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The classical theory of curves in euclidean space R" centers on
the concept of certain curvature functions K, ,..., K,_; which appear
in the Frenét formulas. Since the intrinsic geometry of a real curve
is trivial, these functions are decidedly extrinsic invariants. Moreover,
by the fundamental theorem for space curves, they are mutually inde-
pendent and completely determine the path of the curve in R". This
situation, of course, holds in any manifold of constant sectional cur-
vature.

Our purpose here is to explore the analogous situation in the
complex case. Most of the results we discuss are due to E. Calabi and
S. S. Chern. Calabi showed [2] that associated to a complex analytic
curve in complex euclidean space C” there are also n—1 real-valued
curvature functions, defined in a manner entirely analogous to the
real case. In this situation, however, the curvature functions are intrinsic.
That is, they can be computed in terms of the induced riemannian
metric.

Calabi actually gives explicit formulas for these curvatures in terms
of the metric. However, in principle their intrinsic nature can be de-
duced from his general theorem [1] which states that: any complex
submanifold of a (simply-connected, complete) space of constant holo-
morphic curvature is completely determined, up to holomorphic isometries
of the ambient space, by its induced metric.

This theorem has the following corollary. Let C be a non-singular,
algebraic curve in complex projective n-space CP", and assume that
CP" is equipped with the standard Fubini-Study metric. (See below.)
Then all the extrinsic (projective) invariants of C can be computed in
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terms of the induced metric. In what follows we shall show how to
compute certain of these invariants explicitly. For example, it will be
shown that the degree v, of the k™ order osculating curve can be rea-
lized as

1
= 5 IKy dA

where K, is the k" curvature function. (See Chern [3].) From this one
can establish the classical Pliicker formulas.

We will then formulate and prove some results concerning the
differential geometry of algebraic curves, which include a theorem of
Nomizu and Smyth [5]. We shall also establish a sequence of “Pliicker
formulas” for compact, complex curves in a complex torus.

Finally we shall define a sequence of higher order integral inva-
riants for complete minimal surfaces in euclidean space, and establish
some formulas relating them.

The main purpose of this exposition is to establish some ground
work for the study of complex submanifolds from the point of view
of riemannian geometry. In general, such a study should consider the
higher order osculating spaces of the submanifold. We shall do this
for the one-dimensional case. The viewpoint developed here should
be useful in studying, for example, non-compact varieties and varieties
with singularities.

1. A Brief Geometrical Description of the Curvature Functions.

Let M be a complex n-manifold with a hermitian metric of constant
holomorphic curvature. Let V denote the riemannian connection and
J the almost complex structure of M. Since M is Kahlerian we have

(L1) Vx(UY) = J(Vx Y)

for any tangent vector fields X, Y on M.

Let C =« M be a non-singular holomorphic curve, that is, a com-
plex submanifold of complex dimension one. At any point p e C, the
second fundamental form of C is defined as follows. Let X, Ye T,(C)
(the tangent space of C at p) and extend these to local tangent vector
fields X, ¥ on C. Then the normal vector

12 . Byy = (VzY)}
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where N, denotes projection onto N,(C) = T,(C)*, is independent
of the choice of the extensions X, Y. Furthermore since Vg¥ —VgX =
[X, Y], we have By y = By x. Thus, the map B* : T,(C) x T,(C) - N,(C)
is a well defined, symmetric, bilinear mapping, called the second fun-
damental form of C at p.

Since C is a complex submanifold, both T,(C) and N, (C) are
complex, ie., J-invariant subspaces of T,(M). We now observe that
the second fundamental form B is, in fact, complex bilinear. To see this,
let X, Y, X, Y be as above. Then (ViJY)¥ = (JVzY)' = = J(VgY)", and
so from (1.2) and the symmetry of B' we have

(13) Byyy =JBxy =Bixy.

(This is exactly the statement that B' is complex bilinear.)

It follows from (1.3) that
|Be1 ez\ Kl (p)

constant for all unit vectors e, , e, € T, (C). The function K, is called
the first curvature function of the surface. From the complex analyti-
city of B it follows that the function K, vanishes only at isolated points
of C. Furthermore, taking the images of B', we get a holomorphic
complex line bundle over that part of where K; # 0. It can be shown
that this bundle, denoted N, (C) extends to all of C.

