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Difference equations with delays
depending on time

C. E. de Avellar and S. A. S. Marconato

Abstract.  For linear difference equations with coefficients and delays varying in time,
sufficient conditions are given, in the scalar case, the zero solution to be stable.

1. Introduction

An important class of differential equations of neutral type, are the equations:

d

EDxt = f(t,xt) (1.1)

where D is a linear difference operator.

In studying stability and asymptotic behavior of the solutions of (1.1), the
major difficulty is related to the properties of the difference operator associated

N
D:tt = It(O) = Z Akxt(—rk) (12)
k=1

The importance of the difference operator associated to the differential equa-
tions of neutral type, was initially studied by Cruz and Hale [4] and Hale [6].

In the last years, Cruz and Hale [4] Henry [8], Silkowskii [10], Melvin [9],
Tsen [11]; Avellar and Hale [1], have been studying stability and asymptotic
behavior of solutions of difference equation of the type

N
z(t) = > Awz(t — ri) (1.3)
k=1
with £ € R*, Ay an n X n matrix, and 0 < rp, < r,fork=1,... ,N.

In the applications, the coefficients Ay and the delays r are not 1 known and
we must allow them to vary in some set.
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In the scalar case, Melvin [9] showed that a necessary and sufficient condition
for stability of (1.3) is Ef=1 |Ak| < 1, Ax € R. Silkowskii [10] extended this
result to the matrix case.

In this paper, we take the coefficients Ay and the delays ri in (1.3) varying
in time, that is, we consider the system:

N
z(t) = kz_:lAk(t)z(t - "k(t)); t2>0 (1.4)

z(t) = ¢(t); —r<t<0
and by using a result of Bana$, Hajnosz and Wedrychowicz [2], we prove the

. following:

Theorem A. For the system (1.4), let's consider: r:[0,+00) — [0,+o0)
; Ay:[0,400) — R: real continuous functions, Ap(0) = Ag, re(0) = rg,
0L rg<rr(t)<t+r,t>0, k=1,...,N,andlet
max {rit); k=1 oy Nyoot 2 0
= { r = axfrivk = bea i), 0 mr S 0;
Suppose that:

(@) sup{¥il; |4Ax(®)[} < 1;
>0
(ii) t_lg_noo(t — r(t)) = +oo.
Then, for every ¢ € C([-r,0],R),%(0) = Zfﬂ App(—rx), system (1.4) has
a unique solution y, with y(t) — 0 as t — +oo.

We also give an example showing that in R2, the theorem is not valid even
for the case of periodic delays.

2. Some notations and a fundamental theorem

Let (E,|| ||) be a given Banach space. Let us use the following notation:
mpg is the family of all non-empty and bounded subsets of E;
Rg, is the family of all non-empty and relatively compact subsets of E.

Let p(t) be a given function defined and continuous on [—r,+o0) with real
positive values, r € R.

Denote by C, = C([—r,+00); p(t)) the set of all real continuous functions
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defined on [—r, 4-00), such that sup{|z(t)|p(t): t > —r} < +oo0.

C, is a real Banach space with respect to the norm
||| = sup{|z(t) p(t):t > —r}.
Next, for an arbitrary z € C,, X € mc,,T > 0,e > 0, let us denote:

w”(z,€) = sup{|z(t)p(t) — z(s)p(s):t,8 € [-n,T], |t—s| <€}

wT(X,¢€) = sup{wT (z,¢): z € X}

wI(X) = lirr(l)wT(X, €)

wo(X)= Ilim wI(X)

a(X) = lim sup{sup{|z(t)|(t): ¢ > T})

T—oo zeX

bX) = Jim sup{aupllz(t)o(t) — a(e)o(s)l: ¢, 2 T]}

Bo(X) = wo(X) + a(X)

#(X) = wo(X) + b(X)

The functions u,(X) and p(X) are the sublinear measures of non-compact-

ness in the space C), see [3].

The theorem we will state now is a modified version of the Darbo Fixed Point

Theorem (see Bana$, Hajnosz and Wedrychowicz [2]), and it is of fundamental
importance to the proof of our Theorem A.

Theorem 1. Let C be a non-empty, bounded, convex and closed subset of a
Banach space E. Suppose T:C — C is a u-contraction. Then, T has at least
one fixed point in C and the set FixT = {z € C: Tz = z} belongs to Ker p.

We will also state a result due to Silkowskii [10] related to the stability of the
zero solution of equation (1.3).

Theorem 2. A necessary and sufficient condition for the zero solution of (1.3)
to be stable globally in the delays is that:

N
70(A) = sup{'y(z Are'’k): 6, € [0, 25, k=1,...iN}<d
k=1

where ~(B) is the spectral of the matrix B.
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3. Proof of Theorem A. Let
M = {y € Cu([-r,+o), R): y(t) =¥(t), —r<t <0}
where
Cu([~r,+00),R) = {y € C([-r,+o0),R): [lvll < H}

and F: M — M is the map given by:

N

(Fy)(t) = D ar(t)y(t —re(t)); t=0
k=1

(Fy)(t) =y(t); —r<t<0

It is easy to check that F is a contraction so, by the Banach Fixed Point
Theorem, the system (1.4) has a unique solution. To prove stability, we will use
the techniques used by Bana$, Hajnosz and Wedrychowicz [2].

