[12] MILNOR, John — Differential Topology. Notes by James Munkres, Princeton University, Fall term, 1958.

[13] SPANIER, Edwin, Paintenshipithillic Topology, McGraw-Hill Series in Higher Mathematics, 1966.

[14] STEENROD, N. - The Topology of Fibre Bundles, Princeton University Press, 1951.

[2] EILLENGERR and STEENROD — Foundations of Algebraic Topology, Princeton University Press, 1952.

[3] FOX, R. H. - A Quick Due Through Knos Theory, Topology of 3-Manifolds and Related Topology Butter by M. K. Fort, Jr.

[4] HILYON, P. J. - An Introduction of Recourage Theory, Cam-

[5] HILFON, P. Land WYLIE, S. - Hamompy Theory Cambridge, University Press, 1960.

[5] HOPF, Heinz — Über die Abbildungen der dreidimensionalen Sphare auf die Kügelflache, Math. Ann. 194, 5, 1931, pg. 637.

[7] HU, Sze-Tsen — Homotopy Theory, Academic Press, N. Y. 4rd London (1959)

[8] LOIBEL, G. F.A. Singulidades des Aplicações Diferenciaveis. VI Colóquio Brasileiro de Matemático.

9] LOBEL, G. F. — Introdução à Teoria da Obstrução. IV Colequio Brasseiro de Matemática. Differentiable Conjugacy Near Compact Invariant Manifolds

> by CLARK ROBINSON

0. Introduction

In this paper we show how the differentiable linearization of a diffeomorphism near a hyperbolic fixed point (a la Sternberg) can be adapted to a neighborhood of an invariant compact manifold. There are two parts of the standard proof. The first part says that if two diffeomorphisms have all their derivatives equal at a hyperbolic fixed point then they are C^{∞} conjugate to one another in a neighborhood. This result is true in a neighborhood of a compact manifold with little change in the statement or proof. See Theorem 1. The second part says that if a diffeomorphism f satisfies eigenvalue conditions at a hyperbolic fixed point then there is a C^{∞} diffeomorphism h such that all the derivatives of $g = h^{-1}$ fh at the fixed point are equal to the derivatives of the linear part of g. Near a manifold there is no general condition that replaces the eigenvalue condition so we get only a very much weakened result in this direction, see Theorem 2. However Theorem 2 does imply that under some conditions the strong stable manifolds of points vary differentiably. See Corollary 3.

We were aware that Theorem 1 was true before reading the recent paper of Takens [10]. However his proof is the easiest to adapt to our setting and also saves one more derivative than some other proofs. We could just say that Theorem 1 follows from the proof in [10], however for clarity we repeat the proof with the necessary modifications. The only essential changes are in the definitions of η (δ) and \mathcal{O} . All other changes are a matter of style.

To prove Theorem 2 we adapt the type of proof used for Theorem 1. At a hyperbolic fixed point this can be solved much more directly by solving for coefficients of polynomials using eigenvalue conditions. See [7], [9], or [10].

1. Statement of the theorems

Let V be a compact submanifold of M. Give M a Riemannian metric. Let ρ be the distance between points of M induced by the metric. Let $p:TM\to M$ be the usual projection. Let $T_xM=p^{-1}(x)$ and $T_VM=p^{-1}(V)$. A diffeomorphism $f:M\to M$ is called hyperbolic along V if fV=V, there is a splitting $T_VM=TV\oplus E^u\oplus E^s$ as the Whitney sum of subbundles, and there is an integer n such that $\|Df^n(x)|E^x_x\|<1$ and $\|Df^{-n}(x)|E^u_x\|<1$ for all $x\in V$ where $E^s_x=E^s\cap T_xM$.

For $h: M \to M$ and $x \in V$ let $D_1 h(x) = Dh(x) \mid T_x V$, $D_2 h(x) = Dh(x) \mid E_x^u$, and $D_3 h(x) = Dh(x) \mid E_x^s$. Let $j^r h(x) = (x, h(x), Dh(x), \dots, D^r h(x))$. This is called the r-jet of h at x in local coordinates on the domain.

Let $W^s(V,f) = \{x \in M : \rho(f^j x, V) \to 0 \text{ as } j \to \infty\}$ and $W^u(V,f) = \{x \in M : \rho(f^{-j} x, V) \to 0 \text{ as } j \to \infty\}$. These are called the *stable and unstable manifolds of V for f*. If these manifolds are differentiable then $T_V(W^s(V,f)) = TV \oplus E^s$ and $T_V(W^u(V,f)) = TV \oplus E^u$.