Suppose K, (p) # 0 and choose vectors X, Y, Ze T,(C). Extend

these vectors to 1oca1 fields X, Y Z on C as above We now consider:
the normal vector

(1.4) B} vz = (VaVi2)*

where N, denotes projection onto [T,(C)@® N, (C)]*. Using (1.1) and
the fact that M has constant holomorphic sectional curvature (See
the formula in [6] for example.), one can easily show that B> is a com-
plex trilinear function from T,(C) into N,(C). We then define

BZ e ex2
Kx (p) = Pl

K, (p)

for any unit vectors e, e,, e;€ T,(C). This again vanishes only at
isolated points, and we obtain a second holomorphic complex line
bundle N, defined over C.
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Proceeding in the same way, we obtain for each k, 1 S k < n-1,
a (k + 1)* fundamental form

(15) BY,,..., qxe1 = (Y%, Vg, Vi, Xes )™
which is complex multilinear, and we set
Bk 2
1.6 K, =182t
() ST TR, SN

where e, ,...,¢.,€T,(C) are unit vectors.

We have shown that at each point pe C, the normal space N, (C)
decomposes into one-(complex)-dimensional subspaces N; @ ... ® N,
such that for each k, T,(C) ® N; @ ... @ N, is the k™ order osculating
space of the curve. A similar situation occurs at non-degenerate points
of a real curve in R". It is straightforward to see that the definition
of the curvature functions above is in complete analogy with the de-
finition in the real case.

2. An Intrinsic Computation of the Curvature Functions.

Let M"(c) denote the complete, simply-connected complex ma-
nifold of constant holomorphic curvature ¢. If ¢ > 0, M" (¢) is the com-
plex projective n-space with the Fubini-Study metric; if c = 0, M" (¢) = C"
with the flat metric; if ¢ < 0, M"(c) is the unit complex n-disk with
the Poincare-Bergmann metric. Let R be a Riemann surface and let
1 R - M"(c) be a holomorphic immersion. In terms of a local coor-
dinate z = x + iy on R we can express the metric induced by y as

2.1 ds® = 2F |dz}*.

By means of the operators d/dz = 4(8/0x —id/0v) and (d/dz = 3(0/0x +
i0/0y), the Laplace-Beltrami operator of this metric can be written
o Joad { o

297 LD SHTE L
=2 £ Eidzidz’

Therefore, the Gauss curvature is given by the formula

idhidi ad

It is now possible to define inductively a sequence of non-negative
functions on M as follows.
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Lemma 1. (E. Calabi [2]) Suppose that the image Y(R) = M"(c)
lies in no proper, totally geodesic submanifold, of M" (c). Then we can
define a sequence of functions {F etd by setting

Fo =
(2.4 F, =F
; il 8 (k + 1)
and’ Fy . g o (E pr logiFy ++ > cF

for k& 1,/ ,nFor B SkEn, F, is non-negative and vanishes only
at isolated points. The succeeding function Fy., is defined by (2.4) away
from those points but extends to a real analytic function on all of R. The
function F,., =0.

Conversely, we also have

Theorem 1. (E. Calabi [1], [2]). Let ds* = 2F |dz|* be a real ana-
Iytic metric on R, and suppuse that the sequence of functions (s,
given by (2.4) can be defined with the same properties as in Lemma 1.
Then there exists a unique, holomorphic, isometric immersion of R into
M* (c).

("l)"hese intrinsically defined functions F, carry information about
the higher order jets of the (uniquely determined) immersion. To exploit
this information we look for combinations of the F)’s which are inde-
pendent of local coordinates. The most important of these is the fol-
lowing. For each k, 1 < k < n, we define the function

Fk+1 Fk—l
29 K, =—"———,
( ) k FFk
and for convenience we set
c
KO e —2“

Clearly K, = 0, and for k < n, K, =0 only at isolated points. X,=0)
Furthermore, from (2.2) and (2.4) we see that

(2.6) K, =}Alog F, + (k + 1)c).

Since these curvature functions are defined recursively, there exist
certain non-trivial relationships between them. The ones of interest to
us here are the following.
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Lemma 2. Let F, and K, be defined as above. Then
(27 3AlogK, =Ky,i + K;_,~-2K;+ K for k=1,...,n-1
(2.8) 1Alog(K,...K,_))=(@2n-1)K,-nK,-K,_,
(29 K, =2K,-K
where K is the Gauss curvature of the surface.

