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Some Arithmetic Properties of Weierstrass
Points: Hyperelliptic Curves

Joseph H. Silverman

Abstract.  The set of Weierstrass points for pluricanonical linear systems on an algebraic
curve C have been extensively studied from a geometric viewpoint. If the curve is defined
over a number field k, then these n th order Weierstrass points are defined over an algebraic
extension ky of k, and it is an interesting question to ask for the arithmetic properties of the
points and the extension that they generate. In this paper we begin the study of the arithmetic
properties of higher order Weierstrass points in the special case of hyperelliptic curves. We
give an upper bound for the average height of these points, and we show that for sufficiently
large primes p, the first order Weierstrass points and the n th order Weierstrass points remain
distinct modulo p. This limits to some extent the ramification that can occur in the extension
kn/k. We also present two numerical examples which indicate that a complete description of
the ramification is likely to be complicated.

0. Introduction

Let C be a smooth projective curve of genus g > 2 defined over a field k of
characteristic 0. If P is any point of C, then the Riemann-Roch theorem [[4],
IV.1.3] says that there exists a non-constant function on C' which has a pole of
order at most g + 1 at P and no other poles. For most points, the pole of such
a function will have order exactly ¢ + 1. The few remaining points are called
Weierstrass points. Equivalently, by the Riemann-Roch theorem, a point P € C
is a Weierstrass point if
((Kc - g(P)) 21,
where K¢ is a canonical divisor on C.

A curve has only finitely many Weierstrass points. More precisely, it is
possible to assign weights to the Weierstrass points; and then the total weight of
the Weierstrass points is g3 — g. The set of Weierstrass points is defined over
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the field k, and it is an interesting arithmetic question to study the field generated
by these points. Some computations have been done for some special families of
curves, such as Fermat curves and modular curves (cf. [11],) but in general little
seems to be known.

One can also define higher order Weierstrass points by replacing K¢ with
some other divisor D, choosing s > 1 so that for most points £(D — s(P)) =0,
and then asking for which points is £(D —s(P)) > 1? Classically, one takes D =
nKc for n =1,2,... and defines the set of nt? order Weierstrass points of C
to be the set

C[n]={P€eC : {(nK¢ — s(P)) > 1},

where

g ifn=1,
s={(211—1)(!]—1) if n > 2.

Again one can assign weights (cf. Sections 1, 3) in such a way that (for n > 2)
the total weight of the nt® order Weierstrass points is sg.

Mumford [[8], page 11] has suggested that the sets C|[n| are the analogue, for
curves of genus g > 2, of the sets E[n] of points of order n on curves of genus 1
(elliptic curves.) For example, one can use Weierstrass points to rigidify the
space of curves and construct moduli spaces [[8], Appendix 7C], much as is done
with torsion points on elliptic curves and abelian varieties. Further, generalizing
an unpublished result of Mumford, Neeman [9] has shown that the sets Cln|
as n — oo are uniformly distributed in C(C) relative to the Bergman measure
on C.

On the other hand, in characteristic p the sets C[n] do not seem to behave
as nicely as the corresponding E[n]’s. (See, e.g., [6],[10],[12].) This indicates
that the arithmetic theory of the C|[n|’s is likely to be complicated. However,
in view of the vast richness of the arithmetic theory of torsion points on elliptic
curves, it seems worthwhile to pursue Mumford’s analogy and study the arithmetic
theory of higher order Weierstrass points. The purpose of this article is to begin
such a study, concentrating principally on hyperelliptic curves and using mostly
elementary, but computationally rather intricate, methods. Our hope is that this
will provide a foundation on which to build a general theory.

We now briefly summarize the sorts of results we obtain. All results are for
hyperelliptic curves C defined over a number field k. For precise statements of
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the main theorems and some numerical examples, see Sections 1 and 2.

The arithmetic complexity of an algebraic point on C is measured by its height,
say relative to a rational function = : C — P!, We show (Theorem 1.1) that the
average of the heights h(z(P)) for P € C|[n] is bounded above by O¢ (log n)
as n — oo. Using our height estimate, we give a weak lower bound for the
degree of the field generated by C[n] (Corollary 1.2). Unfortunately, for a fixed
curve C, this lower bound does not go to infinity with n.

For general curves (of genus > 4), the C|[n]’s for differing n’s are undoubtedly
disjoint; but for hyperelliptic curves one always has C[1] C C|[n]. Let v be a
place of k of characteristic p. Suppose that p > 2n(g — 1) and that C has good
reduction at v. We then show that if P € C|[n] and if the reduction P (mod v)

lies in C[1] (mod v), then P € C[1]. This limits (to some extent) the ramification
in k(C|[n]).

Of course, the question one really wants to answer is for which v does the
reduction map C[n] — C (mod v) fail to be injective. In Section 2 we present
some numerical data for the curves y? = z% + 1 and y? = % 4 1 which shows
that the set of such v behaves rather irregularly, but at the same time consists only

of comparatively small primes. At present, we are unable to give a theoretical
explanation for this behavior.

1. The main theorems

We begin by setting some notation, which will remain fixed throughout this paper.

k a number field.

C/k a hyperelliptic curve defined by y* = f(z), where f(z) € k[z] is a
monic polynomial with Disc(f) # 0.

g > 2 the genus of C.

n > 2 an integer.
s = (2n - 1)(g - 1).
I =n(g-1)+1

J =(m-1)@g-1)-1=s-1
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C[n] the set of n*h order Weierstrass points of C, defined as
Cln] = {P€C : {nKc — s(P)) 2 1}.
We note that for hyperelliptic curves one always has the inclusion
C[1] c C[n]. The set C[1] consists of the points with y = 0, to-
gether with one point “at infinity” if deg(f) is odd.

wt(P) the weight of a Weierstrass point P € C|[n]. See Section 3 for the
definition of wt(P). We note that the total weight >°pecin) wt(P)
equals s%g, while the total weight excluding the points in C[1] is
> wt(P) =4glJ.

PeC|n]

p¢cli]
Our first result gives an upper bound for the average height of the points

in C|n].

Theorem 1.1. Let h: @ — [0, 00| be the absolute logarithmic height function.
(See, e.g., [5].) Let h(f) denote the height of the projective point defined by
the coefficients of the polynomial f(z). Then

1 h(f) +3logn
— 3" wt(P)-h(z(P)) < =————+O(1).
4917 Lo %
P¢Cl]

The O(1) is an absolute constant.

We can use Theorem 1.1 to give a weak estimate for the degree of the field
generated by C|n].

Corollary 1.2.

log ng + O(1)
h(.f) +logn +0(1) .
g

[k(C[n]~C[1]) : k] >

The > constant and the O(1) constants are absolute.
As a particular example of Corollary 1.2, consider the curves
Ci:yl=2z(z-1)(z-2):--(z— d).

Then
logn

o8 sk d
logd

0g
dlogd

as n — oo subject to

[@(Caln]) : Q] >

DUNE ARIINMEILILU FRUEKILIED Ul WEIEKDIKADD FUINID 1D

Next we look at the behavior of the Weierstrass points “modulo p.” We set a
bit more notation:

v aplace of k of characteristic p > 0.

ord, the extension to k* of the usual valuation ordy : Q* — Z.

o.(z) = [[ (=z-a(P)" )2
PeCln]
p¢cly
Notice that in the definition of ®,(z) we have used half the weight in the
exponent. We do this because for the hyperelliptic curve y* = f(z), if P = (z,y)
is in C|[n], then (z, —y) is also in C[n]. So as P runs over C[n|\C|[1], the z(P)’s
each appear twice. So ®,(z) will be a polynomial in k{z].

