Differentiable maps of S* into S* with given inverse images

by
MARIO RAMEH SAAB

1. Introduction — The purpose of this paper is-to study the fol-
lowing general question. Let M™ and N" be differentiable manifolds
of dimensions m and n, respectivelly. Let M7~ "(i = 1,...,k) be dis-
joint submanifolds of M" and let a;(i =1, ..., k) be distinct points
of N"_ We ask: under what conditions is there a differentiable map
f:M™ - N" such that f7'(a)=M;, with g; a regular value of
(i =duiw wh)

In what follows, by a “differentiable map” we understand a C *-dif-
ferentiable map; we notice that if a is a regular value of f : M™ — N",
f 7' (a) is either empty or is a differentiable submanifold of M™ , having
dimension m—n.

We shall only consider the case in which M = S™ and N = §",
particularly, M = S* and N = §%.

Main Theorem — Let y, and y, be two disjoint and linked knots,
imbedded in S* and let a, , a, be two distinct points of S*. There exists
a differentiable map f +S* — S* such that f ' (a) = y;, with a; a regular
value of f(i = 1,2).

Observe that if we do not assume that the points a; and a, are
regular values of f, then the problem might be trivial. As an example,
suppose that M,; is a compact manifold imbedded in R™ ‘and let
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Q = T,(M,) be an open tubular neighborhood of M, with radius &; let
p (P) be the distance from PeQ to M, . Define the map ¢: R™ — R by

p?(P), if PeQ
P =9 w

Eei s L ENER ¢ O

clearly, ¢ is differentiable in Q and is the zero function on M, . It follows
from Lemma 1.1 below that there exists a differentiable map f : R™ - R
which is a 5-aproximation to ¢ and which coincides with ¢ on a closed
tubular neighborhood Q, with radius ¢, < ¢ Here f~'(0) = M, but
O0eR is not a regular value of f.

1.1 — Lemma — Let g:M,; - M, be a continuous function of
differentiable manifolds, differentiable on a closed subset A of M, (this
means that g is differentiable in some open set U of M, containing
A). Let 0 be a positive continuous function on M, ; give to M, the
metric determined by some imbedding M, — R?. Then there exists
f :M; > M, such that:

1) f is differentiable;
2) f is a d-approximation to g, and
3) flA=g|A4

(for the proof, see |12|, 3.11 or |14| p. 25).

Remark — In the special case in which M7 ™" is a compact sub-
manifold of a compact Riemannian manifold M™, it is possible to show
that, given a point ae N = S" = R" U {w}, there exists a differentiable
map f : M — S" for whicn a is a regular value and such that f sth ey e
= M7~" if there are n independent differentiable vector fields normal
to MTE"

In fact, suppose that such fields exist. Then there is a C*-diffeo-
morphism 6 :Q = T,(M,) ~ M7™" x B;, where Q is a closed tubular
neighborhood of M7~ " in M™ and B} is the closed ball of radius ¢ centered
at 0eR"

Let ¢ :Q — S" be the composition
0

i Mrln—n % B: T, B;l 1 R" J2 Sn‘

Notice that ¢ (Q) is the closed ball D} in S” centered at a = j, (0); fur-
thermore, every xe D" is a regular value of ¢ and b ay = ME T
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Denote by Q the boundary of Q and write Spli=¢(Q) = D:.
Next, consider the triangulable pair (M™-int Q, Q). Since the homo-
topy groups of S"-int D; are all trivial, there are no obstructions to
extend the restriction

Y=¢|Q Q-8 ! < §-int D]

to a continuous function h: M™-int Q — §"-int D. ;
In this way we obtain a continuous function g : M™ — S" by setting

o(P), if PeQ
g (P =
h(P), if PeM™intQ

Since ¢ is differentiable in a closed tubular neighborhood
Q, = T, (M,) with n < &, Lemma 1.1 above shows that there is a dif-
ferentiable map f :M™ — S* which is a d-approximation to g such
that f|Q, =¢|Q. One should observe that taking o = /2,
f(M™-Q)nint D}, = ¢ and hence, f~1(a) = M7™" ; moreover, a is
a regular value of f.

