Differentiable Conjugacy - Near
Compact Invariant Manifolds

by
CLARK ROBINSON

0. Introduction

In this paper we show how the differentiable linearization of a
diffeomorphism near a hyperbolic fixed point (a la Sternberg) can be
adapted to a neighborhood of an invariant compact manifold. There are
two parts of the standard proof. The first part says that if two diffeo-
morphisms have all their derivatives equal at a hyperbolic fixed point
then they are C* conjugate to one another in a neighborhood. This
result is true in a neighborhood of a compact manifold with little change
in the statement or proof See Theorem 1. The second part says that
if a difffomorphism f satisfies eigenvalue conditions at a hyperbolic
fixed point then there is a C* diffeomorphism h such that all the deri-
vatives of g = h™! fh at the fixed point are equal to the derivatives of
the linear part of g. Near a manifold there is no general condition that
replaces the eigenvalue condition so we get only a very much weakened
result in this direction, see Theorem 2. However Theorem 2 does imply
that under some conditions the strong stable manifolds of points vary
differentiably. See Corollary 3.

We were aware that Theorem 1 was true before reading the recent
paper of Takens [10]. However his proof is the easiest to adapt to our
setting and also saves one more derivative than some other proofs.
We could just say that Theorem 1 follows from the proof in [10], however
for clarity we repeat the proof with the necessary modifications. The
only essential changes are in the definitions of # () and . All other
changes are a matter of style. :

To prove Theorem 2 we adapt the type of proof used for Theorem 1.
At a hyperbolic fixed point this can be solved much more directly by
solving for coefficients of polynomials using eigenvalue conditions.
See [7], [9], or [10].
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1. Statement of the theorems

Let V be a compact submanifold of M. Give M a Riemannian
metric. Let p be the distance between points of M induced by the metric.
Let p:TM — M be the usual projection. Let T.M =p ! (x) and
T, M =p ' (V). A difffomorphism f:M — M is called hyperbolic
aleng V if fV =V, there is a splitting Ty M = TV @ E* @ E° as
the Whitney sum of subbundles, and there is an integer n such that
| Df" (x)| Ex|| <1 and || Df 7" (x)| E%|| < 1 for all xe V where E; =
= .0 Tx M.

For h:M - M and xeV let Dih(x) =Dh(x)| T, V, D, h(x) =
=Dh(x)| E%, and D3h(x)=Dh(x)| E. Let j" h(x) =(x, h(x), Dh(x),...,D"h(x)).
This is called the r-jet of h at x in local coordinates on the domain.

Let Ws(V,f) ={xeM :p(fix,V)—>0 as j— oo} and W (V,f) =
={xeM:p(f/x,V)—>0asj— oo} These are called the stable and
unstable manifolds of V for f. If these manifolds are differentiable then
T, W* (V.f) = TV® E° and T, (W* (V.f) = Ve E".

Now assume 4, =|| D, f ~"(x)||<||D1f"(x)|| "' and p, =|| D5 f*(x)|| <
<||Dyf 7" (x)||7! for xe V. This says f is more hyperbolic normally
to V than along V. Let W*(x,f) = {ye M: there exists a constant c,
such that

pUI"X), fOV) < cyby...pu;(—1)n} and W (x,f) = {ve M:

there exists a constant ¢, such that p(f /" (x),f " (V) <c,A,...
...A;(=j + Dn,}. These are called the strong stable and strong unstable
manifolds of x for f. [5], shows that W*(V,f) = U {W* (x,f) :xe V}
and W*(V,f) = u {W"(x,f) :xe V}. A more general theorem of this
kind is contained in [6].