Now assume $\lambda_x = \|D_2 f^{-n}(x)\| < \|D_1 f^n(x)\|^{-1}$ and $\mu_x = \|D_3 f^n(x)\| < \|D_1 f^{-n}(x)\|^{-1}$ for $x \in V$. This says f is more hyperbolic normally to V than along V. Let $W^{ss}(x,f) = \{y \in M : \text{there exists a constant } c_y \text{ such that } v \in V$.

$$\rho(f^{jn}(x), f^{jn}(y)) \le c_y \mu_x \dots \mu_f(j-1) n_x$$
 and $W^{uu}(x, f) = \{y \in M: \}$

there exists a constant c_y such that $\rho\left(f^{-jn}\left(x\right), f^{-jn}\left(y\right)\right) \leq c_y \lambda_x \dots \lambda_f\left(-j+1\right) n_x$. These are called the *strong stable* and *strong unstable manifolds of x for f.* [5], shows that $W^s\left(V,f\right) = \bigcup \left\{W^{ss}\left(x,f\right) : x \in V\right\}$ and $W^u\left(V,f\right) = \bigcup \left\{W^{uu}\left(x,f\right) : x \in V\right\}$. A more general theorem of this kind is contained in [6].

Now we define the loss of derivatives that occurs in the conjugation of Theorem 1. Given α , let $\beta = \beta(f, \alpha)$ be the largest integer such that

$$||Df^{-n}(f^n x)|| \cdot ||Df^n(x)||^{\beta} \cdot ||D_3 f^n(x)||^{\alpha-\beta} < 1$$

for all $x \in V$. Next let $y = y(f, \beta)$ be the largest integer such that

$$||Df^{n}(f^{-n}x)|| \cdot ||Df^{-n}(x)||^{\gamma} \cdot ||D_{2}f^{-n}(x)||^{\beta-\gamma} < 1$$
 for all $x \in V$.

Theorem 1. Let $V \subset M$ be a compact C^1 submanifold. Assume $f,g:M\to M$ are C^α diffeomorphisms that are hyperbolic along V and such that $j^\alpha f(x)=j^\alpha g(x)$ for all $x\in V$. f(V)=V. Assume $W^s(V,f)$ is a C^β submanifold near V. Then there exist a neighborhood U of V and a C^β diffeomorphism $h:U\to M$ such that $k=h^{-1}gh$ has $j^\beta k(x)=1$

= $j^{\beta} f(x)$ for $x \in W^s(V, f) \cap U$. Also there exists a C^{γ} diffeomorphism $h': U \to M$ such that $(h')^{-1} gh'(x) = f(x)$ for $x \in U$. h/V, h'/V = id. β and γ are as defined above.

The proof is contained in § 3.

Theorem 2. Let $f: M \to M$ be a C^{α} diffeomorphism, and $V \subset M$ a compact C^{α} submanifold. Assume f contracts along V, i.e. E^{u} is the zero section in the definition of g being hyperbolic along V. Assume also that

$$||D_1 f^{-1}(fx)|| \cdot ||Df(x)||^{\alpha-1} \cdot ||D_3 f(x)|| < 1$$

for all $x \in V$. Then there exists a neighborhood U of V and a C^{α} diffeomorphism $h: U \to M$ such that h/V = id and $g = h^{-1}fh$ has $D_2^i(pr \circ g)(x) = 0$ for $1 \le j \le \alpha$ where $pr: U \to V$ is a differentiable normal bundle projection. Thus infinitesimally g preserves the fibers of $pr: U \to V$.

The proof is contained in § 4.

Corollary 3. Let f be a C^{α} diffeomorphism contracting along V. Assume

$$||D_1 f^{-1}(fx)|| \cdot ||Df(x)||^{\alpha-1} \cdot ||D_3 f(x)|| < 1$$

for all $x \in V$. Let p and r be the integers such that

$$||D_3 f^{-1}(fx)|| \cdot ||D_3 f(x)||^p \le 1$$

$$||D_1 f(x)||^{\alpha-p} (||D_3 f(x)||/||D_1 f(x)||)^{r+1} \le 1.$$

Let $\beta = \alpha - 1 - p - r$. Then there exist a neighborhood U of V and a C^{β} diffeomorphism $h: U \to M$ such that $g = h^{-1}fh$ preserves the fibers of $pr: U \to V$. Actually h has all derivatives $D^j D_2^k h(x)$ for $x \in U, 0 \le j \le \beta$, and $0 \le j + k \le \alpha$. In particular the set of $W^{ss}(x, f)$ for $x \in V$ form a foliation of $W^s(V, f) \cap U$ such that each leaf is C^{α} and they vary C^{β} .