2. Differentiable Maps of S* into S*

21 — Theorem — Let 7y, be a knot imbedded in S3 and let a be a
point of S2. There exists a differentiable map f :S* - 82 having a as
a regular value and such that f~'(a) =7, .

We simply observe that the proof of this Theorem is a consequence
of the Remark written in the Introduction: in fact, there are always
two independent vector fields normal to 7,

In the next result we shall deal with two separated knots of S5
that is to say, knots contained in the interior of two disjoint closed balls.

22 — Theorem — Let y, and 7y, be two separated and plane circles
in 83 . Let a, and a, be two distinct points of S2 . There exists a differen-
tiable map f :S* — S* such that fl@a)=7y1, f7 @) =y, and f
has a, and a, as regular values.

Proof — Let V; and V, be closed tubular neighborhoods of 7y,
and y, respectively, constructed as rotation tori. Let ¢;:V, V—S%i=1,2)
be the differentiable map obtained by projecting V; ~ 7; xB? into closed
disks D? = §?, with center g;. The maps ¢, and ¢, define a differen-
tiable map ¢ : ViUV, — S2 with a, and a, as regular values, and
¢~ '(a) = 7:(i = 1,2). Next we extend ¢ to a continuous map of S’
it '§%;
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Let us consider the points of S! = ¢ (V) as images of regular arcs
C,:1— S*, where I is the unit interval [0, 1]. For each te [ the fibres
¢~ ' (C,(t)) = & is a circle contained in V;; also, if ¢ # t', i and &, are
disjoint and (o = V;.

tel

Write d for the plane disk having boundary y,; we can assume

that ap = d' N V(i = 1,2).Let d, be the plane disk d'-V; ; notice that

0 =0p. Consider, for each te I, the superimposed rotation surfaces
d with boundary «f. The bottom surface is the plane disk di. The
union of these surfaces with with the tubular neighborhood V; is a
geometric solid W, with boundary di u'd}. Figure 1 shows a trans-
versal section of W, .

Of course, we can suppose that W; and W, are contained in the
interior of two disjoint closed balls B3 and B3. On the other hand,
there is a homeomorphism 0 of S*— (B} U B3) onto S* x I such that
0 (B3) = S x 0 and 6 (B3) = S* x 1. Next, let us consider a regular arc

A:1-+82—(Div D)

having end-points C, (0) and C, (0). Thus, define a continuous function

g:58%-8§°
by the conditions:
¢ (x) if xeViul,
- €l if xed, i=14 ]
9= ¢ (0) if xeB-W, i=12
In,0(x), if =~ S*-int(B}u Bj)

obviously, g (x) is differentiable in int (V; U V). Let ¥/ be a closed tu-

bular neighborhood with radius ¢ of y;, i = 1,2, where ¢ is smaller

that the radius of ¥;. Fom Lemma 1.1, we get a differentiable function
f:83->82

which is a §-approximation to g, and which coincides with g in Vi U V;.

Taking & < ¢/2, we have f~'(a;) =7;, a; a regular value of f.

Remark — It is possible to prove the Theorem above in the case
where the manifolds M; = f~'(a;), i = 1,...,k are obtained as unions
of a finite number of mutually separated circles y;; j = 1,...,a;) of 52

In fact, using the same notations as in Theorem 2.2, we observe
that the continuous function

g:83-§2
is modified only on $*— (B3 U ... U B}). Notice that g (B}) = P,e D}.
For each i = 1,...,k, let X, be the union of all disjoint segments H; K,
which are normal to B} (we let H; run over B}).

We now extend g so that each segment H; K is taken homeo-
morphically onto the regular arc P,E in S*—(D} u... v D).