Now we define the loss of derivatives that occurs in the conjugation
of Theorem 1. Given a, let f = B (f, o) be the largest integer such that

[ Df ()| B - | Daf" )77 < 1
for all xe V. Next let y = y(f, f) be the largest integer such that

i BEELT S S adbal BE Rl L sl Paf %1 <l o 8l XV,

Theorem 1. Let V < M be a compact C' submanifold, Assume
f,9 :M —> M are C* diffeomorphisms that are hyperbolic along V
and such that j*f(x) = j*g (x) for all xe V. f(V) = V. Assume W*(V,f)
is a C? submanifold near V. Then there exist a neighborhood U of V
and a C* diffeomorphism h : U — M such that k = h™! gh has j’ k (x) =
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= j?f(x) for xe W*(V,f)n U. Also there exists a C’" diffeomorphism
W :U — M such that (W) ! gh' (x) = f(x) for xe U. h/V, W'/V =id. B
and y are as defined above.

The proof is contained in § 3.

Theorem 2. Let f :M — M be a C* diffeomorphism, and V = M
a compact C* submanifold. Assume f contracts along V, ie. E* is the

. zero section in the definition of g being hyperbolic along V. Assume

also that
IDof (|- I DFE) P || Paf) || < 1

for all x € V. Then there exists a neighborhood U of V and a C* diffeo-

morphism i : U — M such that h/V =id and g =h ™" fhhas D} (pr.g)(x) =0

for 1 £ j < o where pr: U — V is a differentiable normal bundle pro-

jection. Thus infinitesimally g preserves the fibers of pr:U — V.
The proof is contained in §4.

Corollary 3. Let f be a C* difftfomorphism contracting along
V. Assume

IDuf = -1 DA 7| D f ] < L

for all xe V. Let p and r be the integers such that

| Dsf =t (|- | Dsf@) P < 1

| DL fC) P2 (I Paf )| DafC) [ < 1.
Let B = a—1—p—r. Then there exist a neighborhood U of V and a
C* diffeomorphism h : U — M such that g = h™ ' fh preserves the fibers
of pr : U — V. Actually h has all derivatives D’ D% h (x) for xe U,0<j<p,
and 0 <j + k < . In particular the set of W*(x,f) for xe V' form
a foliation of W*(V,f) n U such that each leaf is C* and they vary C*.

Proof :

By applying theorem 2 we can assume Dj (pro f)(x) =0 for
1 <j<aand xeV Define g; : U - Vby g, (x) = fi (prx). In vector
bundle charts of pr : U — V define g, (x) = f, (x). Use bump functions
to define g =(g,,9,): U - U. Then g, (x) =g, (prx) = f; (pr x) for
xeM and j*f(x) = j*g (x) for xe V. Theorem 1 gives the C* conjugacy
of f and g where f = a—1—-p—r since

B2 a1 12 % e | 5 4 e 3 (70 4 e 2 o
< DA A D5 AN DD < 1.
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The extra derivatives of h exist as remarked in the proof of Theorem

P QED.

Using the methods of the proof of Theorem 1 differently we can
get a stronger statement about the differentiability of the foliation

Ws (x, f).

Corollary 4. Let f be a C* difffomorphism contracting along V.
Assume

Dy f T |- 1DF ) [ [ Paf ) || < 1

for all xe V. Then the set of W*(x,f) for xe V form a C*~! foliation
of Ws(V,f)n U, where U is a neighborhood of V.

The proof is contained in §5. :

Using the estimates in [7] the above proofs should go over to
flows. However beware of the proof of linearization there. “By induction”
does not work since the variation equation does not satisfy a global
Lipschitz constant.

We would like to discuss how the above theorems relate to some
of the results in [4], [5] and [8]. In [5] f is called r-normally hyperbolic
if there is an integer n such that

[ Do f ™" (" )| [ Daf" ) || < 1
and 1D 2l Bt < L

for all x € V. This condition is similar but different than the condition
we require in Theorem 2 and Corollaries 3 and 4. If f is r-normally
hyperbolic, then W*(V,f), W*(V,f), and V are C" submanifolds. See
[5]. Also for each xe V W*(x,f) and W*(x,f) are C" and they vary
continuously in the C" topology. Corollaries 3 and 4 give that they
vary differentiably.