Proof:

By applying theorem 2 we can assume $D_2^j(pr \circ f)(x) = 0$ for $1 \le j \le \alpha$ and $x \in V$. Define $g_1: U \to V$ by $g_1(x) = f_1(pr x)$. In vector bundle charts of $pr: U \to V$ define $g_2(x) = f_2(x)$. Use bump functions to define $g = (g_1, g_2): U \to U$. Then $g_1(x) = g_1(pr x) = f_1(pr x)$ for $x \in M$ and $j^{\alpha}f(x) = j^{\alpha}g(x)$ for $x \in V$. Theorem 1 gives the C^{β} conjugacy of f and g where $\beta = \alpha - 1 - p - r$ since

$$\begin{split} & \| D_3 f^{-1} \| \cdot \| D_1 f \|^{\alpha - 1 - p - r} \| D_3 f \|^{1 + p + r} \le \| D_1 f \|^{\alpha - 1 - p - r} \| D_3 f \|^{1 + r} \\ & \le \| D_1 f \|^{\alpha - p} (\| D_3 f \| / \| D_1 f \|)^{1 + r} < 1. \end{split}$$

The extra derivatives of h exist as remarked in the proof of Theorem 3. O.E.D.

Using the methods of the proof of Theorem 1 differently we can get a stronger statement about the differentiability of the foliation $W^s(x, f)$.

Corollary 4. Let f be a C^{α} diffeomorphism contracting along V. Assume

$$|D_1 f^{-1}(fx)| \cdot ||Df(x)||^{\alpha-1} ||D_3 f(x)|| < 1$$

for all $x \in V$. Then the set of $W^{ss}(x, f)$ for $x \in V$ form a $C^{\alpha-1}$ foliation of $W^{s}(V, f) \cap U$, where U is a neighborhood of V.

The proof is contained in § 5.

Using the estimates in [7] the above proofs should go over to flows. However beware of the proof of linearization there, "By induction" does not work since the variation equation does not satisfy a global Lipschitz constant.

We would like to discuss how the above theorems relate to some of the results in [4], [5] and [8]. In [5] f is called r-normally hyperbolic if there is an integer n such that

$$||D_1 f^{-n} (f^n x)||^r \cdot ||D_3 f^n (x)|| < 1$$

$$||D_1 f^n (f^{-n} x)||^r \cdot ||D_2 f^{-n} (x)|| < 1.$$

and

for all $x \in V$. This condition is similar but different than the condition we require in Theorem 2 and Corollaries 3 and 4. If f is r-normally hyperbolic, then $W^s(V,f)$, $W^u(V,f)$, and V are C^r submanifolds. See [5]. Also for each $x \in V$ $W^{ss}(x,f)$ and $W^{uu}(x,f)$ are C^r and they vary continuously in the C^r topology. Corollaries 3 and 4 give that they vary differentiably.

[8] shows that if f is 1-normally hyperbolic then f is C^0 conjugate to a map g that preserves the fibers of $pr: U \subset M \to V$ and such that g is linear on fibers of $pr: U \subset M \to V$. Corollary 3 gives a differentiable conjugacy in the contracting case to a fiber preserving map g but g is not necessarily linear on fibers.

If V is replaced by an expanding attractor, then [4,6.4] gives conditions under which the stable manifolds of points form a C^1 foliation of a neighborhood. Corollary 4 possibily could be adapted to this setting to give the same answer. The result in [4] only apply to stable manifolds of points $W^s(x,f) = \{y \in M : \rho(f^j(x), f^j(y)) \to 0 \text{ as } j \to \infty\}$ and not the strong stable manifolds of points. Thus when V is only

an attractor the results are different. Also we give a condition that insures higher differentiability.

Added in proof: M. Shub pointed out to me that [4, 6.4] and the C^h section theorem prove Corollary 4.

2. Notation and definitions

Since we are only interested in a conjugacy of diffeomorphisms in a neighborhood of V, we can take a tubular neighborhood of V. Thus we can consider M as a vector bundle over V, $pr: M \to V$. Let $p:TM \to M$ be the projection of the tangent bundle of M to $M \cdot |\cdot|$ is a norm induced by a Riemannian metric on TM. Let ρ be the distance between points of M induced by $|\cdot|$.

Let $L_s^r(T_x M, T_y M)$ be the (linear) space of all symmetric r-linear maps from $T_x M$ to $T_y M$.* Let $J^0(M, M) = M \times M$ and $J^r(M, M) = \bigcup \{(x, y) L_s^1(T_x M, T_y M) \times \ldots \times L_s^r(T_x M, T_y M) : x, y \in M\}$. If $h: M \to M$ is C^r let $j^r h(x) = (x, h(x), Dh(x), \ldots, D^r h(x)) \in J^r(M, M)$. This is called the r-jet of h at x. Let $\pi_0: J^0(M, M) \to M$ be the projection on the first factor and $\pi_r: J^r(M, M) \to J^{r-1}(M, M)$ be the natural projection for $r \ge 1$. Let $\psi_r = \pi_0 \circ \ldots \circ \pi_r: J^r(M, M) \to M$. All of these projections are fiber bundles. $\psi_r: J^r(M, M) \to M$ is called the r-jet bundle. Define a distance on $J^0(M, M)$ by

$$\rho_0((x_1, x_2), (y_1, y_2) = \max \{\rho(x_i, y_i) : i = 1, 2\}.$$

Let the distance on each fiber of $\pi_r: J^r(M, M) \to J^{r-1}(M, M)$ be the usual one induced by $|\cdot|$ on TM,

$$\rho_r((x, y, A_0, \dots, A_r), (x, y, A_0, \dots, A_{r-1}, B_r)) = ||A_r - B_r||_r = \sup \{|(A_r - B_r)(v_1, \dots, v_r)| : v_i \in T_x M \text{ and } |v_i| = 1 \text{ for all } i\}.$$