Theorem 1.3. Assume that deg f = 2g + 1 is odd.

(a) Resultant(®,, f) = + Disc(f)’.

(b) Assume that p > 2n(g — 1) and that the coefficients of f are v-integral.
Then the coefficients of ®,(z) are v-integral.

We can use this estimate to limit when points of C|[n] and C[1] come together

mod v.

Corollary 1.4. Assume that p > 2n(g — 1) and that C has good reduction
at v. If P € C|n] has the property that
P (mod v) € éTi] (mod v),
then P € C[1].
A fancier way to restate Corollary 1.4 is as follows. First embed C in its Ja-
cobian u : C — J by sending one of the points in C[1] to the origin. As usual,

let J (ky) be the kernel of the reduction map J (k) — J (mod v). Corollary 1.4
says that if p > 2n(g — 1) and if C has good reduction at v, then

#(C[n]) N J1(k,) = {0} 1)

Notice that (1) remains true if we replace C[n] by J[n], the set of n-torsion
points of J, provided C has good reduction and ptn. This fact, of course, is
central to the arithmetic study of Jacobians and abelian varieties. For example,
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it is one of the crucial facts needed for the proof of the Mordell-Weil theorem.
However, since J [n] is a group, equation (1) for J[n] tells us that J [n] injects into
the reduction J (mod v). Unfortunately, C|n] is not a group; so what we should
really look at is the extent to which the map C[n] — C (mod v) fails to be
one-to-one. Ignoring the points in C[1], which we already understand, this means
we want to know which primes divide the discriminant of the polynomial ®,. In
the next section we present two examples which show that the answer must be
fairly complicated.

2. Some Numerical Examples

In this section we present some numerical data. We begin with the curve
C:y2=m6+1. 2)

From the definition of Weierstrass points it is clear that the set C|[n] is invariant
under any automorphism of C. In particular, for the curve (2), any point P =
(z,y) € C[n] with zy # 0 gives rise to twelve points (¢z,+y), where ¢ is any
sixth root of unity. It follows that up to a power of z, the polynomial ®,(z)
defined in Section 1 is actually a polynomial in z®. So we will work instead with
the polynomial
U, (z) = c% = g II (z - x(P))Wt(P).
PeC|n]/Aut(C)
P¢Cl1],z(P)#0
Here a = ordg ®n(z), and ¢ € Z is chosen so that ¥,(z) has relatively prime
integral coefficients. (Le. ¥, (z) is a primitive polynomial in Z|[z].)

Our first table (Table 2.1) gives the Weierstrass polynomial ¥, (z) for the
curve (2) and 3 < n < 6. Note that for curves of genus 2 such as (2), one
has C[2] = C[1], which explains why our table starts with n = 3.

A glance at Table 2.1 shows that the polynomials are “palindromic.” This
is easily explained by the fact that the curve (2) has the additional automor-
phism (z,y) — (z~1,z73y). So if P = (z,y) € C|[n], then C|n] also contains
a point whose first coordinate is z~!.

It is also worth mentioning that in all cases listed in Table 2.1, the polyno-
mial ¥, (z) is irreducible in Q[z].

SUME AKIIHMELIC FRUPEKIIES OF WEIEKSTRASS PUINITS BT

n  Yu(z)

3  4-—19z + 422
4 224 + 14952z — 528z% + 10726923 — 528z* + 1495225 + 2244°
2048 — 1841664z + 6125452822 + 86650256023 — 136067400z —
215099834425 — 8234360583z% — 215099834427 — 13606740028 +

866502560z° + 61254528710 — 1841664711 + 2048712
6 524288 — 38338560z + 1263329280022 + 20790681603 +

2278700043264z% + 14040133779456z° + 11330384520000z° +
21378405927600z7 + 88533623365668z8 + 171597510043663z° +
88533623365668z10 + 21378405927600z11 +

11330384520000z12 + 14040133779456z13 + 2278700043264714
+ 2079068160215 + 1263329280026 — 38338560217 + 524288718

The Polynomial W,(z) for y? = 25+ 1

Table 2.1

Corollary 1.4 characterizes those primes for which points of C[n] and points
of C[1] may coalesce modulo p. We now address the question of when two points
in C[n] not in C[1] may come together modulo p. Equivalently, we ask which
primes divide the discriminant of ¥, (z)? As one expects, this often happens for
primes p < 2n(g — 1). However, Table 2 shows that there are also larger primes
which occur. At present we have no simple way to describe these primes, but that
will not prevent us from giving them a name.

Definition. Let C/k be a smooth curve of genus g > 2. A prime p is called
anomalous for C[n] if p > 2n(g — 1), and if there is some prime v of k lying
over p such that C has good reduction at v and the reduction map C(k) —
C (mod v) is not one-to-one on the set of n-Weierstrass points C|n].

Although the anomalous primes appear somewhat irregular, one feature im-
mediately apparent from Table 2.2 is that they seem to be fairly small. If one
were to take a random polynomial whose coefficients were roughly the same size
as those of W5 or Wg, one would not expect the discriminant to factor with such
small primes.
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Disc(7¥)

Factorization of Disc(¥)

297
~ 207 1078
s 3.11 10190

= Wy Ll

33.11
220.345 53 .73.11.13.172.232.191-1932
2104 3221 511 116.13.172.232.29.412 .59.

191-193% . 2712 - 421% - 21612 - 2579
296 3467 514 .73 .935.99.313.412.

43% .47% .59 71% . 832 .

1272 - 1572 - 1672 - 2712 - 4212 -
4332 . 6012 - 8872 - 21612 - 2579 -
4057 - 54492

The Discriminant of ¥, (z) for y2 = 2% + 1

Table 2.2

m n Resultant(¥,,,¥,)  Factorization of Resultant

3 4 ~ 7.68 - 1014 14 . 318 . 112

3 5 ~ 1.12 - 10%° 222 . 336 . 4212

3 6 ~1.13-10%3 D)

4 5 ~ 5.11 - 10190 g, 3108 452 17% . 9g% . 1012
1934

4 ~ 7.91 10147 294 . 3162 . 56 . 172 . 472 . k*

- A )

9214 3324 £24 992 414 .592.
2714 . 4214 - 21614 - 25792

* k=203558536134798796850303533660249 is
composite, but is not divisible by “small” primes.

The Resultant of ¥,,(z) and ¥,,(z) for y? = 2% + 1

Table 2.3

A closer look at Table 2.2 reveals another surprising fact. It appears that
an anomalous prime for C|[n] is always also anomalous for either C[n — 1] or
for C[n + 1]. This suggests that we look for primes such that points in C[n]
and C[n + 1] come together modulo p; or, equivalently, primes dividing the
resultant of ¥,, and ¥,, ;. The results are compiled in Table 2.3.

Table 2.3 confirms what we half expected. If p is anomalous for n and n + 1,
then it seems to divide the resultant of ¥,, and ¥, ;. This suggests that if p is
anomalous for n, then at least one of the double roots of ¥, (mod p) will also
be a double root of either ¥,,_; (mod p) or of ¥,1; (mod p).

To describe this more intrinsically, we define
An(p) = {P € C(F,) : C[n] = C (mod p) is not one-to-one over P}.
Then Table 2.3 leads us to ask if

An(p) € Bn-1(p) U Ansa(p)- 3)

Note this is much stronger than merely saying that the anomalous primes match
up.