[8] shows that if f is 1-normally hyperbolic then f is C° conjugate
to a map g that preserves the fibers of pr : U < M—V and such that g is
linear on fibers of pr: U < M — V. Corollary 3 gives a differentiable
conjugacy in the contracting case to a fiber preserving map g but g
is not necessarily linear on fibers.

If V is replaced by an expanding attractor, then [4,6.4] gives
conditions under which the stable manifolds of points form a C! folia-
tion of a neighborhood. Corollary 4 possibily could be adapted to this
setting to give the same answer. The result in [4] only apply to stable
manifolds of points W*(x,f) = {ye M :p(f/(x), f/(y)) > 0 as j > oo}
and not the strong stable manifolds of points. Thus when V is only
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an attractor the results are different. Also we give a condition that
insures higher differentiability.

Added in proof: M. Shub pointed out to me that [4,6.4] and the
C" section theorem prove Corollary 4.

2. Notation and definitions

Since we are only interested in a conjugacy of difffomorphisms
in a neighborhood of V, we can take a tubular neighborhood of V.
Thus we can consider M as a vector bundle over V, pr: M — V. Let
p:TM — M be the projection of the tangent bundle of M to M -|- |
is a norm induced by a Riemannian metric on TM. Let p be the distance
between points of M induced by |-|. ‘

Let LY (T, M, T, M) be the (linear) space of all symmetric r-linear
maps from T, M to T,M.* Let J*(M,M) =M x M and J"(M,M) =
=u{(xy) LI (T, M, T, M) x ... x L(T, M, T,M):x,yeM}. If h:M —>M is
Cr let j"h(x) = (x,h(x),Dh(x),...,D" h(x))eJ" (M, M). This is called
the r-jet of h at x. Let mny : J° (M, M) - M be the projection on the first
factor and =, : J" (M, M) — J'~! (M, M) be the natural projection for
r>1 Let Y, =mgo...0om, :J (M,M)—> M. All of these projections
are fiber bundles. ¥, : J" (M, M) > M is called the r-jet bundle. Define
a distance on J° (M, M) by

Po((x1,X3), (¥1,¥,) =max{p(x;,y):i =12}

Let the distance on each fiber of =, : J" (M, M) —» J"~! (M, M) be the
usual one induced by |-| on TM,

pr((x9y9A07' b -’Ar): (x7y5A05' 2 '7Ar—l 5Br)) = ||Ar_Br|Ir £

sup {|[(4,-B,) (vy,..,v,)| :v,€ T, M and |v;| =1 for all i}.
By using the distance on the base space there is an induced (noncano-
nical) distance on J" (M, M). Given a subset U = M let J" (M, U), M) =

=y ! (U). Let TJ" (M, U) M) be the space of continuous sections of
¥, J"(M,U),M) - U.

3. Proof of Theorem 1

I. First we prove that the conjugacy exists along W*(V,f). We
use the notation given in § 1 and §2. By the assumptions of Theorem 1
there exists an integer n and a 0 < u < 1 such that

| DF =" (f* ) ||| DF" ) ||° - || D" () | E5 ||* <

*Note: Higher derivatives are only defined in terms of local coordinates. Therefore
cover a neigborhood of V with a finite number of coordinate charts and define the jets
and norms in terms of these coordinate charts.
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for all xe V. Below we construct a conjugacy h between f" and g".
Because of its special form, h ~ lim g ™ ™  h is also a conjugacy
j=o :
between f and g. Thus for convenience we take n = 1. The reader
can check the details for n > 1. The constant y is fixed during the proof.

We define the following numbers,
a,=||Dg™ ' (x)|| xeM

o ={P(fX, PipEy e Xe (B -V
* lim{A,:yeW(V,f/)-V and y->x} xeV

B, = | Dfx)| xews ().

