odic and primitive (see [B] and [LL] th. 8.3):
For every such operator not contracting to O there is an eigenfunction gy with

the eigenvalue 1. We have P = Pi + P where P is the projector 1o span o,
ker Py is invariant for P and P (1) — O for every ¢ € ker P;.

As P = F - 4 for a continuous functional F' and P is n-invariant (i.e.

[ dn = [ P()dn), we have ker P, = kern. As F(yo) = n(to) = 1, we
have F = 1.

So for every ¢ € C(J), P () = n(¥)-vo+ P (¥ —n(¥)-%o) — n(¥)-vo.

(By the way, F' = n proves the uniqueness of the probability measure satisfying
(1)) O

Proposition 2. The measure n satisfying (1) is the only probability
A exp(—)—conformal measure on J.

Proof. Let n; be any probability measure on J with Jacobian J,, = Aexp —¢.
Let f be 1-to-1 on a Borel set E. Then by the definition of Jacobian, for every



integrable function h on f(E), in particular for h = exp ¢ o (f|g)~! one has
ff(E) hdﬂl = fE(h o f) . J’Tldnl' So

Pn)(B) = [ Polxs)am = [ expo(71z)am

= /E(expgoo (fle) Yo f) - Aexp —pdn = Ani(E).

It is easy to see that J can be decomposed into a finite number (= deg f) of
Borel sets E; on each of which f is 1-to-1 to its image. Then for each E

P (m)(E) = 3 P (m) (E N E)

= Z/\nl(E N E;) = An1(E). -

Proof of Theorem 2. f,-invariance ot v = ) - 1 is standard [B]. We recall the
proof: for every h € C(J)

n(%o - h) = n(((Pe/A)(%0)) - k) = n((Po/A) (%o - (ko £))) = n(to - (ho f)).
Then we estimate measure entropy:

ho(f) > /logJ,,(f)du:/logJ,,(f)dv+/log(¢oof)dv—/logtpodu

B /logJ,,du =log A — /tpdv = P(f,p) — /(pdu
for Jacobians J,(f), J,(f) for the measures v and 5 respectively.

The first inequality follows from

h(f) > Blelf (&) = [ log Ju(f)av
where € is the partition into points.

So hy(f) + [ edv > P(f,9). Actually we have equality here due to the
inequality to the other side: the so-called variational principle [B].

Now we prove uniqueness of the equilibrium state for . We rely on the
following claim told to us by M. Ljubich (the claim seems to be known in various
versions from a long time, see for example [Le]).

Claim. Let u be a continuous function on J such that for every z € J
Z expu(y) = 1. &)
vef—1(z) _
If a measure v is an equilibrium state for u and there is a finite entropy generating
partition (i.e. a countable partition A such that \/;_, f~"(A) = ¢,v-ae.) then
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v has Jacobian on J satisfying: J, = exp —u.

Proof of the claim. For every y € J denote A(y) = f~(f({y})). There is
a system of conditional measures for the partition f~!(e), [Ro]. A conditional
measure of this system on v-a.e. A(y) is denoted by v A(y)- We have

B(fot) = hulf) -f—/udu = H,(e|f () +/udu

2€A(y)

=/ ( D W({z})(—log(u,,(y){z})+u(z))) dvy).

THe latter expression is always negative except for the case vaw)(2) =
expu(z) v-ae. (this is a crucial calculus lemma in the theory of equilibrium
states, see [B] L.1.1). But P(f,u) > 0 by Lemma 4 because P"*(1) = 1. So for
aset Y = f~1(f(Y)) of full measure v, every y € Y and every z € A(y) we
have

V4(y)(2) = exp u(2).

So for every Borel set E C Y such that f is 1-to-1 on it

wEN = = [ ( I 1d.,A(y)) e
B /f-l(f(E)) (/ XE/Va) (BN A(y))d”A(u)) dv(y)

= / exp —udv.
E

Finally v(f(J\Y)) = 0 because J\Y = f~1(f(J\Y)) and v is f,-invariant.
The claim is proved.