Table 2.4 verifies (3) for the curve (2) and integers 3 < n < 5. In all cases

the quantities

v
SRS NESE <2 R d
ng(‘I’m ‘I’n+1) (mo P)

and
‘I’n+1

ng(\I’m ‘I’n+1)
are square-free in Fp[z]. Note that the variable z used in Table 2.4 is really the

(mod p)

quantity z% on the curve y* = 2% + 1.
We next give some numerical data gathered for the curve
C:y*=2"+1. )

As above, any point P = (z,y) € C[n] with z # 0 gives rise 0 ten points
(¢z,4y), where ¢ is any fifth root of unity. It follows that the polynomial ®,,(z)
defined in Section 1 is essentially a polynomial in z®, at least if we ignore powers

of z. So for the remainder of this section we let
P 131'/5 wt(P
U, (z) = c—ia—/s—) =c [ (a-=(@)"".
PeC|n]/Aut(C)
P¢C[1], z(P)#0
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Again a = ordp ®(z), and ¢ € Z is chosen so that ¥y, (z) has relatively prime

integral coefficients.

n  Yu(z)

n n+1 P gcd(¥p, ¥pt1) (mod p)
3 4 11 (z-1)?

4 5 13 (z-1)?

4 5 17 (z2-z+1)?

4 5 23 (z+2)%(z+12)2

4 5 191 (z-1)2

4 5 193 (z+50)%(z — 27)?
5 6 29 (z-—1)?

5 6 41 (22 -4z +1)?

5 6 59 (z-1)%

5 6 271 (z+ 117)%(z — 44)?
5 6 421 (z + 142)%(z + 169)2
5 6 2161 (z +498)%(z + 959)2
5 6 2579  (z—1)?

3 (4-—z)(16 — 108z + z?)
4 —32768—4767744z — 327270452 — 5702860823 + 170240z — 945100825 +

2248962° — 2234427 + 728
5 (4—z)%(—25165824 + 956301312z + 2063440281622 —

317718528023 — 137167994880z — 471787716608z° —
3456538869762° — 157336670208z7 — 1819890688028 —

1658593280z° — 4458384210 — 36688z!! + z12)
6 (4—z)%(12094627905536 + 2585226714808320z — 9399793625333760z% +

581389708311920640z% + 4975917911056056320z* +
6825760756013727744z5 + 24139882138079068160z° +
104480531283884113920z7 + 215770750752883998720z8 +
192921432429963509760z° + 105048907680124502016210 +
44163514993394319360z11 + 19543192767179653120z'2 +
4633662928140779520z13 + 539433596351938560z4 +
8318978192722944z15 — 228260548980480z16 —
4736403754560z'7 — 468708856028 — 284988021° + 11220)

The first table (Table 2.5) gives the Weierstrass polynomial ¥, (z) for the
curve (4) and 3 < n < 6. Notice that the points with z = 4 have weight 2
when n = 5,6. (Remember these are the points with z° =40nC.) Also,z =4
gives 3™ order Weierstrass points on C, although only with weight 1; but the

Points Common to A,(p) and A,41(p)

Table 2.4

points with z = 4 are not 4" order Weierstrass points.

Since W5 and ¥g have a multiple root, their discriminants are zero. So in
Table 2.6 we have computed their discriminants after dividing by (4 — z)%. We
again see in Table 2.6 that the anomalous primes reappear for consecutive n’s,
and that they are not too large (although for n = 6 they are considerably larger

than the anomalous primes for the curve y = z% + 1.)

The Polynomial ¥,(z) for y? = 2° + 1
Table 2.5

n Disc(¥)* Factorization of Disc(¥)

3 ~ 1.86 - 10° 212 .56 .29

4 ~ —4.80 - 1098 o112 .34 . 571 .76 .99.79

5 ~ 4.58 - 10214 9264 . 312 5168 . 192 . 992 . 59.79 - 769
6 ~ 1.14 - 10843 2768 . 312 5479 . 1716 . 192 . 993 . 593 .

479-769-1019- 2879 - 6841 - 36479 -
42839 - 144899 - 443701 - 3508619

*For n=>5,6, this is the discriminant of v/(4- z)z.
The Discriminant of ¥,,(z) for y2 = z° +1
Table 2.6
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3. Preliminaries

For any curve C of genus g > 2, the Riemann-Roch theorem tells us that
¢(nKc) = s = (2n — 1)(g — 1) provided n > 2. Choose a basis wy,... ,w,
for H(C, L(nKc)). Let z € k(C) be a non-constant function on C, and
write w;(z) = ¢i(2) (d2)", where the ¢;’s are regular functions on the Zariski

open set
U,={P €C : zis regular at P and ordp(z — 2(P)) = 1}.

The nt*-order Wronskian matrix relative to the basis {w;} and the parameter z

is

fl f2 L fs

afy dfz ok dfs

Wha(z) = d.z i ; d-z
d_g_:l ds—1 i ds—.l 3
dzo—1 dzs—-1 7 dzs—1

Then one easily checks that a point P € U, is an nth-order Weierstrass point if
and only if (det W,(2))(P) = 0. Further, the order of vanishing of det Wp(2)
at P is independent of the choice of the basis {w;} and the parameter z, subject
of course to P being in U,. We define the ( nth-order) weight of P to be

wt(P) = wtn(P) = ordp det Wha(z) ©)

for any z such that z—z(P) is a uniformizer at P. Thus P is in C|[n] if wt,(P) >
1. The following facts are well-known, but for the convenience of the reader we
will sketch the proof of one of them.

Proposition 3.1. Let C be a smooth projective curve of genus g > 2 (not
necessarily hyperelliptic.)

(a) The total weight of the nth-order Weierstrass points is

Y wta(P) = s’y

PeC|n]
(b) For every P € C,
wtn(P) < 39(9 +1).

Further, equality holds if and only if C is hyperelliptic and P is a branch
point of the double cover C — P. (Le. P € C[1].)

—

(¢) Suppose C is hyperelliptic. Then C[1] C C|n] for all n, and

Z wt(P) = 4g1J.
PeC|n]
P¢cli]
Proof. (a) See [3] or [6].

(b) The idea of this proof is due to Segre. For a generalization, see [[1], Theo-
rem 3.1].

Fix a point P € C. Let 1 < by < by < +++ < b, < s+ g be the
uniquely determined integers b in the indicated interval such that the divisor class
of b(P) — (n — 1)K is effective. Let 1 < a3 < ag < -+ < a, < s+ g be the
remaining integers in that interval. (The a;’s are classically called the gap values
for P.) Then an alternative description of the weight of P is

Wt(P) = Za,- —1.
i=1
(See [3] or [6].) Since {a;} U {b;} = {1,2,...,s+ g}, this gives the formula

g
wt(P) =) s+i-b;. (6)
i=1

Next, the definition of the b;’s implies that the divisors b;(P) — (n — 1) K¢
are special, so Clifford’s theorem [[4], IV.5.4] says that

£(b;(P)—(n—1)K¢) < %deg(b;(P)—(n-—l)Kc)—}-l = %(b;—s+g+1). @)

Further, from the definition of the b;’s, the dimension £(b;(P) — (n — 1)K¢) is
strictly increasing with 2, so

£b;(P)— (n—1)Kg) >4 forall1<i<g. 8)
Combining (7) and (8), we find
b >s—g—1+2 andso s+t1—-b;<g+1-1. )
Now substituting (9) into (6) gives the desired bound
g
wt(P) <Y g+1-i=1g(g+1). (10)
i=1

Finally, Clifford’s theorem (7) is a strict inequality unless the divisor is 0, K¢,
or a multiple of the g1 on a hyperelliptic curve. If C is not hyperelliptic, then g >
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3, so there are at least three b;’s. It follows that (7) cannot be an equality for
every b;, so the inequality (10) is strict. On the other hand, if C is hyperelliptic,
then K¢ = (g — 1) - g5 is a multiple of the g3 on C. So in order for (10) to be
an equality, we see that b;(P) is a multiple of the g3 for every b;. In particular,
the b;’s are all even, and 2(P) is a g3.