By using the distance on the base space there is an induced (noncanonical) distance on $J^r(M, M)$. Given a subset $U \subset M$ let $J^r((M, U), M) = \psi_r^{-1}(U)$. Let $\Gamma J^r((M, U), M)$ be the space of continuous sections of $\psi_r: J^r((M, U), M) \to U$.

3. Proof of Theorem 1

I. First we prove that the conjugacy exists along $W^s(V, f)$. We use the notation given in § 1 and § 2. By the assumptions of Theorem 1 there exists an integer n and a $0 < \mu < 1$ such that

$$||Df^{-n}(f^n x)|| \cdot ||Df^n(x)||^{\beta} \cdot ||Df^n(x)||E_x^s||^{\alpha-\beta} < \mu$$

^{*}Note: Higher derivatives are only defined in terms of local coordinates. Therefore cover a neigborhood of V with a finite number of coordinate charts and define the jets and norms in terms of these coordinate charts.

for all $x \in V$. Below we construct a conjugacy h between f^n and g^n . Because of its special form, $h \sim \lim_{j \to \infty} g^{-nj} f^{nj}$, h is also a conjugacy between f and g. Thus for convenience we take n = 1. The reader can check the details for n > 1. The constant μ is fixed during the proof.

We define the following numbers,

$$a_{x} = \| Dg^{-1}(x) \| \quad x \in M$$

$$A_{x} = \begin{cases} \rho (fx, V) \rho (x, V)^{-1} & x \in W^{s}(V, f) - V \\ \lim \{A_{y} : y \in W^{s}(V, f) - V \text{ and } y \to x \} & x \in V \end{cases}$$

$$B_{x} = \| Df(x) \| \quad x \in W^{s}(V, f).$$

Note for $x \in V$, $A_x \le ||Df(x)|E_x^s|| < 1$ and

 $a_{fx}^{-1} \le A_x < 1 \le B_x$. By our assumption $a_{fx} B_x^{\beta} A_x^{\alpha-\beta} < \mu$ for $x \in V$. There exist neighborhoods

 $\eta(\delta) = \{x \in W^s(V, f) : \rho(x, V) < \delta \} \text{ and } \mathcal{O} \text{ of } \{(m, m) : m \in V\} \text{ in } M \times M$ such that (i) $f\eta(\delta) \subset \eta(\delta)$ and (ii) if $x \in \eta(\delta)$ and $(fx, y) \in \mathcal{O}$ then $a_y B_x^{\beta} A_x^{\alpha - \beta} < \mu$.

For simplicity of notation let

$$J^r = J^r((M, \eta(\delta)), M) = \psi_r^{-1}(\eta(\delta))$$
 and ΓJ^r be the

continuous sections of $\psi_r: J^r \to \eta(\delta)$.

We define a second norm on the fibers of $\pi_r: J^r \to J^{r-1}$ (possibly infinite) by $\sigma_r(c^1, c^2) =$

$$\sup \{ \rho_r(c^1 x, c^2 x) \rho(x, V)^{-(\alpha - r)} : x \in \eta(\delta) - V \} \quad \text{for} \quad \pi_r c^1 = \pi_r c^2.$$

If $c \in \Gamma J^0$ then we can identify it with the map $c_0: \eta(\delta) \to M$ such that $c(x) = (x, c_0(x))$. Let

$$\Phi_0: \Gamma J^0 \to \Gamma J^0$$
 be defined by $\Phi_0(c) = d$ where

 $d(x) = (x, g^{-1} c_0 f(x)) = j^0 (g^{-1} c_0 f)(x)$. Let $\Phi_r : \Gamma J^r \to \Gamma J^r$ be defined by $\Phi_r(c) = d$ such that for each $x d(x) = j^r (g^{-1} h f)(x)$ where $j^r h(fx) = c(fx)$. First we prove Φ_r contracts along fibers of π_r .

Lemma 3.1: Let c^1 , $c^2 \in \Gamma J^r$ with $\pi_r c^1 = \pi_r c^2$, $\sigma_r (c^1, c^2) < \infty$

and
$$\pi_1 \circ \ldots \circ \pi_r c^i(fx) \in \mathcal{O}$$
 for all $x \in \eta(\delta)$, $i = 1, 2$.