Write U, = B} U X ; since g take U, into E, we obtain an extension
of g to the whole S by setting g (S>—(U; u...u Uy) = E. From
here, we get a differentiable map f :S*— S* as a J-approximation
to g and with the required properties.

3. A fundamental operation
Let a, , a, be two distinct points of S?% and let v, , y, be two disjoint
linked knots, imbedded in S*. Assume that f’:S* — S is a differen-
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tiable map such that f'~* (a;) = 7; and g, is a regular value of f'(i=1,2);
suppose that f* is obtained as:an extension of ¢ : ¥{ U V; » Di U D82,
where ¢ is the projection of the tubular neighborhoods V{ and V3 of ¥,
and 7y, respectively over the disks D}, D3 centered at a, and a,.
Identify a, with the north pole and a, with the south pole of 524
consider a meridian through a, and a, and let x,, X, and y, its inter-
section with S! = D?, S} = D2 and the equator S§, respectively.

FIG. 3

Let C, be a small cube so that A; = V{nC; and B, = V; n (4
are parallel circular straight cylinders and furthermore, with L, =
=¢ '(x;)nC, and L, = ¢~ ' (x,) n C, parallel segments (see figure
5); v;'e can always get down to that situation by a diffeomorphism
of '8~

H

N/

7 TR oY
//

FIG. 6
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Consider next the map 0 : S> — S? which takes D} and D3 homeo-
morphically onto the north and south hemispheres, stretching the
arc a X, into a yo and a, X, into a, yo. The composition f, =0f :S*—§*
is differentiable in the interior of ¥{ U V; and also, fo a)'= v, with
a, still a regular value for fo (i = 1.12). :

Let us substitute a twisted cylinder B’ for B, in the configuration
presented in figure 5 in such a way that B n C, = Bn C; and the
knot y, relative to B has a linking number & (y; ,7,) with y; =y} equal
to e(yy,7s) £ 1 (see figure 6). 3

We ask now the following question: does there exist a continuous
function

g:C,— 8%

such that:

a) glCl & fo\CU

b) g|A; U B is differentiable;

¢) f :8*— S defined by f|C,; =g and f|8*—intC; = fo has
a differentiable d-approximation f such that f ~1(a) =7v;, with g
regular value for f?

We shall see that this question has an affirmative answer.

The construction of f out of f,, which essentially is performed
in the interior of C,, will be called “the operation detour”. We shall

show that the “operation detour” alters the Hopf invariant of any
pair of fibres obtained as inverse 1mages of regular values of f, by the

same constant, This is the crux of the matter.
In what follows all our constructions will be performed in R? =
= §*-{w}.
_ Let W, —C,=(A, UB,) be the double solid torus with surface
B, (see figure 7) and let
fo =f0|Bl LB L1UL2—’S(1), Yo.

Homotopies of loops in B, and S*.

Consider the lateral surfaces of the cylinders A, and B, which
will be denoted by T, and Tj ;let ¢q, ¢c;, €3 and c, be the intersections
of T, and T; with the top and bottom of C,, having the orientations
indicated in figure 7. We construct next the loops a, B:St, po— B,;P;
with base-point P; where:

a) «(S') =P, 0, I, 0, P, is the composition of the segment
P, Q, , followed by a closed curve I, = Q, E, F, Q, which turns around
the curves ¢, and c, (having the same orientation as ¢,;) and finally,
of the segment Q; P, ;

b) B(S') = Pyc; Zyc; " 211, where X, is an arc connecting P,
to R, (see figure 7).
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One can show that there exists a relative (to p,) homotopy k,

connecting o to f.
The function

ki = fok,:S",po— S5, Yo
is a homotopy, with base point v, e S}, connecting the loops ky = fgo
and il =i puet st

Let o' : S', p, — B,, P, be a loop based on P,, contained in the
bottom of C,, and defined in the same fashion as « (see figure 7).
3.1 — Lemma — There exists a homotopy