(c) From (b) the weight of any point P € C (1] satisfies wtp(P) = g(g+1)/2 >
0, so P € C[n]. Since the set C[1] on a hyperelliptic curve consists of 2g + 2
distinct points, the desired result follows immediately from (a), (b), and a little
algebra. O

We now turn to the case that C is a hyperelliptic curve given by an equation
C : y* = f(z)

as described in Section 1. To compute C[n] we use the following collection of
differential forms.

Lemma 3.2. Let (z), be the polar divisor of z, so Kc = (g9 — 1)(z)o is a@
canonical divisor on C. Then the set of differentials

{i(iz)—nzogi<n(g—l)+1}u
u{%%z}?:osj<(n—1)(g—1)—1}

is a basis for H(C, L(nK¢)). (If n = g = 2, the second set should be
omitted.)

Proof. Riemann-Roch tells us that £(nK¢) = s = (2n — 1)(g — 1) (remember
we assume n > 2,) so the indicated set has the correct number of elements.
Further, the indicated differentials are clearly linearly independent. It remains to
check that they are all holomorphic on C, an exercise which we will leave for the
reader. O

The Wronskian matrix relative to the parameter z and the basis described in
Lemma 3.2 is thus

o=

iy dtziy=(n-1) )
dzt dz* :

SUIVIE ARILITUVICLIIU FRUFEKILIED UF WEIEKS1IKADS PUINTS Z5

where t, 7, £ run over the intervals
0<i<I=n(g-1)+1,
0<j<J=(n-1)(g-1)-1, (12)
0<t<s=(2n-1)(g-1).
Since z — z(P) is a uniformizer at P for every point of C except for the branch
points (i.e. points in C[1]) and the point(s) at infinity, the zeros of det W, (z)
describe the set C[n|\C[1]. (Except possibly for the points at infinity if deg(f)

is even. We will generally ignore this issue without further comment.) We now
give a polynomial in z whose zeros match those of det W, (z).

Theorem 3.3. Define a doubly indexed sequence of polynomials L}*(z) by
the recursion

dLy

Lt=1, ' and =215
T

df
—(m+20).-2L.™
(m +20) L.

Let W,,(z) be the matrix

W, (z) = ( (f) | (Je) L;‘_“jl) :

where 0 <1 < I and 0 < j < J index the columns on the left and right sides
respectively, and 0 < £ < s indexes the rows. Then

det Wo(z) = (2y%)~1 . y~-(n-1)7 . (II_Il ,'g) . (Jl:fj!) - det Wy (z).

1=0 Jj=0
In particular, if P € C is a point with y(P) # 0,00, then

Wtn(P) = ordp det W, (z) = ordp det Wy (z).

Proof. To ease notation, we will use D to denote differentiation with respect
to z. In particular, differentiating the relation y? = f(z), we find 2y- Dy = Df.

So for any polynomial F(z) € k[z| and any integer k > 1, a quick calculation
shows that

DF(:.:) _ y’DF —FkyDy 2f-DF—k-Df-F
yk - yk+2 ( 2yk+2

(13)

Using (13) and the definition of the L}*’s, an easy induction on £ yields

1 LT
AN S (A, £
D (ym> - 2£ym+2£' (14)



In order to simplify the Wronskian matrix, we begin by proving the following
formula, valid for any rational function z = 2z(z):

DY(z'z) =+! (e) D iz + (-1)'t! iz—i(—l)" (') x‘-’“D‘(z"z). (15)
) s k

There are two key points to note about the sum in (15). First, it is a lin-
ear combination of D¢(z*z)’s with k strictly less than i. Second, the coeffi-
cients (—1)*(})z*~* are in Z[z] and are independent of £.

To prove (15), we start with the sum

‘Z_f( l)k( ) i—le(zkz) Z( 1) ( ) i— kz ( )D'mk-Dl_rz
k 0

ol Z e) Dt r Z( l)k ( ) l'—kDrxk
r=0
1—1 .
4 3! ;
e Dt Ty -1 k 2T
2 ) Z D
= £— k 1
— . Dr 3
; r)D zZ( 1) ( k) T
i-1
= Z ( )Dl . ( 1):+1Dr 1
r=0
Therefore the quantity on the right-hand side of (15) is

(2) Dt— +( 1):+1 'Z_i( l)k( ) i—le(zkz)
(f) Diz*- D"z + 'zf (e) D'e - Dete

<

(2%

r==0
i Z ( )D’x‘ Dty
r=0
= D(z*z).

For the last equality, note that D"z* = 0 for r > 4, and (¥) = 0 for r > ¢, 5o the
sum in the penultimate line may be replaced by the sum from r = 0 to r = £.
This completes the proof of the formula (15).
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Recall from above that the Wronskian matrix is given by

Wa@) = (Mi(y™) | Ms(y=C-1)),

where in general we write Mg(2) to denote the rectangular matrix

Mg(2) = (D(z"2)) .
0<¢
0$_r<<;i

We are going to perform elementary column operations on Mg(z), and then
do these operations on each half of W,(z), thereby s1mphfymg Wp(z) without
altering its determinant.

Let us denote the r** column of Mg(z) by m,, 0 < r < R. We form a new
matrix Mp(z) with columns 73} by replacing the r** column of Mg(z) with

r—1
r_n’:. = Tn’, + (— 1)' Z (,:) z""ﬁ'k
k=0

Note the mi.’s are computed successively starting with r = 1 and increasing
to r = R — 1. Using (15), we find the £** entry in the r** column of My, is

DYz"z) + (-1)" rf(—l)" (;) %D (z*z) = r! (f) D"

k=0

Since these column operations will not change the determinant of W,(z), we
conclude that

det W, (z) = det ( 1(y™) I M.'r(y_("_l)))

Ba ("! (f) D*(y™) ’ 7! (j) Dt (y—(n—l))) _

Above we derived a formula (14) for D*(y~™) in terms of Ly*. Using this
formula, we find that

det Wy(z) = det ( i1() L. _ ' (L J )
(2y2)!(297)—*y" (2y?){(2y%) T yn-1
It remains to pull out common factors from rows and columns. We can pull out
a (2y*)~* from the £** row, giving (2y%)~*(*~1)/2, We can pull out §!(2y%)'y~"
from the +** column on the left-hand-side, giving ([T !) (2y?)!-1)/2y=In_And
we can pull out 5!(2y?)7y~("~1) from the 5** column on the right-hand-side,
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giving (T 7!) (2y?)?V-1/2y=7(n=1) L o0king again at the definition of Wy(z),
we find that

I-1 J-1
det e L) = (Dyd)emne sonio gaome pomen) T 1. H J!- det Wy (z).
=0 §=0

A little bit of algebra to compute the powers of 2y? and y then completes the
proof of Theorem 3.3. O

4. Degree and height estimates

In view of Theorem 3.3, the polynomials Lj* described in that theorem tell us a
great deal about the Weierstrass points of C. Our first result in this section begins
our description of the L7*’s.

Proposition 4.1. For any polynomial F(z) € k[z], let A\(F) denote the leading
coefficient of F.
(@)

deg L)' = (deg f — 1)2.

(b)
ML) = (~1)%(md)(md+ 2)(md + 4) -+ (md + 2(£ — 1)),

Proof. Let d = deg f. We prove (a) and (b) simultaneously by induction on £.
For £ = 0 we have L7* = 1, so both parts are clearly true. Assume now that they
are true for £.