Then
$$\sigma_r(\Phi_r c^1, \Phi_r c^2) \leq \mu \sigma_r(c^1, c^2)$$
.

Proof:

Assume
$$r \ge 1$$
. $\sigma_r(\Phi_r c^1, \Phi_r c^2) =$

$$\sup \{ \rho_r(\Phi_r c^1(x), \Phi_r c^2(x)) \rho(x, V)^{-(\alpha - r)} : x \in \eta(\delta) - V \}$$

$$\le \sup \{ \rho_r(c^1(fx), c^2(fx)) a_y B_x^r \rho(x, V)^{-(\alpha - r)} : x \in \eta(\delta) - V \text{ and } \pi_1 \circ \ldots \circ \pi_r c^i(fx) = (fx, y) \}.$$

This last inequality is true using the formula for higher derivatives of a composition of functions and the fact that $\pi_r c^1 = \pi_r c^2$. Then this is

$$\leq \sup \left\{ \rho_r(c^1(fx), c^2(fx)) \, \mu \rho(fx, V)^{-(\alpha - r)} : x \in \eta(\delta) - V \right\} \leq \mu \, \sigma_r(c^1, c^2).$$

When r=0, $\rho(x,V)^{-\alpha} \le \mu \rho(fx,V)^{-\alpha}$. The details are left to the reader. Q.E.D.

Let $I_r \in \Gamma J^r$ be defined by $I_r(x) = j^r(id)(x) = (x, x, id_x, 0, \dots, 0)$ where $id: M \to M$ is the identity map and $id_x: T_x M \to T_x M$ is the identity map. Let $C_0 = \sigma_0 (\Phi_0 I_0, I_0)$. C_0 is finite because $j^\alpha f(x) = j^\alpha g(x)$ for all $x \in V$ and V is compact. Let $D_0 = C_0 (1 - \mu)^{-1}$. Let O_r be the zero section of $\pi_r: J^r \to J^{r-1}$. Let $\mathscr{F}_0 = \{c \in \Gamma J^0: \sigma_0(c, I_0) \leq D_0\}$, and $\mathscr{F}_r = \{c \in \Gamma J^r: \pi_r c \in \mathscr{F}_{r-1} \text{ and } \sigma_r(c, O_r \pi_r c) < \infty\}$ for $r \geq 1$.

Since $\sigma_0(c, I_0) \le D_0$ for $c \in \mathcal{F}_0$, there exists a $\delta > 0$ smaller than above if necessary, such that for $c \in \mathcal{F}_0$ and $x \in \eta(\delta)$, then $c(fx) \in \mathcal{O}$.

Lemma 3.2:
$$\Phi_r : \Gamma J^r \to \Gamma J^r$$
 maps \mathscr{F}_r into itself. *Proof*:

We prove the lemma by induction. $\mathscr{F}_{-1} = \phi$ is invariant by Φ_{-1} . Assume \mathscr{F}_{r-1} is invariant by Φ_{r-1} . Let $c \in \mathscr{F}_r$. Then $\sigma_r(\Phi_r c, O_r \pi_r \Phi_r c) \leq \sigma_r(\Phi_r c, \Phi_r O_r \pi_r c) + \sigma_r(\Phi_r O_r \pi_r c, O_r \pi_r \Phi_r c) \leq \mu \sigma_r(c, O_r \pi_r c) + \sigma_r(\Phi_r O_r \pi_r c, O_r \Phi_{r-1} \pi_r c)$. For r = 0 this last term is $\leq \mu D_0 + C_0 \leq D_0$. For r > 0 it is $< \infty$.

Lemma 3.3: $\Phi_r: \mathcal{F}_r \to \mathcal{F}_r$ is continuous in terms of σ_r . Proof:

We use the chain rule for higher derivatives of a composition. $\sigma_{r}(\Phi_{r}c^{1}, \Phi_{r}c^{2}) = \sup \left\{ \rho_{r}(\Phi_{r}c^{1}, \Phi_{r}c^{2}) \rho\left(x, V\right)^{-(\alpha-r)} : x \in \eta\left(\delta\right) - V \right\}$ $\leq (\text{constant}) \sup \left\{ \left\| D^{i}g^{-1}(y_{2}) \right\| \rho_{j_{1}}(c^{1}(fx), c^{2}(fx)) \dots \right.$ $\rho_{j_{i}}(c^{1}(fx), c^{2}(fx)) \left\| D^{k_{1}}f(x) \right\| \dots \left\| D^{k_{j}}f(x) \right\| \rho\left(x, V\right)^{-(\alpha-r)} :$ $x \in \eta\left(\delta\right) - V, \ \pi_{1} \circ \dots \circ \pi_{r}c^{2}(fx) = (fx, y_{2}), \quad 1 \leq i \leq r,$ $j = j_{1} + \dots j_{r}, \ k_{1} + \dots + k_{j} = r \right\} +$ $+ (\text{constant}) \sup \left\{ \rho_{i}(g^{-1}(y_{1}), g^{-1}(y_{r}) \right\| D^{j_{1}}(fx) \right\| \dots$ $\left\| D^{j_{i}}c^{1}(fx) \right\| \cdot \left\| D^{k_{1}}f(x) \right\| \dots \left\| D^{k_{j}}f(x) \right\| \rho\left(x, V\right)^{-(\alpha-r)} :$ $\pi_{1} \circ \dots \circ \pi_{r}c^{1}(fx) = (fx, y_{1}) \right\}.$