Note for xe ¥, A, < || Df(x)|E;|| <1 and

a; <A,<1<B,. By our assumption a, BfA: * <y

for x e V. There exist neighborhoods
n@)={xeWsV,f):p(x,V)<d) and O of {(mm):meV} in M xM

such that (i) fh(d) < n(6) and (ii) if xen(d) and (fx, y)e O then
a A" e

For simplicity of notation let
Jr=Jr(M,1(9), M) =y (1(5)) and TJ" be the

continuous sections of , : J" — n ().
We define a second norm on the fibers of «, : J* — J"~! (possibly
infinite) by o, (c!,c?) =

sup{p e s AW p X VY eV ixen(O)o V] orin el =g ¢®

:

If ceTJ° then we can identify it with the map ¢, : 1 (6) = M such
that ‘e (x) =, ¢, (x)). Let

®,:TJ° > TJ° be defined by ®,(c) =d where

dix) =97 L eof ) =12 4g7  co N ) Let @, :TJ .~ T.JF be defined
by @, (c) = d such that for each x d(x) = j (g ! hf)(x) where j" h(fx) =
= c(fx). First we prove @, contracts along fibers of =, .
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Lemma ¥l »Let ek cleBiFrwith fvet =, c?y 6 ichyedP<oo
and Tyo...om, c (fx)e @ for all xen(d), i =1,2.

Then o, (®,¢', ®,c%) < po,(c ;)

Proof :
Assume r > 1. g, (®,c',®,c%) =
sup {p, (@, c' (x), @, > (x))p(x, V)" " :xen(@d)-V}
< sup {p, (c' (fx), (X)) a,BLp(x, V)"
xen @)~V and = .\..sm, ¢ (fx) = (x, »)}.
This last inequality is true using the formula for higher derivatives
of a composition of functions and the fact that m,c' =m,c*. Then
this is

< sup {p, (" (fx), > (S o (fx, V) ™" :xen(®) -V} < po,(c', c?).

When r =0, p(x, V) * < up(fx,V)™*. The details are left to
the reader. QE.D.

Let I,eTJ" be defined by I,(x) =" (id) (x) = (x, x,id,,0,...,0)
where id : M —» M is the identity map and id, : T, M — T, M is the
identity map. Let Cy, = a4 (@, I, I,). C, is finite because j* f(x) = j* g (x)
for all xe V and V is compact. Let Dy = Co(1—p)~". Let O, be the
zero section of m,:J" = J 7!, Let F4={celJ®:04(c,1o) < Do},
and &, = {celJ :n,ce #,_, and 0,(c,0, 7, c) < oo} for r > 1.

~ Since 0, (¢, Iy) < D, for ce F, there exists a 6 > 0 smaller than
above if necessary, such that for ce #, and xen(d), then c(fx)e 0.

Lemma 3.2: ®,:T'J" - I'J" maps %
Proof :

into itself.

r

We prove the lemma by induction. #_,; = ¢ is invariant by ®_,.
Assume %,_, is invariant by ®, ;. Let ce%,. Then 0,(®,c,
0,7,®,c) < 0,(®,c, ®,0,m,c) + 0,(9,0,n,c, 0,1,P,c) < po,(c,0,m,.c) +
+0,(®,0,m,c0,®,_, = c).Forr = 0thislast termis <puDy+Co<Dj.
For r > 0 it is < oo.
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Lemma 33: ®,: F, > F
Proof":
We use the chain rule for higher derivatives of a composition.
o, (@,ct,®, c? =sup{p, (@,c',®,H)p(x, V)¢ :xen©d)-V}
< (constant)sup {|| D'g ™" (v) || p;, (c* (fX), ¢*(fX))...
p;(c* (fx), (|| D fX)]...[| DY fx) || p(x, V)~
XER@B) -V, Byo...on, 2 (fX) =Xy Lgigr,
j=j ¥ iy byt oo F h=a)
+ (constant) sup {p; (¢~ (1), g~ ) | D (M) ...
| Disct () ||| D fx)||... | DY fx) | p e, V) C:
Ty vy Bl O 000 72 X W )E

is continuous in terms of o,.

r

Here the constants depend only on the binomial coefficients. We look
at the first summation and leave the second to the reader. It is
< (congtonit) fup. {0, 4’ ) itny e, dal, VIR p(x, ¥y P T M iy,
1 <j <r} < (constant) g, (c',c?). These last two constants include
the supremum of derivatives of f and g~'. From this it follows that
o, is continuous.