The recursive definition of Lj* given in Theorem 3.3 says that
Lji,=2-f-DL} - (m+20)-Df - Ly, (16)

where as usual we are writing D for differentiation with respect to z. By the
induction hypothesis we have

deg(2- [+ DI) = d +deg Lf — 1= (d— 1)(¢+ 1)
and
deg((m+2¢)-Df - L}*) =d—1+deg L}* = (d — 1)(£+ 1).

So assuming that the leading coefficients of the two terms in (16) do not cancel,
we will have proven (a). We now check that the difference of those leading
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coefficients is as given in (b), which will simultaneously complete the proofs
of (a) and (b).

We recall that the polynomial f(z) defining C is assumed to be monic. Using
the induction hypothesis, we compute
A2-f-DL7) - M(m+2€)- Df - L})
= {2(deg LY*) — (m + 28)d}A\(L7)
= {2(d — 1)¢ — (m + 28)d} - (—1)%(md)(md + 2)---(md+2(€-1))
= (-1)“*}(md)(md + 2) - - - (md + 2€).
This completes the proof of Proposition 4.1. [J
Next we estimate the size of the L7*’s. We recall that the height of a poly-

nomial, such as Lj*, is defined to be the height of the projective point defined by
its coefficients.

Proposition 4.2.

-1
h(L7) < £(h(f) + 2logdeg f) + > _ log(4k + m).
k=0

Proof. As above, we let d = deg f. Also, it is convenient to use the multiplicative
height H, where h = log H. Note that H has the elementary properties:
H(FG)< (deg F+1)H(F)H(G) and  H(DF)< (deg F)H(F).

Using these properties, the recursive definition of L7*, and Proposition 4.1, we
compute

H(Ly,)=H(2-f-DL}—(m+2€)-Df-L})
<2H(f-DL7)+ (m+20H(Df - L})
<2(d+1)H(f)H(DLT)+ (m+26)dH(Df)H(LY)
<2(d+1)H(f)(d - 1)EH(L}) + (m + 28)d*H(f)H(L})
< d*(4¢+m)H(f)H(L}).

Using this formula repeatedly gives the upper bound
H(LP) < d*H(f)'m(m +4)--- (m + 4(€ - 1)) H(LD).
Since Lg* = 1, taking logarithms gives the desired result. O

We are now ready to begin estimating the degree and the height of the poly-
nomial det W,(z) whose roots include C|[n].
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Theorem 4.3.

(@)
degdet Wy, (z) < (deg f — 1)IJ.
(Later we will be able to show that the degree is exactly equal to 2g1J;
but for now this rough estimate will suffice.)
(b)

h(det Wy,(z)) < 2IJ(h(f) + log(gs) + O(1)).

Proof. Looking at Theorem 3.3, we see that det W,, is a sum of s! terms of the
form

w(a)—l'[( )Lc—.XH( ) t._,, 17)
=0
where

o =:(£0,£1,---,£I—1,36,---’ 9—1)

is some permutation of 0,1, ... ,s — 1. As usual, we let d = deg f.
(a) Using (17) and Proposition 4.1(a), we find

degdet W,, < max, deg w(o)
J-1

I-1
= maxa{z deg LZ_,- + jgo deg L%—_lj}

1=0

I-1 J-1
= max, {3 (4= (& - )+ (4 -1)(G - )]

s—1 I-1 J-
(d—l){z_:l 20:—2]}
= (=i

(b) For any polynomials Fy,. .., Fy € Q[z|, the height satisfies the elementary
estimate:

H(F\F;---Fy) < ﬁ {(1 + deg F;) H(F:)}.

DNAVAL AN LUVALLI LA L ANUL L LD WL VWELLAWD LINVAWY DL AD o7 L

We use this and Propositions 4.1 and 4.2 to estimate the height of w(o).

I-1 e‘
steon s flo s o ((9)2.)

X H(1+degL I)H (( ?)L;‘,f_lj)
=0 J j
- H {(1+ (d-1)(& - ’))( )H(f)l 7 H d2(4k+n)}
1=0 k=1
4
x II (14 (d- 1) —a))( )H(f) i I @k +n 1)
k=1
In this last estimate we can pull out H(f) raised to the power
‘ie Iz:lt—ZJ— is(s—1)-21(I-1)-3J(J -1)=1J.
£=0 1=0

We will also use the fact that in the innermost products we always have k < s,
so 4k + n < 5s. This gives

I-1
H(w(o)) < H(f)725(-1/2 1‘[(1 +de) x [](d%ss)4~*
£=0 1=0
J-1 ¢
x [] (d*5s) - (18)
§=0

< H(f)Ist(a—l)/z (2ds)‘(5d28)1"
< (erg*sH(f))" (ca9")",

where ¢y, ¢y are absolute constants, and we have used that s2 >< IJ and d <
2g + 2.

Since det W,, is a sum of s! of the w(o)’s, we would like to say that
H(det W,,) is no larger than s! times the maximum of the heights of the w(o)’s.
This would be true if the w(o)’s had integral coordinates, but unfortunately for
general polynomials Fy, ... , Fy we only have H(} F;) < N[ H(F;). So we
need to be a bit more careful about the denominators of the coefficients.

For any polynomial F(z) € Q[z], we let §(F) denote the smallest positive
integer such that §(F) F(z) has integral coefficients. (Le. Its coefficients are in



the integral closure of Z in @.) We claim that
8(w(o)) divides 6(f)T7. (19)

To see this, we note that the recursive definition of L*, the fact that §( D F') always
divides §(F), and induction on £ immediately imply that §(L}*) divides §(f)°%.
Then the definition of w(o’) as a product of L}*’s gives (19).

We resume the proof of Theorem 4.3(b). Note that if Fi,...,Fy € Q|z]
have integral coefficients, then it is true that H (3" F;) < N max H(F;). So if
we let § = §(Fy,. .. , Fy) denote the least common multiple of the §(F;)’s, then
for arbitrary polynomials we have

H(YF) <6 H(Y 6F) < 6N max H(F,).

We apply this to det Wy,, which is a sum of s! terms of the form w(o’). From (19)
we know that every w(e) has denominator §(w(c)) dividing 6(f)!7, so we find

H(detW,) < §(f)'7 - s! - max H(w(0)).

Note that 6(f) < H(f) and s! < s°. Since (18) provides a bound for
H(w(c)), we obtain

H(det Wn) < (c19*sH(f)?)"” (cags?)* < (csgsH(£))™.

Taking logarithms completes the proof of Theorem 4.3(b). O

It is a standard matter to relate the height of a polynomial to the height of its
roots. We will use the following estimate, which follows from [[5], Chapter 3,
Proposition 2.1 and Theorem 2.8].

Lemma 4.4. Let

d d i
B(x)i= Z_: a;rt = ay U(z - o) € Q[z].

Then
d

Zh(a;) < h(F) + %log(d +1).
i=1
We apply this lemma to the polynomial det W, (z) to complete the proof of
Theorem 1.1.

