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Differentiability of the minimal average
action as a function of the rotation number

John N. Mather

Abstract.  Let f be a finite composition of exact twist diffeomorphisms. For any real
number w, let A(w) denote the minimal average action of f-invariant measures with angular
rotation number w. We prove that A(w) is differentiable at every irrational number w and
that for generic f it is not differentiable at rational w, thus verifying conjectures of S. Aubry.
Moreover, we show that these results are valid for a variational principle h which satisfies the
condition which we have called elsewhere (H). As a consequence, we generalize a result due
to Bangert concerning geodesics on a two dimensional torus with an arbitrary, but sufficiently
smooth metric.

Introduction

Let Tﬁl denote the set of exact area preserving, orientation preserving, end pre-
serving C1 diffeomorphisms f of the infinite cylinder (R/Z) x R which satisfy the
positive twist condition with a lower bound of 8 on the minimum angle through
which the vertical is turned (by f or f ) (A precise definition of Tﬂ is given in
[4, §2], where it is called Jg, and repeated in [8, §1]). Let P1 denote the set of all
diffeomorphisms of (R/Z) x R which may be represented as finite compositions
of elements of T,

Consider f € Ppl. For each real number w, there exists an f— invariant
probability measure p,, whose (angular) rotation number p(u,) is w and which
minimizes the average action A(u) over f-invariant probability measures u of
rotation number w. We have given two proofs of this fact in [6] and [7, §6]. In
fact, when w is irrational, u,, is unique and is characterized by the fact that its
support is the Aubry-Mather set of rotation number w.
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Let A(w) = A(pw). The function A(w) is strictly convex by a theorem of
Aubry, so the left and right derivatives A’(w—) and A’(w+) exist. The main result
of this note is that when w is irrational, they are equal, i.e. A is differentiable
at irrational w. (I am indebted to S. Aubry for pointing out to me that this result
and the discussion in §3,§4 is closely related to the discussion in [1, §5]. The
relationship between our results and the conjectures of Aubry is discussed in §6.)
We also obtain the estimate A'(p/q+) — A'(p/q—) < 48/q, where 6 = cot 3.
This estimate is valid when the rational number is expressed in lowest form as
p/q. i.e. when p, g are relatively prime integers and ¢ > 0.

The differentiability of A(w) at irrational w is an easy consequence of the
following estimates

A'(p/g+) < d'q[Alp/a +1/4d') — A(p/q)] < A'(p/q+) +160/¢', (1+)

A'(p/q-) > —q'a[A(p/q — 1/49') — Alp/q)] > A'(p/q—) — 166/¢',. (1-)

which hold when p/q is a rational number in lowest terms and ¢' is a positive
integer. Of course, the first inequality in each line above follows immediately
from the convexity of A. The main part of this note is a proof of the second
inequality in each line above.

1. Proof of the inequalities (1+)

We will prove only the inequality (1+), the proof of the other inequality being
similar. In fact, (1+) is simply (4.4a) of [5], corrected and suitably interpreted. We
explain the appropriate interpretation below, and the correction in the Appendix.

Actually, the inequality (4.4a) of [5] holds more generally for a variational .

principle h which satisfies (Hy) — (Hs) and (Heg) of [4], as the proof in [5]
shows. We will not restate these conditions here, but refer to [4] or [8, §1]
for a statement of them. Note that conditions (H;) — (H,) are stated in [2].
In [8, §1], we stated only conditions (H1), (Hz2),(Hs), and (Hes), since these
conditions imply (Hs) and (H,). We refer to the conditions (Hy) — (Hs) and
(Hegp) collectively as (Hp).

The variational principle h associated to f satisfies (Hj). We refer to [8, §1]
for the detailed definition of h. Here, we just recall that if f = f,o---of,, where
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f € T then the variational principle h associated to f is the k-fold conjunction
h="hy*---%hg,

where h; is the generating function of a lift f; of f_,. to the universal cover. We
proved in [4] and [5] that h satisfies (Hp); these results are summarized in [8].

Let H(z,z') = h*I(z,z’' + p) — const., where h*? = h % --- x h (q times)
denotes the g-fold conjunction of A with itself, and const. is chosen so that
min H(z,z) = 0. Let L be defined as in [5, §4], but using H in place of h. We
have

99'[A(p/q + 1/a¢') — Alp/q)] = L.
The proof of this equation is simply a matter of untangling the definitions, which
we leave to the reader. Since [5, 4.4a] states that K < L < K + 160/¢’, we
obtain K = A'(p/q+), by letting ¢ — +oo. Then (1+) follows immediately.
The definition of K which we use is given in §3. With the definition given in §3,
the inequality [5, 4.4a] is correct; with the definition given in [5], it is not correct.
See also the Appendix to this paper.