Dot kS YL (8 0 1B} W (P} S6 o 0. Tk TP LU TRSY

connecting

ho = fo|@(SY) v o' (SY)
to the constant map hy (o (S*) L o (SY)) = y,. ‘
Proof — We might assume that the cylinders 4, and B, are such
that whenever a point moves on the circles ¢, , ¢,, ¢; and ¢, with the
directions as indicated in Fig. 7, its image under f; moves on the equator
S$ in the same direction. (This is coherent with the definition of f,,
because this function projects Vi U V; over the north and south hemis-
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pheres of $%). Let a, b and ¢ be the restriction of f; to the arcs P, Q,,
¥, and T'; respectively; let us recall that fo(c;) = fo(cs) = S§. Then,

L JA = el |

and
1 =foB=S5b(Se) b7,

Since the fundamental group of S} is abelian, the homotopy class
of k} is trivial and thus, fjo is homotopic to the constant map

kl:Sl, pO_')S(l)s Vo .

In the same way one shows that f;|ao’ (S*) is homotopic to the
constant map to y, ; this completes the proof of 3.1.

Homotopies of maps from B, into S§ < S*

The closed arcs ', =Q,E, F,Q, and T', = Q, E, F, Q, divide
B, into two regions, one of them containing T; and Tj ; the other region,
which is exterior to the arcs I'; and T, , will be denoted by D. Notice
that D is homeomorphic to S; xI.

3.2 — Theorem — There exists a map
f 331, LiuL, >S5, v
such that fi ~ f'orel T, U Ty and f, (D) = y,.

For the proof of this theorem we shall need several additional
results.

3.3 — Lemma — There exists a map
g,:gla LIULZ—*S(I)a Yo
such that g' =~ forel T, U T{ and g (x(S') L o' (S1)) = v,.
_Proof — Consider the pair (B,, L) where L’ is the subcomplex
of B, defined as L' = (T, u T) U (¢ (S*) u &’ (SY)).
Take the retraction
r:ByxI - M = (B, x0)u (L' xI)
and define a map H': M’ — S§ by the conditions:
L) f xeB;, t=0
Hix, =) fg)estitSeae TRWIT] | tel
h(x) if xeoa(SHuo(Sh), tel
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The homotopy G’ : B, xI — S} defined by G’ (x, t) = H'r(x, t) for
every xe B, and tel gives the deformation of f; into g'.

_We modify figure 7 into a new one (figure 9) to show the parts
of B, which are taken into y, by ¢’ : there are indicated by dotted lines.

Let m; and m, be the polygonal lines m; = Q; Q; Q5 Q, and
m, = E{'E{ ES E;.

3.4 — Lemma — There exists a map
g, B R, B L V6
such that ¢ ~ g rel L' = T, 0 T{ a(S*) v & (S) and g" (my) = v,.
Proof — We begin by observing that g’ can be extended to the

double solid torus W, because it is homotopic to fg, restriction of
Jo to By = Wy,

There is an obvious homeomorphism between the rectangle
P, 0,0, 050, P, (figure 9) and m, xI. The extension of g’ to the
interior of the former rectangle gives a homotopy

hirel {Q} U {Q,}
so that hy =g'|myandhy =g'|L; = v,.
18
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Wenow use an argument similar to that of 3,3:letr : B, xI - M" =
= (B; x0) U (L" xI) (where L” = L' uU m,) be a retraction and define
H" :M" — S} by

g (x) if xeB,,t=0
H” (x41) = gi(6). i ixellitel
hx)y if xemy,tel

The homotopy G” : B, xI — S, given by G" (x,t) = H" 1’ (x, t) sol-
ves the problem,

Note — The dotted lines of figure 10 indicate the parts of B, taken
into v, by ¢g”.

3.5 — Lemma — There exists a map

g”/:B“la LIULZ_)S%)’ Vo

such that g"' ~ g’ rel L" = L' um and g"'' (my) = V,.

Proof — Consider the cylinder D we have spoken of before Lemma
3.2 (limited by I'; and I',) and divide it into two parts R; and R, by
m, and m, ; notice that R, and R, are homeomorphic to a rectangle
(see figure 10).