Proof. (2.3), (2.5) and (2.6) = (2.7). (2.3) and (2.6) = (2.9). (2.7) and
2.9) = (2.9).

We leave it to the reader to verify that the functions K, defined
here coincide with the curvature functions in 1 up to a multiplicative
factor of 2. This is most easily done by using the formulas (3.4) or (4.1),
derived later. We point out, however, that equation (2.9) is simply
the Gauss curvature equation of the immersed surface.

3. Curves in Complex Projective Space.

We turn our attention now to the case where the holomorphic
curvature ¢ = 1. Let C"*! be the (n + 1)-dimensional complex number
space and define an equivalence relation ~ on C"*' ~ {0} by setting
Z ~ Z'iff 3o e C such that Z = «Z'. The quotient space CP" = (C"*! ~
{0})/~ is a complex manifold called complex projective n-space. The
(n + l)-tuples Z =(Z,,...,Z,)eC"*! ~ {0} are called homogenecus
cocrdinates for CP".

Consider the symmetric 2-form given in C"*' ~ {0} by

2
(351 ds2 =4 Z|[;(|i4Z
where |ZAdZ|* = |Z|* |dZ|* - |< Z,dZ >|*. This form is invariant under
complex scalar multiplication in C"*! and projects to a riemannian
metric on CP", of constant holomorphic curvature 1, called the Fu-
bini-Study metric.

The projective lines CP' = CP", given by complex planes in
homogeneous coordinates, are all isometric to the unit 2-sphere in R?
and, therefore, have area 4m.
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We define a closed exterior 2-form in C"*' ~ {0} by setting

o = 406 log |Z|?

where 0 = ) dZ, A??% is the usual operator on forms. @ projects
k=0 k

to a closed non-degenerate 2-form in CP", called the Kdhler form. It
has the property that restricted to any complex line in any tangent
space of CP", it is the positively oriented unit 2-form. Since
H,(CP"; Z) = Z, where the generator is any projective line, we have
the following. Let y: R — CP" be a holomorphic mapping where R is
a compact Riemann surface. Then the volume of R induced by this mapping
is 4mn where n is the homology degree of V.

We now consider a non-singular algebraic curve in CP", that is,
a holomorphic immersion y: R — CP" where R is a compact Riemann
surface. Given a local parameter z on R, we may express this immersion
in homogeneous coordinates by an (n + 1)-tuple of holomorphic
functions.

(32) l//(Z) =7 (‘pO (2)7 g0 ‘//1: (Z))

Note that the expression (3.2) is well-defined up to scalar multipli-

cation by a holomorphic function. We may assume that the y, are

never simultaneously zero, for if, say, they had a common zero of order m

at a point z,, then we could replace y(z) by the functions (1/(z - Zo)" W (2).
The metric induced on R by ¥ has the form

ds* = 2F |dz|2
where
AW d d ;
(3.3) F=2 ll/lllfl“ =2 o — log [w|>.

Lemma 3. Let ds* = 2F |dz|" be the metric given by (3.3) and let
F, be the sequence of associated functions given in Lemma 1. Then

WAV AL AYBP
(34) Fk iy 2 |l//|2k+2

for each k.

Proof. By equation (3.3), the lemma holds for k = L. We shall
proceed by induction.
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To begin we observe that formulas (3.3) and (3.4) remain inva-
riant under unitary transformations of the homogeneous coordinates
of Y and under scalar multiplication of y by a non-zero holomorphic
function. Consequently, if we fix a point z, in the coordinate neigh-
borhood, then we may assume, without loss of generality, that the
functions d*y/dz* have the form:

Ylz5) ' ="(a§7°0,°0,%0, 711 0)
. W(zo) = (b1, a1, 0, 0,...,0)
(3.5) Y'(zo) = (bZ,Oo b2,1 AR
l//(n) (ZO) = (bn,O 3 bn,l giieielts ,bn,n s an)-

For each k =0,...,n, consider the holomorphic vector
(3.6) Yo=Y AY A A YD
(having (}%}) components). Then at z =z, we have

U (zo) = l@o @n s By 0s O, 0).

We may, of course, assume that y(R) lies in no proper linear sub-
space of CP". Hence, the function v, vanishes only at isolated points,
and we may assume that z, is not'one of those points, so thata, . .. a, # 0.