First, we make the change of variables:

y(t) = =(t) exp(t - r(2))-
So,
y(t — (1) = 2(t — ra(8)) exp(t — ra(t) — 7t = & (®));

and the system (1.4) is equivalent to

z(t) = é:::lak(t) explr(t) — re(t) - r(t = re(@)a(t — re(®)); £20 5

2(t) = exp(r(0) — t)$(t); —r <t <0
Lat Cy=Cll=#, +00),p(t)) with p(t) = exp(t — r(t)) and

M = {z € Cpr z(t) = exp(r(0) — t)¥(t); —r < t <O},

and let F be the map defined in M by:

N

(Fz)(t) = D ax(t) exp[r(t) — re(t) — r(t — ri(t)))z(t — ri(t));t = 0
k=1

(Fz)(t) = z(t);-r <t <0

DIFFERKENCE EQUALTIUND WIIH DELAYD DEPENDING UN 1TIME 319

Forallzé]\’\/fandtzo,wehave

|(Fz)(t)| exp(t — r(t)) =

N
(kg ak(t) explr(t) — ri(t) — r(t — r($))]=(t — re(t)) exp(t - r(t)))‘ =

.

N
,,,Z_:l ak(t) explt — ri(t) — r(t — ri(t))]z(t — re(t))

N
< sup{)_ lax(t) =l
=

N
As igg{zkﬂ lak(t)|} < 1 and (Fz)(t) = z(t); —r < t <0, we have:
IFz]| < |l2]], V= € M

So, F maps M into itself and transforms the ball K = K (0,6) into itself,

Vé € (0,+00).

In a similar way, we obtain

|Fz — Fy|| < ||z - y|l; Vz,y€ K. (3.2)

Therefore, F is continuous in K.

Now, for X C K, fixed, z€ X, T >0,t > T,
|(Fz)(t)| exp(t — r(t)) =
N

=) ax(t) exp[t — ri(t) — r(t — ri(t)))z(t — re(2))| <

k=1
N
< -;;g{kz_:l |ak(¢)]} sup{|z(t)| exp(t — r(¢)): ¢ > inf (s — r(s))}
So,

N
a(FX) < sup{)_ |ax(t)|}a(X) VX c K, (3.3)
t>0 k=1

fixed.

Now, let us take € > 0,T > 0,t,s € (0,T) such that |t — s| < ¢ and
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p(t) =t — ri(t) — r(t — re(t))
|(Fz)(t) exp(t — r(t)) — (Fz)(s) exp(s — r(s))| =

N N
= |37 au(t) exp(p(®))a(t — re(®) — D ar(s) exp(p(s))a(s — ri(s)| <
k=1 k=1
N
< sup(3 lax(O)} sup{A() = Bl t,a € (O,7), [t~ o] < 7}
20 j—1
where
A(t) = exp(t — r(t))=(t);
B(s) = exp(s — r(s))z(s), and
r = sup{|(t — r(t)) = (s — r(s))|,t,5 € (0,T), |t — 5| < &}
So, .
Wl (FX) < sup(3_ an(0)}u? (X), VX € K, 3.4)
220 k=
fixed.

Combining (3.3) and (3.4), we obtain:
N
Ho(FX) < igg{z lak(t)l}l"o(X)> VX C K,
20 k=1

fixed, which means that F is a u,-contraction, and by Theorem 1, the system
(3.1) has a fixed point z in Cp, and tlig} z(t)p(t) = 0.

But, z(t) = exp[—(t — r(t))]y(t), and so t_ljinw y(t) =0.

4. Matrix case

Consider the system
:t(t) = Aln:(t = Tl) + Azz(t o Tz);t >0

4.1)
z(t) = p(t);—a <t <0
2 2
" - 0 0 -
where:zz[l]eRz;Alz 3 2 and A; = 2 3], a €eR,
= 0:) == = O
3 3

ry > 0, rg > 0, a = max{ry,rs}.

It is easily checked that, the zero solution of (4.1) is stable globally in the
delays according by Theorem 2. ’

DIFFERENCE EQUATIONS WITH DELAYS DEPENDING ON TIME o

Consider now, r; = ry(t), r2 = rz(t), continuous periodic functions with
period 3, such that: ‘

rl(o) = 17 rl(l) = 37 7'1(2) = 3,
r2(0) = 2, 7'2(1) — 1, r2(2) = 1,

Let :[—2,0] — R%, with o(—1) = ¢; = [(1)] and p(—2) = e; = [(1)],
and consider the system: ‘
z(t) = Arz(t — r1(t)) + A2z(t — r2(t)); t>0
z(t) = p(t); te€[~2,0
Now, observe that:

4.2)

z(==1)==
2(0) = Jex
#(1) = _1_;62;
z(2) = —;—2e1;
z(3) = —%el;
z(4) = %62.

Geometrically, we have the following situation in the phase space.

A X2




By induction, we can to show that, the sequence {z(63)};=0,1,... is such that

z(67)-0 as j — oo, and so (4.2) is not stable.
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