Since ¢” is defined on B, and g"(m,) = v,, it follows that
g’ |m, = vorel. {Ei} U{E,}.

This partial homotopy can be extended to a homotopy
GlioB, xI - S}

"

connecting ¢g” and the required g”’, as one can see with arguments
similar to those of the previous Lemmas.
3.6 — Lemma — There exists a map

f15B~1, L1UL2—*S<1), Yo

such that f; ~g" rel. L' = L" U m,and f; (D) = v,.

Proof — The map g is defined on the “rectangles” R, and R, ;
furthermore g”’ (R,) = g (R,) = v, and [¢"’ | R;] € m, (Sg) = 0. Hence,
g" ’ R, is homotopic to the constant map v, , relatively to the boundary
of R,, i=12

Taking next the triangulable pair (B,, L U D) we can extend
the homotopy g”’ | D ~ v, to a homotopy which proves the Lemma,

We are now ready for the proof of Theorem 32: Lemmas 3.3 to
3.6 show that

fi sl g g @ fo ook T T
and f; (D) = v,.
' 19



Homeomorphisms of W, onto another solid double torus W, = W,

Let us construct a cube C, concentric to C; and contained in the
interior of C,. Let A, and B, be solid cylinders contained in C,, as
indicated by figure 11; the lateral surfaces of these cylinders will be
denoted by T, and T;, respectively. Finally, let W, = C, (4, U B,) be
the solid double torus of surface B, .

One can see that there is a homeomorphism

H:W, - W,
) 3
KEH
1
(] E] (
' ,;'
2 1 |G
€2
Ay +
: Ty Sy
il e i i el sl
// , R\'}i/‘ 1 /
7 Ay L—4
? lg'o T \5/
\_/,1\/
FIG. 11

of W, onto W, which is homotopic to the identity map 1 on W; and
which contracts W, into W,, taking B, onto B,. Let

F-W,xI-W

be such that (Vxe W;)F(x,0) = x and F(x,1) = H(x). This function
F can be viewed as a continuous family of homeomorphisms

h W, >W, (0<t<]l)

satisfying the conditions hy =1 and h; = H.
The map

v=F|B, xI:B, x I->W,
20

is then a homeomorphism of B, x I onto X = W, - W, .
Extension of f§ to X =W, - W,
The homotopy G :B, x I —» S} of Theorem 3.2 which coincides
with f§ for t =0 and with f; at the stage t = 1, can be viewed as an
t extension to B, x I of the map

f(§3§1, LiuL,—> S5, y.

If we call h = H|B,, p,v™'|B, =h™! where p, : B, x I > B, is
the first projection; furthermore, we have the following commutative
diagram:

B:JL B"l x I, §1 x 0, B~l X I—LLXFWT:—‘VZ, B.‘u Ez
~ lG /’,_/—’

L,

S5l 8¢ - iSndts toveliy} 473
Notice that f; (D) = y, where D' = H (D).

A
/<L\ ¥ %
M M My -

fhaq

(D
[1O

My
S

2 IV3 Vs ”‘

FiliGar 12

Let Q, and Q, be the regions of the top of cube C,, limited by
the closed curves MM - M,M M, and I"=H("y)=M,M MM M,,
respectively; also, let Q) and Q) be the regions corresponding to Q,
and Q, on the bottom of C, (see figure 12). Then,
D' = C,—(intQ, U int Q).

21



Consider in figure 12 the cylinders J, = Q) x I and J, = Q) x I,
where Q) is identified to Q) x 0, Q, to Q, x 0, Q, to Q; x 1, Q, to
Q, x 1 and the height of the cube C, is identified to the unit interval I,

Extension of f, to W,

Consider the following commutative diagram

Wla B"l an fO Sé

H“,h”{ for 16
W2 5 g 2

On the other hand, Theorem 3.2 gives a homotopy f; ~ f;; thus,
let f, be the composition f; h~!. Since f; has the extension f, over
W, and since f; is homotopic to f;, it follows that one can extend
fi to W,. Let g: W, - S; be such extension.