Proof of uniqueness. Let v be any equilibrium measure for . We set u(z) =
©(z) — log Yo(f(z)) +log ¥o(z) — log A. The property (5) results from an easy
computation with the use of the equality (P,/A)(%0) = %o. The measure v is
also an equilibrium state for u. Observe that

mlf) = P1,9) - [ odv > P(f,0) - supyp > 0.

Now the existence of a finite entropy generating partition follows from
h,(f) > 0 by Maiié’s construction [M1], [M2], see also [P] section 3. (The
partition is countable, maybe not finite).
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From the claim we conclude that

J, = A(exp —¢p) Yoo f.

Yo
S0 J(1/¢4).r = A€xp —¢p, hence (1/40)v = n by Proposition 2. So v = tg - 7.
Od

Proposition 3.  Modulus of continuity of to, namely the function
M(%o): Rt — RY defined by

M(wo)(€) = sup {|¢o(z) - Yo(y)|: dist(z,y) < €}
z,y
satisfies the inequality
N
1
M(to)(e) < (V) (—1 ) ,
og 7

for N arbitrarily large and a constant C(N) depending on N.

Proof. Let us proceed with more precision in Proof of Theorem 1. Take for a(e)
1
log %
M > 0. Now we shall precise I(g). To have

I(€) < k(e) and I(e) - varg(e)(p) — O,

M
considered there, the function a(e) = ( > for an arbitrarily large integer

[ cannot be too large. To assure the latter convergence it is enough to assume for
€ small enough

1 Mk/2
) ) (6)

I(e) < (logz

where k = k() is the Holder continuity exponent for ¢. Indeed (6) gives

1 Mk/3
I(€) varg(e)(p) < (log%) )

(3 rather than 2 to swallow the Holder coefficient C () for e small)).

Let us estimate now k(e) from below. We have
M
c/deg ke o 1
e log%
for a > O arbitrarily small and for € small enough. This uses Lemma 0, diameters

of curves in I'; with growing 7 multiply by a constant or root with degree < deg f
in a-th part of time. So

: 1 it
k(e) > <log log % —loglog ((log ;)M>) > Aloglog o

1
alog(deg f)
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for A arbitrarily large. Thus to have (6) satisfied we just take I(e) = Aloglog L.
Compute finally that for every §>0

A5
exp—l(e)gz( ) )

log %

We conclude from this preparation using (3) and (4) that if dist(zo,z;) < ¢
then

~

" (1) (20)
= < (14 Cexp—l(€)d) x (1+ Cexp—I(g)dk)x
Pr(1)(z1) i, el )
x (1+1(e) vara(e) () = X,
for a constant C > 0, (the first factor due to (3), two next related to Q2 and Q3

in (4)). We continue the estimates:
min(A$, Ac§, Mk /3)

e 1+( 11) 2
log -

Because A and M can be chosen arbitrarily large this proves that all functions
P™(1) have moduli of continuity bounded by the same C(N)( )N for arbi-

log 1
trary N. So the same expression bounds also the modulus of conteinuity for the

limit function . O

Remarks.

1. It is easy to see that the space

Cm = {9 € C(I(f)):( Squ) lg(=) — 9(v)1)/ (

z,yed(

1
log

M
l) = lgllc,, < oo}

€
is invariant under P. Observe that if 1 is Holder continuous then the sequence
P7(+) is uniformly bounded in the norm ||||'CM = max(sup ||, |||, )- Indeed
in (7) one should consider additionally the terms corresponding to @y in (4),
(1+ Cvarg(e) $)(1 + C exp —l(e)(¥)9),

which can be coped with as corresponding terms for ¢. However I see no reason
that the sequence P™(4) is bounded in ||||2:M for each ¢ € Cps. In particular
maybe the spectrum of P — Py (P is the projection to span g, see Proof of

Theorem 1.) intersects S! (unlike for hyperbolic f and the space of Holder
continuous functions with a given exponent)?
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2. Theorems 1 and 2 hold for every function ¢ satisfying

— 1
Z Valexp-ns(p) <00 for &< E(P(f’ ®) — sup p).
n=0
In particular it is sufficient to assume about the modulus of continuity that

M(e)(E) < (o™,

for an arbitrary M > 1.