Proof (of Theorem 1.1.). From Theorem 3.3, the points in C|n] that are not
in C[1] are precisely the points P such that z(P) is a root of det W,(z); and

DUVIC ARIIIUVIELIC FRUNEKRIIED UF WEIEKD IKADD PUINID o]

further, the weight of P is the multiplicity of z(P) as a root. Of course, for every
root of det Wy, (z) there are two points in C|[n], corresponding to the two values
for y. So if we factor det W,(z) as

N
det Wy(z) =c H(m =,

1=1

then Lemma 4.4 and Theorem 4.3 allow us to estimate

N
> wt(P)-h(z(P)) =2 h(ai) <
PeCn| =1
P¢cl] < 2h(det Wy (z)) + log(deg det W, (z) + 1)

< 4IJ(h(f) + log(gs) + O(1)) + log((d — 1)IJ + 1)

< 41Jh(f)+ 121J log(s) + O(1J).
Finally, we divide by 49J and note that log(s)/g = log(n)/g + O(1), which
completes the proof of Theorem 1.1. O

The proof of Corollary 1.2 depends on the well-known fact that there are
only finitely many algebraic numbers of bounded degree and height. In principle,
Theorem 1.1 says that many of the points in C[n] have small height, from which
we can deduce that they generate a field of large degree. To quantify these ideas,
we start by estimating the number of algebraic numbers of bounded degree and
height.

Lemma 4.5. For all real numbers B,D > 1,
#{a€Q: H@)<B and [Q(c):Q] < D} < (3B)P".
Proof. Let S(B, D) be the set in question. For & € S(B, D), let {ay, ... ,ap}
be the conjugates of a. (If there are fewer than D of them, fill in the set with
zeros.) Consider the map
¢S(BaD) = PD(Q)
a > [l,al(al,...,aD),...,aD(al,...,aD)]

where o; is the 1*# elementary symmetric polynomial. Notice that ¢ is at most D-
to-1, since

¢~ '([1,a1,... ,ap]) C {roots of TP + a;TP~1 4 ... + ap =0.}.
Further, H(¢(a)) < 2P H(a)?, so
H(a) < B=> H(¢(a)) < (2B)".



o JOSEPH H. SILVERMAN

Hence
#5(B,D) < D-#{P ePP(Q) : H(P) < (2B)"}
< D(2(2B)? +1)P
< (3B)P”.
O

Theorem 1.1 gives an upper bound for a weighted sum of heights, while
Proposition 3.1 gives us the sum of the weights and an upper bound for the
individuai weights. We want to conclude that there are many points of small
height. The following elementary counting lemma is what is needed.

Lemma 4.6. Let wy,... ,w, > 1 and hy,... ,h, > 0 be real numbers, and
let

r r
1
W = maxlsgs,{w;}, N = Z_: wy, A = 'Jv Z w,-h,-.
t=]1 1=1
Then for any 0 < e < 1,
ghde : o< gAY S (] ~ e)%

For example, taking ¢ = % there are at least N/2W of the h;'s which are
larger than half the weighted average of the h;’s.

Proof. First we bound how many h;’s can be large.

. _ h; e 1 Ne
#{1: h;>¢ LAY = 1< LI T . & SR
{ } § : § : = A h.>§A/€ w;h; < %

-1
h">A/¢ h‘>A/€ & A

On the other hand,

d N
N=Zw;§rW, 80 FP —,
=1 w
Hence

#lich<etay 2 r- T i

v
~~
[
|
b
|

O

Proof (of Corollary 1.2). Let C[n|\C[1] = {P,,...,P,}. We apply
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Lemma 4.6 with € = % and

wg = Wt(-Pi)’ hi = h(z(R))a

+1
W = maxi<icr{wi} < g(92 ),
A
N =) w=4glJ,
i=1
- h 31
A=< Y wih; < EU) v 2cen +0(1).
M= g

(The bound for W and the value for N come from Proposition 3.1(b,c), and the

bound for A is Theorem 1.1.) We obtain the estimate

2h(f)+6logn 491J
g

9(g +1)

So there are at least O(gn?) points in C[n]~C[1] with height bounded by some
fixed multiple of 1 + (h(f) + logn)/g.

Let K|[n] be the field generated by C[n]\C[1], and let d[n] be the degree
of K[n|. We apply Lemma 4.5 with

+0(1)} > > gn?.

#{i : h(z(R)) <

D=dn] and B:O(l—i—M).

g
We have just shown that K [n] has O(gn?) elements with height less than B, and
of course every element of K [n] has degree at most d[n], so we find

O(gn?) < (3¢B)4n)’,
[Note Lemma 4.5 uses the multiplicative height, whence €B in place of B.] Taking
logarithms and solving for d[n| gives the desired result

loggn 4+ O(1) loggn + O(1)
B +0(1) h(f)J;logn+0(1)

d[n]? >

5. A Resultant Computation

In this section we ask for which primes v is it true that points in C[n|\C[1] and
points in C[1] can coincide modulo v. In essence, we want to determine which
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primes divide the resultant of f(z) and ®,(z), where ®,(z) is the polynomial

(@)= [] (z- ()"
PeCln]
P¢c(]

defined in Section 1. Of course, this reasoning is only valid for primes v such
that ®,, has v-integral coefficients.
Our plan is as follows. First we compute the related quantity

Resultant(f(z),det W, (z)).

Second we show that det W,,(z) = ¢®,(z) for some scalar ¢. Third we com-
pute c. Since the coefficients of det W, are v-integral if the coefficients of f are,
this will provide enough information to prove Theorem 1.3.

Aside from the usual binomial coefficients (), the following quantity will
appear frequently, so we give it a special symbol:

[r(:x} =a-(a+2)-(a+4)-..(a+2m—2):2mm!(%a+mm_1)'

. . : : : a
Here m > 0 is an integer, and a is arbitrary. By convention, we set [0] —1

In order to compute the resultant of f(z) and det W, (z), we will use the
following determinant calculation. The elementary, but heavily computational
proof will be postponed until later.

Proposition S.1. Let I > J > 0 be integers, let L = I+ J, and let A, B, T
be arbitrary quantities. Then

(e | )i

Here the rows of the matrix are indexed by 0 < £ < L, the columns on the left-
hand-side are indexed by 0 < ¢ < I, and the columns on the right-hand-side
are indexed by 0 < j < J.

Proof. See Section 6.

Proposition 5.2.
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Proof. Recall the polynomials Lj* of Theorem 3.3 are defined recursively by the

rule
L;’;1=2-f-DL;"—(m+2£)-Df-L2".

Since L7* = 1, an easy induction on £ shows that
Ly = [’:] (-Df)* (mod fClz]). (20)

Substituting (20) into the definition of Wy (z), we see that

det Wy,(z) = det ( (f) [2 ’: i] (+«Df)e? ‘ (f) [’Z :Jl] (;Df)t—j)

(mod fClz]).

This last determinant is of exactly the right form to apply Proposition 5.1 with
A=n, B=n-1, T=-Df.

We obtain the formula
J=1

det Wo(z) = (-Df)7 I] [_1;21] (mod fClz]). 1)

3=0

For any polynomials P(z),Q(z), R(z) € C[z] and any constant c, the fol-
lowing elementary properties of resultants and determinants are well known [[13],
Sections 5.8,5.9]:

Resultant(P,@ + RP) = Resultant(P, Q),
Resultant(P, cQ) = c°¢¥ Resultant(P,Q),
Resultant(P, Q") = Resultant(P,Q)",
Resultant(P, DP) = A(P) Disc(P),
where A(P) is the leading coefficient of P.

Using these properties and (21), we let ¢ denote the product on the right-hand-
side of (21) and compute '
Resultant(f,det W,,) = Resultant(f, c(—Df)"’)
= +c9°€/ Resultant(f, D)
= +ci°€/(Disc f)"7.

(Note we have taken f to be monic.) This completes the proof of Proposition 5.2.00
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We are now going to make the assumption that
deg f = 2¢g + 1 is odd.
Equivalently, this means that there is only one “point at infinity” on y* = f (z),
and necessarily that point is in C[1].