,F,. Then

d.d k+1
a-z' E lOng—<—2 )F

_d i 2 A il
_E dz log wlk' iz |¢k|4
; |(a0 1) g ak+1|2

lao . . . al*

Suppose now (3.4) holds for F,,...

at z = z,. Thus, at z = z,

i g d d ke
Fk+1—Fk_1 <EdAZIOng+< 5 >F)

= 2|a0. B ak+1|2

= 2ll//k+1|2 .

The formula now extends to the points where ¢, =0 by continuity,
and the lemma is proved.
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Observe now ‘that the local maps ¥, (z) of equation (3.6) give a
well defined, holomorphic mapping

4
called the k™ osculating curve of our original curve. By equation (3.3)
the metric do? induced on R by Y, has the form

dO’,% = 2Gk|dZ|2
where

, d d
Gk:2 E E logilﬁk|2.

It now follows directly from Lemma 3 and equation (2.6) that the K
curvature can be expressed as

_ G, _doy
(3.7) Ky =5 =42

in analogy with the classical formula of Gauss.

As remarked above, the volume of the k™ osculating curve is 47
where v, is an integer (the homology degree of ) called the order
of the k™ osculating curve. From (3.7) we immediately obtain the
following.

Proposition 1. Let ds* be a metric on a compact Riemann surface
R, which satisfies the conditions of Theorem 1. Let K, be the k* curva-
ture function, defined by formula (2.5). Then the integrated k* curvature

1
(3.8) W=Egmm

is an integer equal to the order of the kth osculating curve of the (uni-
quely determined) isometric immersion of R into CP".

We now examine a second invariant. Let p e R and choose a local
coordinate z for R such that p corresponds to z = 0. By making a suita-
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ble unitary change of homogeneous coordinates we may assume that
the functions Y(z) = (Yo(2),...,¥,.(2) have the form:

Vo (2) = Co0 + €01zt s
V() =201 2+ €122 +..)

Y (2) = ghot et Spnti(og e il - 4

where each ¢, ; is non-zero and each §, = &, (p) is a non-negative integer
which is zero except at a finite number of points. We define

Oy 5= Z Ok (D).
peR

(Note that since Y: R —» CP" is non-singular, o, = 0.)
A straightforward computation from (3.4) and (2.5) shows that if
Y has the form (3.9) above, then locally

(3.10) K, (2) = c|z|*™ + 0(|z*** ).

It now follows from Green's Identity that
1

(3.11) o =44*HA log K, dA.
TR

Hence, from equations (2.7),(3.8), (3.11) and the classical Gauss-Bonnet
formula, we get an intrinsic proof of the following. (See [7])

Theorem 2 (The Pliicker formulas).
(3.12) O = 20— Ve 1 — Vi1 +2(9-1)
where v_, =0 and g = the genus of R.

Recall now that each of the functions K, ,..., K, 18 non-negative
and vanishes only at isolated points. We now have .

Corollary 1. Let y: R — CP" be a compact, non-singular curve of
genus g for which K, > 0,...,K,_; >0 Theng =0 and

v, =(k+ 1)(n—k); k=0,...,n
54

|
4

Proof. Since K, >0, it follows from (3.11) that o, =0; k=0,...,n-1.
Applying the Pliicker formulas inductively we get

ve =(k + 1) (vo + k(g-1)

for k =0,...,n However, v, =0 since K, = 0. Thus, we have v, =
n(1 - g); and since v, = (1/471) x (area of the curve) > 0, we must have
g =0, vo = n. This completes the proof.

We now introduce the canonical example of a curve with the
properties assumed in Corollary 1. It has been shown by Calabi [1]
that, modulo holomorphic congruences, there is only one curve C,
of constant Gauss curvature in CP" which does not lie in any linear
subspace. This curve has curvature 1/n and is given by the following
embedding of CP' - CP":

(OUBKY 57z, 75, ) L5 s p ey i SRy By R 57 e,

The curvatures for this curve are

k+ 1)
3.14 e il 1
(3.14) = (nH,
Therefore, by equation (3.7) the k™ osculating curve of C, also has
constant Gauss curvature, and is exactly C . 1),—r - Concerning these
curves we have the following interesting fact.

Proposition 2. (The Quantization Lemma.) Let {: R — CP" be a
non-singular curve whose Gauss curvature K satisfies

1 1
= L gElges
B2

for some k, 1 <k < n. Then KE% and Y(R) = C,.