3. Holder continuity of 1y would follow from the following property:

(8) There exists L > 1 and 7,&0 > 0 such that for every z € J,e < gg,n > 0
and every component V' of f~"(B(z,¢)),diam(V) < L"".

Indeed we can take then a(e) = e*(a < 7 will be specified later). The

1
property (8) gives k(e) > o L(r — a)log e We take the latter expression as
o
l(e), what gives

I()a(e) < e*~%(¥ > O arbitrarily small)

and
exp —6 - I() < l7~)8/log L
So
M(to) < P*
where # is an arbitrary number satisfying 8 < min(e, (r — a)é/log L). So we
76/ log L

can take any 8 < fp where fy = (Bo = a: the solution of the

1+8/log L
equation a = (1 — a)g/ log L with § = %(P —sup p)).

For example ), is Holder continuous ((8) is satisfied) if w(Crit) N Crit NJ =
& (w denotes the limit set under forward iterations for f).

Indeed for a backward trajectory of components {V,, }, where V,, is a compo-
nent of f~"(B(z, s)), f(Va) = Va_1, we have diam(Vy+1)/ diam(V,,) < L for
a constant L until for some n = n; the set Vi, is close to a critical point. Then
after a few steps Vy,, is contained in a large disc D such that all branches f~™
on say twice larger disc are univalent. Using Koebe’s Distortion Theorem one
deduces that diam(f~"2"™(V,,,))/ diam(V,,,) stays bounded (with a universal
bound) for m — oo.

4. All the results of the paper hold for any map of the circle f:S! — S which
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is strictly increasing, deg f > 2, of class C' and each critical point is not flat.
The function  is defined on J which can be defined as S*\{z: f*(z) — S'(f),
as n — oo} or any smaller set X such that f~1(X) = X.

Here we do not need to use bounded distortion to prove Lemma 1. We denote
Si=sCritf) 0 el F 5 k= 0,... ,[;]} and U, is the family of (closed) arcs
joining consecutive points of Ul-q f*(S), (the idea is taken from [LP]).

(We do not know only whether the result of Remark 3 is true in this situation,
because our proof that w(Crit)NCrit NJ = @ yields (8), hence Holder continuity
of 1o, uses “bounded distortion property”.)

Appendix A.

Proof of Theorem 1 under the assumption log A > sup ¢.
Step 1 We claim the following:

Given 6§ > O there exists C > 0 such that there exists a dense, full measure
7, subset A C J with the following properties:

1. For every n > 0 there exists a set of continuous branches of f~™" on A, T,, =
{fi~te{l,...,d"}},d =deg f,such that for k > | f7* € T = f*lo
f{k € T, (i.e. the branches are compatible over n).

2. If weset T,, = {f; ™ € Tp:diam f; ™"(A) > exp —né} then
Card T,] < C exp3né )

Proof of the claim. Order all critical values of f into p;,...,pm,. Join p;
with pp by a shortest geodesic 1 (or a line close to a geodesic). Then join pg
with 4} by a shortest geodesic 47, etc. Denote y; = U%;' 4 and W = €\;.
Now construct v, and W,, for every n > 1 by induction. Given W, _; order all
critical values of f™ not being critical values of f™~1 into p7,..., p"m(n), join
p? with dW,,_; by 42, p with 8W,_; U2 by 42 etc. Define v, = U™ i
and Wy, = Wy_1\n. Finally A = (\,,5; W NJ. Now the branches f; ™ are
defined as continuous branches on W,.