Q.E.D.

By lemma 3.1, ®,:%,—~ %, is a contraction in terms of o,.
Thus there is a unique attractive fixed point, c®. Attractive means
that for each ce #, go(c®, ®)c) >0 as j »> co. Assume that F,_,
has an attractive fixed point. By Lemma 3.3, @, is continuous. By Lemma
32, ®,: #, - %, contracts along fibers of n, : #, - #,_, by a factor
of . By the fiber contraction theorem, [4,1.2], @, has a unique fixed
point in &, and it is attractive.

Let id : M — M be the identify difftfomerphism and I,(x) =j" (id)(x).
Then ®, (I ;) converges (in the uniform topology of sections of y, : J"—/(6))

to a section cel'J". Let c(x)=(x, co(x),...,cp(x)) with c(x)eL(TM, T, M) -

for i = 1. By the uniform convergence it follows that c; :n(6) —
— UL (T, M, T,M):xen(8), ye M} is ¢*~'. Thus the conditions of
the Whitney Extension Theorem are satisfied. See [1, p. 120] for a
statement of the theorem. There exists a C? function h : M — M such
that for xen (8)j® h(x) = c(x). Dh(x) = id, for xe V so h is a local
diffeomorphism in a neighborhood of V. Thus h™' gh is defined in a
neighborhood of V in M and jA(h~'gh)x)=j’ f(x) for xen(é)= W*(V,f).
~This completes the conjugacy of f and g along W*(V, f).
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Remark: In Corollary 3 we noted that more derivatives of the
conjugacy existed along the fibers. In that setting we have C* diffeo-
morphisms such that Dj (prog)(x) =0 for 1 <j<a and xeV and
f(prx) = pro f(x). Here pr : M — V is a normal bundle. For a>r>$
let J? be the jet bundle of maps with all derivatives D’ D} h(x) for
0<j<pand 0<j+k<r Let p; be the associated norm. Let
m, : Jb — JP~! be as before. For m c' =n, ¢ let a5 (¢, c?) =
sup {0, (€' 2¢® R) p (R, V)" ") “xen(d)~- V. B cl,c2eldf and
n,c! =m, c? then

Ppr (‘1)/1,- c! (x), (I)pr c? (x)) p(x, V)—(a—,-) <

< pp, (€' (f%), c*(fx) a, Bz A5 P p (x, V)"@™". A little check is neces-

“sary to show this depends only on pj,, and not p,. (f preserves fibers).

Then this is < ppy, (c* (fx), ¢ (fx)) p (fx, V)~*™" : Lemma 3.1 follows.
The other details are left to the reader.

IL

Now we can assume f and g are C* and j* f(x) = g(x) for
x e Ws(V,f) = W*and x near V. For x € M define the following numbers

a, =||Df 7 )|

i p(fr, Wop(x, W9)™! x¢ Ws
*= Ylim{b,:y¢ W* and y-x} xeW

B, =|Dg(x)|.

For xeV, a;'<1<b;'<B _, and B _, a}b{™" <pu <1 By
using 4 bump function we can make g (x) = f(x) at points x such
that p (x, V) > 0. (g is then defined on all of M). Also g can be left unchan-
ged at points x with p(x, V) < 6/2. Let n(d) = {xe M: p(x, W) < o}
and 5'(6) = {xe M : p(x, V) < §}. By taking 6 smaller if necessary and
taking &'to be a small neighborhood of {(m,m):me W*} in M x M,
we can insure that for xen/(§) and (f ' x,y)e Zit follows that
B.a % < i

Let @, be induced by h =g h f ~1 That is, in the earlier defini-
tion replace f by f~! and g~ ! by g. Continue as before taking sections
¢ of Y, : J'(n(d), M) - n(J) such that c(x) = j"id (x) for xen(d)—n'(d).
Lemmas 3.1, 3.2, and 3.3, apply to these sections. The limit @, (I,) gives
the y-jet of the conjugacy h on n(d).