Notice that the polynomial ®,, is characterized up by the fact that it is monic
and satisfies
wtn(P) if P ¢ C[1]

°rd”¢":{o if PeC[1], P# oo

Now we observe that Theorem 3.3 implies ordp det W,, = ordp ®,, for
all P ¢ C[1]. On the other hand, Proposition 5.2 shows that det W,, and f have
no common zeros, so ordp det W, = 0 for P € C|[1], P # oo. This proves
that det W,, = ¢®,, for some scalar ¢. We now begin an alternative proof of this
fact which has the advantage of determining the constant c.

Proposition 5.3. As above, we assume that deg f = 2g + 1 is odd.

(a)
degdet W, = 2g1J.

(b) The leading coefficient of det W,(z) is
(g8
Jj=0 f

©)

=Y Py
det Wy(z) = (H I )‘I>n(z).
i=0

Proof. For any polynomial F(z), we let A(F) denote the leading coefficient
of F. Proposition 4.1 tells us that

deg L' = 29 and A(L}) = (1) [m(z"e* 1)],

[m(Zg +1)

Le(z)= 4 ](_z%)l S
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Then the definition of W,, (Theorem 3.3) shows that

detW, =
(2 oo
+ lower order terms. (22)

We now take the determinant of the matrix in (22). If that determinant turns
out to be non-zero, then its value will give us both the degree and the leading
coefficient of det'W,,.

The matrix in (22) is of exactly the right form to apply Proposition 5.1 with
A=n(29+1), B=(n-1)(29+1), T=-z%
The result is
dbl e iy — o
det W, = (-1)" [ TI [ g I } 22917 4 lower order terms.
5=0
The product is clearly non-zero, which prove (a).

To prove (b), we rearrange the product as follows:

\qpbn E
(- 1)”1"[[ J] I I1(29 + 1+ 25 — 25)

§=04i=0

= ﬁ2 H (-1-2k+2(I-1-1))

k=I-J—-g—11¢=0
where k=1—-¢g—2-7,

e [-1-2k
AL
Since one easily checks that

I-J—-¢g—-1=0 and I-g-2=J-1,
This proves (b).

(c) As observed above, Theorem 3.3 and the definition of ®,, imply that ®,,
divides det W,, in k[z]. Further, Proposition 3.1(c) tells us the

deg @p(z) = 1 Z wtn(P) = 291J.
PeC|n]
p¢cly
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But we have just shown in (a) that degdet W,(z) = 2gIJ, from which we
conclude that det W, (z) = c®,(z) for some ¢ € k. Finally, we note that
since ®,, is monic, the constant ¢ equals the leading coefficient of det W,,, which

we determined in (b). OJ

Remark. If we had assumed instead that deg f = 2g + 2, then the determinant
in (22) tms out to vanish. So for even values of deg f, it is somewhat more
difficult to compute the degree and leading coefficient of det Wi,.

We now have all the tools needed to prove Theorem 1.3.

Proof (of Theorem 1.3). Let
J-1 :
-1-2
SNl o 1 l
=0
be the constant appearing in Propositions 5.2 and 5.3.

(a) From Proposition 5.2 and 5.3(c) we have
+c9€f Disc(f)!? = Resultant(f,det W,,) = Resultant(f, c®,).

By a standard property of the resultant, we can pull ¢4/ out of the right-hand-
side, which gives the desired result.

(b) Let Z; denote the ring generated over Z by the coefficients of f. By assump-
tion, every element of Z ¢ is v-integral. From the recursive definition of the L7*’s,
it is then clear that every L}*(z) € Zs[z]. Then the definition of Wy, in terms
of the L7*’s shows that det Wy, (z) € Z[z]. So the coefficients of det W,(z)
are v-integral.

From Proposition 5.3(c) we have ®,, = ¢! det Wy, so it remains to show
that if p > 2n(g — 1), then p does not divide the integer c. We expand c as a
double product

J=1 iy Loy J 4171
czn[ . ]:HH(—1—2j+2i).
1=0 7=01=0

By inspection, the smallest (most negative) integer appearing in the double product
is —2J+1 = —2(n—1)(g—1)+3, and the largest integer appearing in the double
product is 21 — 3 = 2n(g — 1) — 1 Hence if p > 2n(g — 1), then ord,(c) =0,
which completes the proof of (b). O
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Proof (of Corollary 1.4.). Taking a finite extension of k if necessary, we
may assume that C[1] is contained in C(k). Let Py € CJ[1], and let {1,z}
be a basis for I'(2(Py)), so we have a model for C of the form v = f(z).
(Note p > 3.) f(=) will have degree 2g + 1. Replacing (z,y) by (a®z, a?tly),
we may assume that f(z) has v-integral coordinates and v(Disc f) = 0. This is
possible since we have assumed that C' has good reduction at v.

Now we can apply Theorem 1.3. Let P € C[n]C|[1]. Then P (z(P)) = 0.
From Theorem 1.3(b) the coefficients of ®,(z) are v-integral, so

@,(z(P)) =0 (mod v).
On the other hand, Disc f # 0 (mod v), so from Theorem 1.3(a) we see that
Resultant(®,, f) #0 (mod v).
Therefore f (zTﬁ)) # 0 (mod v).

The roots of f(z) are the z-coordinates of the points in C[1] (other than P,.)
Hence for any Py € C|[1], P; # Py, we have shown that

z(P) # z(P1) (mod v),
so P# P, (mod v).
Finally we observe that the choice of P, € C[1] was arbitrary, so

P (mod v) ¢ C[1] (mod v) for all P € C[n]~C[1].

6. A Messy Determinant

In this section we give the proof of Proposition 5.1, which we restate for the
convenience of the reader.

Proposition S.1. Let I > J > 0 be integers, let L = I + J, and let A,B,T
be arbitrary quantities. Then

(4 | Ol2)-ip-1)

Note the rows of the matrix are indexed by 0 < £ < L, the columns on the left-
hand-side are indexed by 0 < { < I, and the columns on the right-hand-side
are indexed by 0 < 5 < J.
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Remark. Our proof of Proposition 5.1 is a straightforward, but lengthy computa-
tion. Ira Gessel has indicated an alternative approach which involves reinterpreting
the determinant as the number of non-intersecting paths in a certain diagram. For
details of similar computations, see the paper of Gesscl and Viennot [2].

Proof. We can pull T¢ out of the £* row of the matrix, T—% out of the i** column
on the left-hand-side, and T~7 out of the 7** column on the right-hand-side. This

contributes
T,gL(L—l)—,}I(I—l)-,gJ(J—l) Tl

to the determinant. So it suffices to prove Proposition 5.1 for ' = 1.