Proof. Integrating the inequality over R we have
ijdA < ff KdA < ijdA.
k'R R k-1R
Therefore, by the Gauss-Bonnet theorem

v v
4r-2 < 2 G0N
T _47r<47tk_1,

and it follows that k = v,. We now have K—1/k = 0,ff (K- 1/k)dA = 0.
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We conclude that K = 1/k, and that the curve must be congruent to
C, by the uniqueness statement of Theorem 1.

There is, of course, a completely similar statement if we require

%<K§

1
k=1
Observe that the pinching must be between numbers of the sort
1/k and 1/(k—1). In fact, by perturbing the coefficients of the mono-
mials in equation (3.13),, we obtain curves whose Gauss curvature
functions take values in arbitrarily small, but non-trivial, intervals
about 1/n.

As a natural cdmplement to Proposition 2 one might conjecture
that if K < 1 (for a curve in-CP"), then K = 1/n. For n = 2 this is indeed

the case. Observe that from equations (2.7) and (2.9) we have that for
a curve in CP?

(3.15) AlogK,; = 6<K—%>
where
(3.16) Kii=1'sK.

From these equations we obtain

Proposition 3 (Nomizu and Smyth [5]). Let C be a compact, non-
singular curve in CP? whose Gauss curvature K satisfies

K

IA

ik
2
' Then K'=4 and C =C,.

Proof. By (3.16) we have K, > 0, and therefore, by (3.15),
if (K-i>dA =0,
R 2

It follows immediately that K =3, and so C =C,.

Using the equations of 2 we have an immediate generalization
of this proposition.
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Theorem 3. Let C be a compact, non-singular curve in CP" for which
K,>0,...,K,_; > 0. Suppose that

1

K >
1 ==moes

and the Gauss curvature

K

I\

ot
=

Then K =1 and C =C,.

n

Proof. By (3.16) our conditions imply that

n’Kl + Kn—l g n“'%.

Hence, by equation (2.8) we have

d,

1
> Alog(K; ... K,-1) =<n—7>—(nK1 EES |

Since K, ... K,_; > 0, this implies K, .., K,_; = constant and
nK, + K,_, = n—%. We conclude that K = 1/n and C = C,.
Note that Theorem 3 is exactly Proposition 3 for the case n = 2.
Note also that the conditions of Theorem 3 can be reinterpreted
by saying
i, K

Kn—l = Kn—l
where K, and K,_, are the curvatures of C, given in (3.14).

It would be interesting to know whether Theorem 3 continues
to hold under slightly weaker hypotheses.

4. Curves in a Complex Torus.

Let R be a compact Riemann surfaceand y: R > T"a holomorphic
immersion into a complex n-torus T" with the flat metric do”® = 2|dz|*.
Such curves arise from the study of periodic minimal surfaces. For
example, let ¢: A = {|z| < 1} » R3be the classical Schwartz minimal
surface and let ¢: A — R® be its conjugate surface. We then define a
holomorphic map ¥: A— C* =R} x i R by ¢ = (¢,$). The image
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Y(R) = C* is an embedded curve, invariant under a 6-dimensional
lattice Z6 of translations. Thus, Y(A)/Z® = C*/Z° = T? is a non-sin-
gular compact curve in T2,

A second method of generating such curves is to take the Picard
mapping ¥: R = T? obtained by integrating a properly chosen basis
of holomorphic differentials on R.

The map y: R — T"induces a metric on R of the form ds* = 2F|dz|?,

and we can obtain inductively the functions F,, F;, F,,... and the
curvatures K, =0, K;, K,,... as in 2. Proceeding as in the proof
of Lemma 3 one can show that

4.1) Fk=2|1//’/\~-~/\lp(”>|2; k=12...

In analogy with 3 we now define
1
V. = EIR" Kk dA
and
1
o, =——ffAlog K, dA.
4n R

It follows from Lemma 2 that we again have the “Pliicker formulas”

4.2) Or = 2V~ Vi1 — Vir1 + 29— 1),

Observe that by using (4.1) and proceeding as in° 3 we can show
that ¢, is a non-negative integer equal to the number of singularities
in the (k + 1)* osculating bundle Ny, ;.

Note, moreover, that v, = 0and v, = [[K;dA = —[fKdA =2g-2.
(Therefore g > 1, and if g = 1, the curve is a totally geodesic torus.)
From (4.1) it then follows that

vo =0
Ve =k +2)(k + 1)(9_1)_6k_20'k—1—"'—k0'1,

In particular, each of the curvatures v is an integer.