Q.E.D.
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4. Proof of Theorem 2

In this section we assume Ty M = TV@® E°*. F' = TVis differen-
tiable. Since we do not assume the bundles are invariant we can appro-
ximate E* by F? that is differentiable. Write D, h(z) = D h (z) | F*. We
assume in the theorem that ||D, /'~ (2| ||Df(z)||“ HIDsf(2)|| <u<1
for all zeV. pr:M -V is the normal bundle projection. For
ceJ (M, V), V) we write ¢(z) = (2,¢0(2),...,¢,(2)) with ¢ (2) €
LY(T, M, FL,,).

Let &, be the set of sections ¢ of J"((M, V), V) such that for each
ze V, there is a C" function h : M — V such that h/V = id and c(z) =
j" h(z). This is equivalent to assuming for each ze V (i) my o-- - ° m, c(2) =
(z,z) and (ii) c*(z)/F' x---x F! = D*(id)(z) where id:V — V is the
identify function.

Let g, : M — V be defined by g, (z) = fo pr(z). When we write
gi! we mean g;': V> V.

Define ®,:%, > %, by ®,c =s such that for each z s(z) =
i (g1 ' hf)(z) where j" h(fz) = c¢(fz). By abuse of notation

D,c(2) =7 (91" cf) (.

Lemma 4: let ¢!, e
p, (@, c', ®,c*) < pup,(ct, ).

Proof :
i g oo A 02) < sup {HD191 L2 ler (f2) - < (f2) (Df )Y || :z€ V'

< sup {UD f1 (f2) ||p,(c 2)||D3 S@|D f@ |~ " :zeV} since
Clgll BE g o e T B

Then

be such:-that .z, ¢}i=m;c* ;+ Then

r

p(@.c', @,c*) < p, (!, A
Q.E.D.

As in the proof of Theorem 1, we can apply the fiber contraction
principle to find a ce &, such that @, (c) =c. Let seTJH(M, V), M)
be given by s(z) = (c(2), j*(id; (2)), i.e. the component of s in F? in the
range is like the jet of the identify function on fibers. (This has meaning
at the jet level but not as maps). By the uniform convergence of @ (j* pr)
to ¢, it follows that s satisfies the conditions of the Whitney Extension
Theorem. There exists a C* h such that j*h(z) = s(z) for ze V. h is a
diffefomorphism on a neighborhood of V because of the form of the
derivatives at points of V. Then g =h f h™* has D’; (prog) (z) =
D’; g, (z) = 0 for ze V where g, is as above.

Q.E.D.
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5. Proof of Corollary 4.

By applying Theorem 2 we can assume D (prof)(x) =0 for
1<j<aand xeV. Define g, : U -V by g, (x) = f, opr(x). In the
proof of Theorem 1, replace a, ||Dg '®)] by a.=|Pgr' )|
where g7 ' :V > V. Next consider jets in J" = J"(y(d), V) instead of
Jr (7(d), M). Define @, :T'J" - I'J" by ®,(c) =d such that for each
x d(x) = j (g7 " h ) (x) where J" h(fx) = ¢ (f¥).

As in the earlier proof we can find a ¢ such that ®,_, ¢ =cand ¢
satisfies the conditions of the Whitney Extension Theorem. There
exists a C*~ ! function h : M — V such that g7 * hf = h. h is a projection
onto V and defines a C*~! foliation - Since h f = g, h it follows that
f preserves this foliation - Since the foliation is tangent to E* it follows
it is W* (x,f).

Q.E.D.
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