Here the constants depend only on the binomial coefficients. We look at the first summation and leave the second to the reader. It is \leq (constant) sup $\{\sigma_{j_1}(c^1,c^2)...\sigma_{j_i}(c^1,c^2)\rho(fx,V)^{(i\alpha-j)}\rho(x,V)^{-(\alpha-r)}:1\leq i\leq r,1\leq j\leq r\}\leq$ (constant) $\sigma_r(c^1,c^2)^r$. These last two constants include the supremum of derivatives of f and g^{-1} . From this it follows that σ_r is continuous. Q.E.D.

By lemma 3.1, $\Phi_0: \mathscr{F}_0 \to \mathscr{F}_0$ is a contraction in terms of σ_0 . Thus there is a unique attractive fixed point, c^0 . Attractive means that for each $c \in \mathscr{F}_0$, $\sigma_0(c^0, \Phi_0^j c) \to 0$ as $j \to \infty$. Assume that \mathscr{F}_{r-1} has an attractive fixed point. By Lemma 3.3, Φ_r is continuous. By Lemma 3.2, $\Phi_r: \mathscr{F}_r \to \mathscr{F}_r$ contracts along fibers of $\pi_r: \mathscr{F}_r \to \mathscr{F}_{r-1}$ by a factor of μ . By the fiber contraction theorem, [4, 1.2], Φ_r has a unique fixed point in \mathscr{F}_r and it is attractive.

Let $id: M \to M$ be the identify diffeomorphism and $I_r(x) = j^r(id)(x)$. Then $\Phi_\beta(I_\beta)$ converges (in the uniform topology of sections of $\psi_r: J^r \to \eta(\delta)$) to a section $c \in \Gamma J^r$. Let $c(x) = (x, c_0(x), \dots, c_\beta(x))$ with $c_i(x) \in L^i_s(T_x M, T_{cox} M)$ for $i \geq 1$. By the uniform convergence it follows that $c_i: \eta(\delta) \to UL^i_s(T_x M, T_y M): x \in \eta(\delta), y \in M$ is $c^{\beta-i}$. Thus the conditions of the Whitney Extension Theorem are satisfied. See [1, p. 120] for a statement of the theorem. There exists a C^β function $h: M \to M$ such that for $x \in \eta(\delta) j^\beta h(x) = c(x)$. $Dh(x) = id_x$ for $x \in V$ so h is a local diffeomorphism in a neighborhood of V. Thus $h^{-1}gh$ is defined in a neighborhood of V in M and $j^\beta(h^{-1}gh)(x) = j^\beta f(x)$ for $x \in \eta(\delta) \subset W^s(V, f)$. This completes the conjugacy of f and g along $W^s(V, f)$.

Remark: In Corollary 3 we noted that more derivatives of the conjugacy existed along the fibers. In that setting we have C^{α} diffeomorphisms such that $D_2^j (pr \circ g)(x) = 0$ for $1 \le j \le \alpha$ and $x \in V$ and $f(pr x) = pr \circ f(x)$. Here $pr : M \to V$ is a normal bundle. For $\alpha \ge r \ge \beta$ let $J^{\beta r}$ be the jet bundle of maps with all derivatives $D^j D_2^k h(x)$ for $0 \le j \le \beta$ and $0 \le j + k \le r$. Let $\rho_{\beta r}$ be the associated norm. Let $\pi_r : J^{\beta r} \to J^{\beta r-1}$ be as before. For $\pi_r c^1 = \pi_r c^2$ let $\sigma_{\beta r} (c^1, c^2) = \sup \left\{ \rho_{\beta r} (c^1 x, c^2 x) \rho(x, V)^{-(\alpha - r)} : x \in \eta(\delta) - V \right\}$. If $c^1, c^2 \in J^{\beta r}$ and $\pi_r c^1 = \pi_r c^2$ then

$$\rho_{\beta r} \left(\Phi_{\beta r} \, c^1 \left(x \right), \; \Phi_{\beta r} \, c^2 \left(x \right) \right) \rho \left(x, \, V \right)^{-\left(\alpha - r \right)} \leq$$

 $\leq \rho_{\beta r}(c^1(fx), c^2(fx)) \ a_y B_x^{\alpha} A_x^{r-\beta} \rho(x, V)^{-(\alpha-r)}$. A little check is necessary to show this depends only on $\rho_{\beta r}$ and not ρ_r . (f preserves fibers). Then this is $\leq \mu \rho_{\beta r}(c^1(fx), c^2(fx)) \rho(fx, V)^{-(\alpha-r)}$: Lemma 3.1 follows. The other details are left to the reader.