Expansion of the cylinder J,

We shall show that there exists a continuous function (expansion
of J,)

e(Jy):C, > C,

taking J, homeomorphically onto C,, and mapping C, — int J, into
C, and the lateral surface of J, into D' ; moreover, &(J,)|(J; U C,) =
= identity.

The construction of this function can be better visualized if we
represent the cube C, as a cylinder, like figure 13.

M3 M2 M1 M4_MS M6
\ 4“ rA ]
I\l |
AV I/
|\\ M L7
r : 0 //: ;
by . I
£ rl\\ 7N
\i |
! ~ § i £
o ‘& Tt
: T \;\L
|
| l/;/ N
P dty 3l |
17y N1 )
oA AN
Z eV ol AN
43 LAd
N3 N2 Nf N4 NS Ne
FIG. 14
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Let O be the center of the square M;N;N¢M,, vertical section
of the representing cylinder. Let M and M’ (N and N’) be the projections
from 0, of M, and N, (M5 and Ns) over the side M, N, (M, N,). To
each point Pe MM'(Pe NN') we associate the intersections P’ and
P” of the line segment OP with M, N, and the line M, M; N; N, (M5 N,
and Ms; Mg Ng Ns). Let us denote the square M; N, N, M, with the
letter Q; we also indicate the triangles MM; M,, M N, N,, NM, M,
and NN, N; by A, A,, A; and A,, respectively. With this, one can
see that

e(/2)]|(@QuA) =identity (i =1,2,3,4)

and also, we see that &(J,) takes the segment PP’ linearly over PP”
and the segment P’ P’ onto the point P”.

Construction of F, :8* — §?
We define now the continuous function

F,:83->§?
by the rules:
fo(x) if xeS’-intW,;
Fi(x) = Fx(x) if xeX=W-W,;

goe(Ja)(x), if xeW,

The function F, is differentiable inside of V' =V; u V3, F{'(a)=Y;
and g; is a regular value of F, |int V(i = 1,2).
Notice that F; (C,-J,) = ,.

The “operation detour”

Inside of C, we shall consider a twisted cylinder J;, difftomorphic
to J,, and obtained as follows: if one calls ¢ the distance to the botton
of J,, we rotate each section Q, x t of J, = Q5 x I in such a way
that this rotation becomes a differential function of z. This rotation
0 (t) must vary from O to 27 as t increases from 0 to 1; moreover it
must be extended to a C*-function which is zero for t <0 and 2n
for every t > 1. Observe that we should allow room inside of C, to
perform this rotation; in others words, we should assume either C,
as sufficiently large or J, sufficiently small

Let u :J, —» J, be the difffomorphism just described. Notice that
OO0 A) =0 A, 1w (Ay) =4,
28



and p~!(B,) is a tubular neighborhood of ™! (y; N B,). Then, atta-
ching this last curve to the curve y, n (S* —int C,), we obtain a curve
y, which has with y; the linking number

e(y2, 1) =¢e(a, 1) L
The continuous function

F, 78* 8%
defined by

Fi(u), if xelJ;
Fy(x)= o, if xeC,-Jj
P, if xeS-C,

is differentiable in the interior of the tubular neighborhoods V; = V{
and V, of y; =7v; and y, respectively.

Let f :8° — §? be a differentiable d-approximation of F,, which
coincides with F, on a closed tubular neighborhood V; of 7, contained
in ¥ ; it is clear that f ! (a) = y, and a; is a regular value ofi fi=12.

This completes the construction of the “operation detour”; the
reader is asked to observe that the Hopf invariant for any pair of anti-
images of regular values of f, is altered by the same constant (either
1 or —1)

The previous constructions show that the “operation detour” can
also be applied whenever the cylinders A and B belong to the same
tubular neighborhood, that is to say, this operation can be applied
to transform a knot into a trivial one. In this case the linking number
of every pair of curves, which are anti-images of regular values of f
is not altered by the operation.