This proof does not use the assumption that h is associated to an element
of P1, only that h satisfies (Hg). The only remark we need make is how to
generalize A(w) to this setting. In fact, when h is associated to f € P1, we have
that A(w) is the minimum of Percival’s Lagrangian

Pue) = [ Wpt),plt +u)at

taken over all bounded and measurable functions ¢ such that p(t+1) = ¢(t)+1.
Moreover, the minimizing function ¢, is increasing. See [3], [9], and [6]. Thus,
for general h which satisfy (Hg), we will define A(w) to be the minimum value
of P,(y). When it is necessary to explicitly indicate the dependence on h, we
will write Ap(w).

With this definition of Ap(w), the estimates (1) still hold for any variational
principle A which satisfies (Hyp).

2. Differentiability at irrationals

In the previous section, we showed that the estimates (1£) hold when h sat-
isfies the conditions (Hg). Now we show that the estimate (1+) implies the
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differentiability of A at irrational numbers. (A similar argument would show that
the estimate (1-) implies the differentiability of A at irrational numbers.) Let w
be irrational. By Dirichlet’s pigeon hole principle, there exist rational numbers
p/q < w withw — p/g < 1/¢* and with g arbitrarily large. Let ¢' be an integer
such that w < p/q + 1/4¢'.

From (1+) and the convexity of A, we may obtain an estimate for Al(w+),
as follows. Let P be the point (p/q, A(p/q)) in the plane, let @ = (p/q +
1/qq', A(p/q + 1/44')). let £ be the line through P with slope A'(p/q+), let
R be the point on £ whose first coordinate is w, and let L be the line joining R
and Q. Obviously, the slope of L is an upper bound for A’ (w+). From (1+), it
follows easily that the slope of L is < A'(p/q) + 166/Aq', where A is the ratio
of p/g+1/9¢' — w0 p/q+1/q¢' — p/g, ie. A= pqg' +1— wqq'. Using the
convexity of A, we then obtain

A'(p/q+) < A'(w-) < A'(wt) < A'(p/q+) + 168/2d,

s0 A'(wt+) — A'(w—) < 166/Aq'".

Let ¢' = [¢/2]. Since p/g < w < p/q+ 1/q* we have X > 1/2, so
0 < A'(wt) — A'(w—) < 320/¢". Since ¢' may be chosen to be arbitrarily
large, by Dirichlet’s pigeon hole principle, we obtain A’(w+) = A'(w—).

3. Rational w

In this section, we show that if w = p/q, in lowest terms, then A}(p/q+) —

' (p/g—) < 48/q, provided that h satisfies (Hs). The proof of this is based
on the formula A’'(p/q+) = K, given in §1, and the analogous formula for
A'(p/q—), which we will write in the form A'(p/q—) = —K~. In this section,
we will also write Kt for K.

Next, we define K*.

We let A denote the set of z € R such that H(z,z) = 0, i.e. the set where
H(z, z) takes its minimum value. (This set was denoted Ag in [5], but here we
have used the symbol A for the average action.) For each complementary interval
J =[J7,J] of 4, we define numbers K} and K7, as follows. Choose an H-
minimal configuration (... ,;,...) such that z; — J~ (resp. J*) as { — —oco

and z; — J1 (resp. J7) as 1 — +oo. Theorem 5.8 of [2] asserts the existence
of such configurations. We set

Kj (resp. K3) = > H(%ii4s),
t=—o00

Thus, K}’ is what we called Ky in [5, §4]. We showed in [5, §4] that this sum
is absolutely convergent and that

Jt
/32H(y,y+)dy <K,
J—
< g1, ")
Jt
= / 02H(y,y+)dy + pu(A}),
J-—

where A7 is the triangle {(y,2) : J- < y < 2z < J*}. Likewise, using the
results of [5], it is possible to show that

Jt
i / 8:H(y,y+)dy < K
J_
% PORS D)
JE
s / 92 H(y,y+)dy + pu(A]),
J—.

where A7 is the triangle {(y,z) : J~ < z <y < J*}. Using [5, 3.2], we then
obtain
0< Kj + Kf <pu(J?) < (J* = I Wi(J~,JH). )

For any interval I whose endpoints are in A, we set

Kf =Y K3+ [ o1H(y,y1)d,
In4
where the sum is taken over all complementary intervals J of £ in I. In view of
the periodicity property of H, the quantity K;t is unchanged if we replace I by
a translate of itself by an integer. As a consequence, KIi is independent of I, for
intervals I of length 1 with their endpoints in 4. We set K* = KI*, where I is
any interval of length 1 whose endpoints are in 4.
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In §1, we showed that A'(p/q+) = K™, as a consequence of [5, 4.4a].
In the Appendix, we explain why [S, 4.4a] is correct, with the definition of K
given here. (We denoted K + by K in §1). A similar argument shows that
A'(p/q—) = —K~. From (2), we obtain

0< A'(p/qt) — A'(p/q-)
=K + K% 3)
<> (It -JIWEI,IT),
J

where the sum is taken over all complementary intervals J of A in an interval I
of length 1 whose endpoints are in 4.