II.

Now we can assume f and g are C^{β} and j^{β} $f(x) = j^{\beta}$ g(x) for $x \in W^{s}(V, f) = W^{s}$ and x near V. For $x \in M$ define the following numbers $a_{x} = \|Df^{-1}(x)\|$

$$b_{x} = \begin{cases} \rho (f^{-1}, W^{s}) \rho (x, W^{s})^{-1} & x \notin W^{s} \\ \lim \{b_{y} : y \notin W^{s} \text{ and } y \to x\} & x \in W^{s} \end{cases}$$

 $B_{x} = \| Dg(x) \|.$

For $x \in V$, $a_x^{-1} < 1 < b_x^{-1} \le B_{f^{-1}x}$ and $B_{f^{-1}x}a_x^{\gamma}b_x^{\beta-\gamma} < \mu < 1$. By using a bump function we can make g(x) = f(x) at points x such that $\rho(x,V) \ge \delta$. (g is then defined on all of M). Also g can be left unchanged at points x with $\rho(x,V) \le \delta/2$. Let $\eta(\delta) = \{x \in M: \rho(x,W^s) < \delta\}$ and $\eta'(\delta) = \{x \in M: \rho(x,V) < \delta\}$. By taking δ smaller if necessary and taking $\mathcal O$ to be a small neighborhood of $\{(m,m): m \in W^s\}$ in $M \times M$, we can insure that for $x \in \eta'(\delta)$ and $(f^{-1}x,y) \in \mathcal O$ it follows that $B_y a_x^{\gamma} b_x^{\beta-\gamma} < \mu$.

Let Φ_r be induced by $h \to g \ h \ f^{-1}$. That is, in the earlier definition replace f by f^{-1} and g^{-1} by g. Continue as before taking sections c of $\psi_r: J^r(\eta(\delta), M) \to \eta(\delta)$ such that $c(x) = j^r id$ (x) for $x \in \eta(\delta) - \eta'(\delta)$. Lemmas 3.1, 3.2, and 3.3, apply to these sections. The limit $\Phi_\gamma(I_\gamma)$ gives the γ -jet of the conjugacy h on $\eta(\delta)$.

Q.E.D.

4. Proof of Theorem 2

In this section we assume $T_V M = TV \oplus E^s$. $F^1 = TV$ is differentiable. Since we do not assume the bundles are invariant we can approximate E^s by F^3 that is differentiable. Write $D_i h(z) = D h(z) | F^i$. We assume in the theorem that $||D_1 f^{-1}(fz)|| \cdot ||Df(z)||^{\alpha-1} ||D_3 f(z)|| < \mu < 1$ for all $z \in V$. $pr: M \to V$ is the normal bundle projection. For $c \in J^r((M, V), V)$ we write $c(z) = (z, c_0(z), \ldots, c_r(z))$ with $c_k(z) \in L^k_s(T_z M, F^1_{co(z)})$.

Let \mathscr{F}_r be the set of sections c of $J^r((M, V), V)$ such that for each $z \in V$, there is a C^r function $h: M \to V$ such that h/V = id and $c(z) = j^r h(z)$. This is equivalent to assuming for each $z \in V(i)$ $\pi_1 \circ \cdots \circ \pi_r c(z) = (z, z)$ and (ii) $c^k(z)/F^1 \times \cdots \times F^1 = D^k(id)(z)$ where $id: V \to V$ is the identify function.

Let $g_1: M \to V$ be defined by $g_1(z) = f \circ pr(z)$. When we write g_1^{-1} we mean $g_1^{-1}: V \to V$.

Define $\Phi_r: \mathscr{F}_r \to \mathscr{F}_r$ by $\Phi_r c = s$ such that for each z $s(z) = j^r (g_1^{-1} hf)(z)$ where $j^r h(fz) = c(fz)$. By abuse of notation

$$\Phi_r c(z) = j^r (g_1^{-1} c f)(z).$$

Lemma 4: Let c^1 , $c^2 \in \mathcal{F}_r$ be such that $\pi_r c^1 = \pi_r c^2$. Then $\rho_r(\Phi_r c^1, \Phi_r c^2) \le \mu \rho_r(c^1, c^2)$.