4. The Main Theorem
In this section we shall prove the Main Theorem stated at the begin-
ning of this paper.

A diffeomorphism of R? into itself which takes a differentiable knot
into one with straight segments.

Crowell and Fox ([1], Appendix) have shown that a C'-knot K
K parametrized by arc length is e-equivalent to a polygonal knot, that
is to say, for every ¢ > 0 there exists a homeomorphism h of R® onto
itself so that h (K) is polygonal and || h(p)—p|| <, for every peR>.
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Here, we shall take advantage of some of their ideais to construct a
diffeomorphism H of R*® onto itself which takes a differentiable knot
K into a differentiable knot with straight segments.

We shall assume that the rectifiable knot K is expressed by a vector
valued function of the arc length

p(s) = (x(s), v(s), z ().

Let. I be the length of K and consider the set of n points p (s;) € K,
where s;,.—s; =1I/n, j=1,...,n

It is shown in [ 1] (Appendix) that, given ¢ > O there are a convenient
angle 0 < a, < n/4 and a number n sufficiently large, so that for each
s; it is possible to construct a doublecone C; (i.€., the union of two cir-
cular symmetric cones with common base) W1th axis equal to the seg-
ment having end-points p (s;), p(s;+,) and with angle «, at the vertices,
satisfying the following conditions:

1) the double cones C; are arbitrarily small, ie., the maximum
diameter is smaller than ¢ > 0;

2) two adjacent double-cones intercept only at the common vertex;

3) if 5; < s <s;, then p(s)eC;;

4) for each normal section D of C; there is only one s, s; < s < ;4 4,
such that p(s)e D;

5) non-adjacent double-cones are disjoint.

Let then y, and y, be disjoint linked knots imbedded in S* and
let d be the minimum distance between them.,

Given 0 < ¢ < d/2, one can divide 7, and y, by n; and n, points
respectively, and construct the double-cones C;; (i =1,2;j=1,..., n)
having vertices v;; on those points, satisfying the preceeding conditions
1) to 5).

Let K; be the polygonal knots with vertices v;; and sides given
by the axis of C;;(i = 1,2).

By [1] (p. 7), K K . UK, is in regular position with respect to
a certain direction u of R® = §° - {w}.

Let K’ = n (K) be the orthogonal projection of K to a plane normal
to u. Because K is in regular position with respect to u, the multiple
points of K’ are all double; moreover, K’ has only a finite number of
double points and these are not images of vertices belonging to K.

On the plane which contains K', take disks D;; centered at = (V})),
having radius r;; so small that the sides of K’ not adjacent to = (v;))
do not intercept D;

Each cylinder V;, projected from the disk D;; according to the
direction u, meets only the sides of K which mtercept on the vertex

Uij'
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Consider the balls BY and B}/*' of radius r;;, center on v; and
v; j+1 respectively; these balls are contamed on the appropriate cylm—
ders V,;. The disks with boundary Bin C and Byt N C, ;; are normal
to the segment (v;;, v;;4+,) at points Wthh will be denoted by PY
and Q¥. On the other hand, the balls B'{ and By/*! of radii r;;/2 and
centered at v;; and v, ;, , , intercept (v;;, v; i+ 1) at P2’ and QY. The planes
normal to (v v; j+1) passing through PY. and QY intercept the curve

; at P4 and QY, respectively.