We begin by proving the elementary formula

L0k - >

To prove (23), we observe. that
2C C+m =0
= —2D)™
[ ] z ( ) (x )’

where as usual D™ = d™/dz™. Hence

(]

Zt: (f) {zB—A+i(_2D)i(zA—B)} . {xA+l—i(__2D)t—i($—A)}

1=0

/4

= ZBH(—2)tS] (f) Di(z4-B) - D*(z~4)
= :z:B+l(—2)t‘D=£(a:—B)

__|2B
=1 |
Replacing A and B by 2A and B gives (23).

We are going to perform column operations to simplify the matrix in Propo-
sition 5.1. Let us write

v=(2 | 3;), os<i<nosi<y
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13 o
for the L x L matrix whose column vectors @’; and b j are given by

(o= (‘) [zi‘,]’ (¥5)e= (f) [eil'

Taking successively 1 = 0,1, ... ,I — 2, we replace the i*# column of V by

e

This gives a new matrix V' whose ** column on the left has as its £ entry

@e=3 ('*’“) [B A](a.+k

k=0 x

Sy R
Gl

Notice that all terms in the last sum with k > £ — ¢ are zero. So if £ < I,

then the sum runs from k = 0 to k = £ — ¢, and we can directly apply (23) to
obtain

||[\/]..-

., \[ B .
(@')e= el for0<i<Iand0<£< I

. —
Notice that (a’}), = (bl)efor0<i<Jand0< €< I

When £ > I, the sum in (24) does not have enough terms to apply (23)
directly. But we can add and subtract the necessary terms, leading to the formula

[ D e AT R

forO<i<TlTand I<{¢< L.
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So the new matrix V' looks like

— J ——I—-J— «— J —
0. 1ol Q0B drse kD il 0 5 ebien ), 0
T 1 e : 1 :
0 0
I 10 - 1
(@) 1 (55)e
| )
1
1]« ® W iE % #
o el e 3 A : ; . :
l\*' g i (L4 et "

In particular, since (@’})e = (?:)g for0<i<Jand0< €< I, theJ xI
block in the upper right-hand corner is identical to the J X I block in the upper
left-hand comer. So if we subtract the first J columns from the corresponding
last J columns, we get a matrix that looks like

1 sy :
0

| 10 - 0

T lie <o %

Jl:o o (B

lk* "

_) .
Hence det V' is equal to the determinant of the matrix ( b ;) Using (25), we
find that

- at o e\ L[ B-4 L=3 A
(65)e=(b;)e—(@%)e= (j)kg)[I—jﬂLk] (I—jik) [Z—I—k]"

We relabel by setting £ = m + I. Then det V"' is equal to the determinant of

the J x J matrix X = (z,,;) whose (mj7)t* entry is
_—t m+ I i B-A I-34+m A
RS G -7 +k|\I-5+k)|m-k

S0 len ()

We are going to simplify det X by row operations, so we let z ,, be the row

Vector = m = (Tmo, Tm1, - - - »Tm,J—1)- We form a new matrix X’ by setting

m
= 2 and Z =T - Z (I—;m) [2} el ..
k=1

Then we claim that the 7% entry of the row vector '/, is

. I B-A
zmj=(xm),-:( fm)[ ] (26)

7 I+m-—j

We prove (26) by induction on m. For m = 0 we have

== ()36

Next, assume (26) is true for zf,..
of z,,;, we find

T (I+m)\]|A
a5 ()]

k=1

iy gyln
210 G| R

-(2a)

This proves (26).

., T 1. Using this and the definition

’

zm—k,j

We now know that detV = detV' = det X = det X', where X' is the

0<m,j<J




Since
B-a]_ B—A] B—A+2(I—j)]
I+m-3| |I-3J m 4

T A] out of the j%* column of the matrix X'. So if we define

we can factor [

anew matrix Y = Yg by

(e

then
J-1
, B-A
det X' = (jzo[I_J])detYé(B A @7)
We claim that
J=1 ;
det Yz = [ [2(E jI ’)]. (28)
j:

Assuming for the moment that (28) is true, we can complete the proof of
Proposition 5.1. Thus using (27) and (28) (with £ = %(B — A)+ D), we
compute

J-1 g J-1 ;
B—-A||B-A-2 B-A-2
detV:detX'zﬂ . . 4 =H o
. I—- 7 % I
j=0 7=0
This completes the proof of Proposition 5.1, subject to our proving (28), which

we now restate and prove.

Lemma 6.1.

(),

Proof. As above, we let Yg denote the matrix whose determinant we are trying

to compute. Notice that

(2D)m(xE+;n—l) =8 [2E] zE—l.

m

We are going to introduce variables o, ... ,Zj-1, S0 We will write D; to denote
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differentiation with respect to z;. Then the matrix

Ye(7) = ((I 4; m) [2E’; 23] z,’f;f-l)
I+m m Jj+m—1
—(( j )(2D )™ (zm ))

s
has the property that Yg(1) = Ygz. (Here we write 1 for the vector
(1,1,...,1).) We can rewrite det Yg(Z') as

det YE(?) =

(:li[:(wm)’") {(H 2 171) det ( (I +'") {:m-f) } 29)

We now claim that the rightmost determinant in (29) has a Taylor expansion
around 1 that looks like

I+m o
det (( i ):z:{:m -7) =1+ (zo — 1)Py(7)
(30)
+ (21 = 1)?P(T) + -+ + (z5-1 = 1) Py_y (7).
Here Py, ..., Py_; are polynomials in Z[Z']. So when we apply the differential

operator [[(D,,)™ on the right-hand-side of (29) and evaluate at 7 = T, the

only term which is not zero arises when the enti i i E-I1-1
entire operator is applied to [] =2

and none of it is applied to the determinant. So assuming the expansion (30), we
find the desired result,

det Yg = det YE(T)

= lell(ZDm
:“’ﬁl [2(E ~-I- m)].
m=0 m

It remains to verify (30). Since we are interested in the Taylor series
around 1 we will make a change of variables and define

F(?) = F(zo,... »27-1) = det ((I+ m) (1+=z )I+m—.‘i)
d 0<m,j<J

. . _)
We begin by showing that F(0') = 1. (Thanks to Ira Gessel for showing me
this quick proof.)
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Let p;(T') be any polynomial of degree j with leading coefficient a;. Then
it is easy to see using elementary column operations that

det(p; (tm)) = det(ajth,).

This is a Vandermonde determinant after we pull out the a;’s. Now let p;(T') =
(f) € Q[T), so p;(T) has degree j and leading coefficient 1/5!. Then we can

compute

F(H) = det ((I-}—]m)) = det(p; (I + m)) = det <%(I+ m)j)

:(Jffl)- [ *k-m=1

=0 | PPN . P
Next, for each 0 <t < J we let
Ft = F(0,0,... ,O,Zt,... ,ZJ_]_).

Since Fy_; = F(—(_)_)) we can write F(Z") as a telescoping sum

J-2
F(?) =1+ Z(Ft = Ft+1)-
t=0

So the proof of (30) will be complete if we can show that

Fo—Fy€2M2[7Z]  forall0<t<J—2. (31)

Fix some 0 < t < J — 2, and to ease notation write
G(Zt) = Ft = Ft+1 = F(O, .. ,O,Zt,2t+1,...) . F(O, ,O,Zt+1,. )

Here we think of G(z) as a polynomial in z with coefficients in
Z[2t4+1,. .- ,27-1]- Clearly G(0) = 0, so G(z) is in the ideal generated by ;.
We want to show it is actually in the ideal (z)**!. To verify this, we will now
show that (D"G)(0) = O for every integer 1 < r < t. (Here D = d/dz;.)

The point is that z; appears only in the t** row of the matrix defining F},
and does not appear at all in F;4q. So for r > 1, D"G is the determinant of the
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matrix whose m*? row is given by the rules
{
/i
+m)) if m <t
J 0<i<d
I+t . .
mtk row = < . )D'(l + zt)I+t—J) ifm=t
J 0<i<J
I+m : .
+, )(l—t—zm)”m"’) ifm>t
{ J 0<j<J

In particular, evaluating the derivative in the t** row and substituting z; = 0, we

find
{t“‘ TOwW } _ <<I+t)r|(1+t _j)(l - )I+t—j—r )
for 2;=0 J . J t H#50
(g
il j

=1 (I+ t) {(t — r)** row}.

r

Thus as long as 1 < r < t, we see that (D"G)(0) is the determinant of a
matrix whose ¢** row is a multiple of its (¢ — r)** row, so (D"G)(0) = 0. This
proves that G(z) is in the ideal (2;)**!, which completes the proof of Lemma
6.1. O
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