Proof:

 $\begin{array}{l} \rho_{r}\left(\Phi_{r}\,c^{\,1}\,,\,\Phi_{r}\,c^{\,2}\right) \leq \sup\left\{\left\|D_{\,1}\,g_{\,1}^{\,\,-1}\,\left(fz\right)\right\| \cdot \left\|(c_{r}^{\,1}(fz) - c_{r}^{\,2}(fz))\,\left(Df(z)\right)^{r}\right\| : z \in V\right\} \\ \leq \sup\left\{\left\|D_{\,1}\,\,f_{\,1}^{\,\,-1}\,\left(fz\right)\right\|\rho_{\,r}\left(c^{\,1}\,,\,\,c^{\,2}\right)\left\|D_{\,3}\,\,f(z)\right\| \cdot \left\|D_{\,f}(z)\right\|^{r-1} : z \in V\right\} \text{ since } \\ c_{r}^{\,1}\left(z\right)\left|F^{\,1}\,\,x\,\cdots\,x\,F^{\,1}\right. = c_{r}^{\,2}\left(z\right)\left|F^{\,1}\,\cdots\,F^{\,1}\right. \end{array}$ Then

$$\rho_r(\Phi_r c^1, \Phi_r c^2) \le \rho_r(c^1, c^2)\mu$$
Q.E.D.

As in the proof of Theorem 1, we can apply the fiber contraction principle to find a $c \in \mathscr{F}_{\alpha}$ such that $\Phi_{\alpha}(c) = c$. Let $s \in \Gamma J^{\alpha}((M, V), M)$ be given by $s(z) = (c(z), j^{\alpha}(id_3(z)), i.e.$ the component of s in F^3 in the range is like the jet of the identify function on fibers. (This has meaning at the jet level but not as maps). By the uniform convergence of $\Phi_{\alpha}^k(j^{\alpha}p^r)$ to c, it follows that s satisfies the conditions of the Whitney Extension Theorem. There exists a $C^{\alpha}h$ such that $j^{\alpha}h(z) = s(z)$ for $z \in V$. h is a diffeomorphism on a neighborhood of V because of the form of the derivatives at points of V. Then g = h f f has $D^j_3(pr \circ g)(z) = D^j_3 g_1(z) = 0$ for $z \in V$ where g_1 is as above.

Q.E.D.

By applying Theorem 2 we can assume $D_2^j(pr \circ f)(x) = 0$ for $1 \le j \le \alpha$ and $x \in V$. Define $g_1: U \to V$ by $g_1(x) = f_1 \circ pr(x)$. In the proof of Theorem 1, replace $a_x = \|Dg^{-1}(x)\|$ by $a_x = \|Dg_1^{-1}(x)\|$ where $g_1^{-1}: V \to V$. Next consider jets in $J^r = J^r(\eta(\delta), V)$ instead of $J^r(\eta(\delta), M)$. Define $\Phi_r: \Gamma J^r \to \Gamma J^r$ by $\Phi_r(c) = d$ such that for each $x \ d(x) = j^r(g_1^{-1}hf)(x)$ where $j^rh(fx) = c(fx)$.

As in the earlier proof we can find a c such that $\Phi_{\alpha-1} c = c$ and c satisfies the conditions of the Whitney Extension Theorem. There exists a $C^{\alpha-1}$ function $h: M \to V$ such that $g_1^{-1} hf = h \cdot h$ is a projection onto V and defines a $C^{\alpha-1}$ foliation \cdot Since $hf = g_1 h$ it follows that f preserves this foliation \cdot Since the foliation is tangent to E^s it follows it is $W^{ss}(x, f)$.

OFD

Bibliographie

- 1. R. Abraham and J. Robbin, Transversal Mapings and Flows, Benjamim, 1967.
- 2. G. Belickii, "On the local conjugacy of diffeomorphisms", Sov. Math. Dokl, Vol. 11 (1970) N. 2, pp. 390-393. (English Translation).
- 3. J. Dieudonné, Foundations of Analysis, Academic Press, 1960.
- 4. M. Hirsch and C. Pugh, "Stable Manifolds and Hyperbolic Sets", Proceedings of Symposia in Pure Mathematics, Vol. 14, A.M.S. 1970, pp. 133-164.
- 5. M. Hirsch, C. Pugh, M. Shub, "Invariant Manifolds", Bulletin of the A.M.S., 76(5) (1970), pp. 1015 1019.
- 6. M. Hirsch, J. Palis, C. Pugh, M. Shub, "Neighborhoods of hyperbolic sets", *Inventiones math.* 9 (1970), pp. 112 134.
- 7. E. Nelson, Topics in Dynamic I, Flows, Mathematical Notes, Princeton Press, 1969.
- 8. C. Pugh and M. Shub, "Linearizing normally hyperbolic diffeomorphisms and flows", to appear.
- 9. S. Sternberg, "On the structure of local homeomorphisms of Euclidean *n*-space, II", American Journal of Mathematics 80 (1958), pp. 623-631.
- 10. F. Takens, "Partially Hyperbolic Fixed Points", to appear.

Instituto de Matemática Pura e Aplicada

Rio de Janeiro, Brasil