Observe that we can assure for every 1,7 that 17(7{ ) = 0 because 7 has no
atoms (otherwise it would be infinite) and we have a freedom of choosing our
geodesics. It is not hard to see that this implies |J+ is nowhere dense in J.
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The key observation is that for each n due to the construction and the fact
that for the set Critv(f™) of all critical values for f"

Card(Critv f*) < Cin, for a constant Cp > 0,
Um<n Ym dissects each set of Uy (cf. Lemma 1) into at most Cin + 1 com-
ponents. (As each geodesic dissects a small disc into at most 2 components.)

Now intersections of the sets from U,, with W,, give a new covering ﬁn of a
neighbourhood Wn of A.

Let us use Lemma 1. For every B € f]’n we have (iii) satisfied, so
Card{f, " € Tp:diam f7™(Wp) > Card U, - exp —nés} <
< Card [7" - K exp 2nés.

If 61,62 are chosen so that 0 < § < 82 — 61, 36 > 262 + 61, then we
obtain (2).

Step 2. (Denker, Urbariski). We consider gn = P} ., (1) leaving considering

P;J_log 5 () for an arbitrary ¢ to the reader.

By the definition of n and A
/gndn =1, forevery n. 3)

Denote )
e
En(2) = exp (2 (e(f'(2)) ~ log A)) :
i=0
Because sup ¢ < log A, there exists »:0 < v < 1, such that E.(z) < v" for
every z € J and n > 0. Finally fix an integer ng > O (to be specified later on)
and denote for z € A

Gulz)= Z{E(f{"(z)): fYofi®¢ T, forevery 0 <k <n-—no}.
Suppose now that for some K > 0, for every z€ J,m < n

lgm(z)| < K @

Then for every z € A

n—ng

@I <@+ Y Y |BaalHE) a7 @)

k=0 —n+k ]
ft eTn—k

n—ngo
< [ga(@)] + [ Y vk Card T,:_k] K.
k=0

®)

UN 1IN reffuN-IrnuUDENIUD-RUDLLE VIrECINALUN L&

The coefficient in the square bracket is < 1 if 36 + log v < 0 (by (2)) and if
ng is large enough.

It is clear from the construction and Holder continuity of ¢ that |§,(2)/gn(w)]
< C1 s0 by (3) |gn(2)| < Ci for a constant Cy > 0 independent of n and every
z,w € A. So if K is chosen large enough (4) for all m < n implies (4) for
m = n and every z € A. By the density of A in J we conclude (4) for every
z € J.

Let us prove now that g,(z) > Const > 0 for every z,n. Fixed n, due to
(3) there exists zo € A such that g, (zo) > 1. We have

9n(@0)] < [gn(z0)| + An, - 5P |9m ()|

for
n—n;

An, = > v¥FCard T, ,
k=0

similarly to (5). We write §, instead of g,, because now it depends on n; maybe
different from no. If ny is large enough that Ay, - sup,, , |gm(z)| = B < 1,
we deduce that |§n(zo)| > 1 — B > 0 (the estimate independent of n). So the
same holds with another B < 1, for every z by |§,(2)/dn(w)| < Const. Having
0 < C~1 < |gn(z)| < C for every n,z, a proof of the equicontinuity of {g,} is
standard, see Section 4. [J

Appendix B.

The assumption P > sup ¢ seems to have been introduced for the first time by
Urbaniski in [U]. Thizs assumption is essential. Indeed, take for example Blaschke
product f(z) = ( g
p = 1. We have p(p) = 0 and P(f,p) = 0, (the latter follows from [U],
Corollary 3.7). In this example neither { A}}(+)} for any continuous function ¢ is
equicontinuous nor an equilibrium state equivalent to the | f'|-conformal measure
(which is just the length measure on the unit circle) exist. The latter follows from

[T] and implies the preceding.

)2 and ¢ = —log|f'|. There is a neutral fixed point

The reader may ask why not to assume log A > sup ¢ from the beginning?
The matter is that this assumption seems usually uncheckable. The condition
P > sup p is easier to check. For example it follows ([U], Remark 2) from
hiop(f) > sup e — inf p, (the condition introduced in [H-K]). The latter, as
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hiop(f) = deg f, has plenty of examples. (I owe most of the above remarks to
M. Urbariski.)
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