On each double cone C;; we consider a differentiable curve y;; obtai-
ned by taking:

a) the arcs (v;;, PY) and (Q¥; v, ;4,) of the knot 7, ;

b) the segment P§ QY on (v;, v, j+1)s

c) regular arcs which. connect P§ to P§ and Q% to Q% and are
attached differentiably to the arcs of a) and b); furthermore, the arcs
Py Py and Q¥ QY can be taken so to meet a plane normal to (v;, v; ;+1)
at a unique point,

The construction of the differentiable curves y; = () 7 =1,2)
shows that there exists a C®-isotopy h,, 0 <t < 1, sucl{ that:

) hoyi =, hyyi =93

ii) h, is a difffomorphism for each t;

iii) h, is the identity on the arcsy, N BY.
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_ This partial isotopy can be extended to a global one
H,:S$*> 8 =R}uU {0}

in such a way that H, = identity (cf. [15], 157-03)

Proof of the Main Theorem

Every double point of the projection K’ = = (K) is the image of
two points belonging to straight segments of H, (y; U y;) =71V ¥3.
The point having larger Z-coordinate is called an overcrossing; the
one with smaller z-coordinate is an undercrnssing; the segment con-
taining an overcrossing (undercrossing) is called an overpass (underpass).

If we keep 7, fixed and move y, according to u in the direction
of the increasing z-coordinates, any underpass of y; will meet an overpass
of 7, in just one point; after a finite number of crossings the two knots
will be completely separated. Let us write y; for the knot y; when sepa-
rated from y;.

We shall apply global diffeomorphisms of S* and operations detour
to the knots y; and 5.

Step 1 — Let A be an infinite rectangular prism parallel to u, which
contains an overpass of y;, an underpass of y; and which does not
contain anything else of both knots. One can assume that the overpass
and the underpass in question are very close to each other.

Consider a difftomorphism of S* over itself which is the identity
outside 4 and on a tubular neighborhood of y; . This diffeomorphism
can be chosen so to transform 7} into a knot § , having a straight segment
L, parallel to the underpass of y;. Let C; = A be a cube containing
L, and a corresponding segment L; on the underpass of y}.

XI
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Let us assume that there exists a differentiable map
g:83-82

such that g~ ! (a,) =y}, 9" " (a,) = 7, and having a, and a, as regular
values. Since the operation detour can be applied to y; and 7, on the
cube C;, we can construct a map

R

with ¢~ (a;) =y, and g~ '(a,) =7,, where j, and 7y} are linked.

F1G. 18 FIG.I9

Step 2 — As soon as the operation detour is effected the knot 7,
will show one under-crossing followed by two consecutive over-cros-
sings. Then, y, is deformed so to eliminate the two over-crossings,
obtaining a new knot with an underpass with respect to 7 , as indicated
in figure 19,

One should observe that everytime we deform a knot from one
to the next form, the existance of a function g : S* — S? in the initial
stage implies the existance of ¢’ : S — §% in the final stage.

Leaving v fixed and moving the other knot according to u in the
direction of the decreasing z-coordinates and repeating on each crossing
the operations described above we shall get to the two knots y,, 7,
and to the differentiable map

f:8->82
with f~'(ay) =v,, f~*(a;) =7v,, a;, a, regular values of f
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The main theorem is then proved except for the existance of the
differentiable map g : S* — S? mentioned before.

If we consider an overpass and an underpass of the same knot,
y, or y5 (they are separated), after a finite number of operations similar
to those described before, we shall transform them into trivial knots
71 and 7,. ' ‘

Consider now a diffeomorphism

y:8- 83

isotopic to the identity and taking the trivial knots 7, and y, into
separated plane circles 7; and §,. For these last two theorem 2.2 shows

that there exists a differentiable map f:8% > 8% such that {~*{a) =
=7,, a; regular value of f. The composite map

f=fy:8-8
is a differentiable map such that (f)*(a) = 7;, a; regular value of
f. Then from f and with the operations described before, now per-

formed in the opposite sense, we shall arrive after a finite number of
steps to the map

g:8*->8§?
and then to the differentiable map
f:83->82

with f~!(a) = y;, a; regular value of f, where 7, are two knots trivial
or not, separated or not, imbedded in §* . This shows the Main Theorem,
We observe that this Theorem is still true if each y; is a union

'yi=inj (l=152’]=1,7al)
j

of knots imbedded in S3.
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