5. Complete Minimal Surfaces of Finite Total Curvature.

By a minimal surface in R" we mean a conformal immersion
¢: R » R" of a Riemann surface R into R” such that each component
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function of ¢ = (¢,,...,¢,) is harmonic. In terms of local coordi-
nates, ¢ is harmonic if and only if

d d

(5.1) T =0 0

Let ¢: R — R" be a minimal surface. Then for each local coordi-
nate z on R we define the local, C"-valued function

(52) V) = U @ o @) 20

Under a change of coordinates w = w(z) we have that /(z) = y(w)- (dw/dz).
Thus, (5.2) defines a holomorphic map y: R — CP"~'. The fact that
¢ is conformal is equivalent to the condition that

53) v =Y U} =0,
k

so, in fact, Y(R) lies in the hyperquadric Q, , = CP" ', defined in
homogeneous coordinates by the equation

Zick 4+ 28 =0,
Observe that the metric of the minimal surface has the form
ds® = 2F|dz|?
where

F=yP.

Locally, this metric can also be induced by the holomorphic map

®°:R - C"=R" x i R" given by ® = (1/\[2) (¢, §) where each Py is
the harmonic conjugate of ¢,. It follows, therefore, from Lemma 1
that we may define functions F,, F,, F,,... and curvatures K, =0,
K,, K,,... for this metric.

We now introduce on CP"! the renormalized Fubini-Study
metric.

LiinsdZ|?
Z|*

The mapping ¥: R — CP"~! then induces a metric
ds? = 2F |dz|?
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on R which has associated functions F,, F,, F,,... and curvatures

KO = 17 K17K27-" 2
These two metrics are related by the equation
d§2
(5.4) o K

where K is the Gauss curvature of the minimal surface [4]. Moreover,
we have that for each k

Fo=[ Ay A Ayt D

= :l‘p AV A A '/’(k)LZ
Fy |w|2k+2 g

(5.5)

Consequently, the curvatures of the metrics are related by the equations

(5.6) K=-BX 06510 ..
It follows immediately from (5.6) and (5.4) that
vk=,{)k—1;k=1’27'--'

In general, of course, these curvatures will be infinite. Suppose,
however, that at least the first one is finite, that is, suppose that ¢: R — R"
is a complete minimal surface whose total curvature

v, =%¢ =—[f KdA
R

is finite. Then by a theorem of Chern and Osserman [4], the Riemann
surface R is conformally equivalent to a compact Riemann surface R’
punctured at a finite number of points, and the mapping y: R — CP"~ L
extends to a holomorphic mapping of R. We can therefore conclude
that each of the total curvatures v, is an integer. Furthermore, the
function A log K, is integrable over R, since by (2.7) it is a finite sum
of integrable functions. Hence, we may define

i
(B4 T — —EUAlog K, dA

for k = 1,2, ... and obtain, via (2.7), a sequence of “Pliicker formulas”.
Putting this together, we have.
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Theorem 4. Let ¢: R — R" be a complete minimal surface of finite
total (Gaussian) curvature. Then each of the total curvatures

1
Vk = Eg Kk dA
of the surface is a non-negative integer. Furthermore, these integers
satisfy the formulas
O = 2% —Vgr1— Vg + V1
for k =1,2,3,....

We shall give a geometric interpretation at least of the integer
o,. From equation (5.4) and (5.5) we see that

A 712
(5.8) K, ==K = lﬁl‘llll!
Therefore,
il YAy 2
AlogK,dA =4 ke |:log i —log |y|? |dxdy

=-2KdA + 2KdA

where K is the Gauss curvature of the mapping y. It follows that
4 X

(5.9) o & ¥t g KdA.

In the case that n = 3, the quadric @, = CP? is just the curve C,,

and so K = 1. This shows that for n =3,
O — 2"
In general the integral in equation (5.9) can be interpreted, via

the Gauss-Bonnet Theorem, in terms of the topology of R and the
number of umbilic points on the minimal surface.

Note that a non-singular holomorphic curve C in C" is, in par-
ticular, a minimal surface. Therefore, if C is complete in the induced
metric and has finite total curvature, Theorem 4 can be applied.

L. M. P. A, Rio de Janeiro

and University of California, Berkeley
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