Let Iy = [I7,I3] and I; = [I7, I}'] be two intervals whose endpoints are
in 4. Let && = (...,€%,...) and & = (... ,€E,...) be the h-minimal
configurations of rotation symbol p/q such that fffo = I%,a =0,1. We will say
that I and I; are companions if there exist ¢, € Z such that

+ _ et o
€00 = &1 1 J-
In other words, these two intervals are companions if &7 is a translate of §; and

¢ is the same translate of £7 .

If I and I' are companions then X¥ = K7,. This follows directly from the
definitions: for the case that I and I' are complementary intervals of 4 in R, it
is enough to express K3 and K3 in terms of h (instead of H), and the equation
K}h = K}t, for general companions follows from this case.

We will say that an interval I is a fundamental interval if there exists an h-
minimal configuration £ = (... ,&;,...) such that I is a complementary interval
of the set {&; + j}. Obviously {& + s} C A and each interval of length 1 with
endpoints in {&; + 7} is the union of ¢ complementary intervals of {&+ 7}, and
any two such intervals are companions. Thus, we obtain ’

K* = qK;t,
when I is a fundamental interval. Furthermore, (3) implies
0< K-+ Kt =q(K; + Kf) < q(It - I"Wwg(I~,I7),

where I~ < It denote the endpoint of 1.
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Since each interval of length 1 with endpoints in {&; + 7} is the union of
¢ fundamental intervals, there are [¢/2] 4+ 1 of them which have length < 2/q.
In addition, since the v},-measure of any interval of length 1 is @ (cf. [5, §4]),
there are [q/2] + 1 fundamental intervals in any interval of length I which have
V}I-measure < 28/q. Thus, among the ¢ fundamental intervals in an interval of
length 1, we have described two subsets, each with > ¢/2 elements. These two
subsets must have a common member I, and for this common member we have

OS K™+ K <q(It - I"Wi(I7,I%) < 46/
Since A'(p/q+) — A'(p/q—) = K~ + K™, we have proved

0< A'(p/q+) — A'(p/q—) < 46/q.

4. Generic diffeomorphisms

In this section, we will show that for a generic f € P1, the function A is not
differentiable at any rational number. In fact, we will show that A is differentiable
at p/q if and only if there exists an invariant circle which goes around the infinite
cylinder which consists entirely of orbits of rotation symbol p/q. (Recall that
such orbits are periodic of period ¢q.) This statement clearly implies our statement
about generic f

In fact, our argument works for any variational principle h which satisfies the
condition (H). For such a variational principle, we will obtain that the associated
function A = A, is differentiable at p/q if and only if R is the union of minimal
configurations of rotation symbol p/q.

In the notation of §3, this means that A is differentiable at p/q if and only if
A = R. We base our proof on the formula

Alpfet) = Alple-) =Kt =K~ =) (K} - K3),
J

discussed in §3. The sum is taken over all complementary intervals J of A in
an interval of length 1 having endpoints in 4. If A = R, there are no such
complementary intervals, and the right side vanishes, since it is the empty sum.

On the other hand, if J is a complementary interval of A in R, then K; +
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K} > 0. In fact,
Ji

K} > /62H(y,y+)dy
o

and
Jt

Ky > - / 02H(y,y+) dy.
J-
For the case of K_',*, we proved this inequality in [5, §4], although we stated it
with the relation > rather than >, since that was all we needed there. Our proof
there was based on [5, 3.4] (for infinite sums), and we have the strict inequality,
since both the first and third terms on the right side of [5, 3.4] are positive in our
situation. The proof for the case of K is the same.

5. Bangert’s Results

In the abstract of this paper, we mentioned that our results generalize a result which
Bangert told us about. Bangert’s result concerns geodesics on a two dimensional
torus provided with an arbitrary, but sufficiently smooth Riemannian metric. To
such a metric, one may associate a variational principle h which satisfies the
condition (H). The differentiability result obtained in previous sections for Ax(w)
implies the result of Bangert which we have referred to. Bangert obtained his result
by a different method, which has independent interest.

In this section, we state Bangert’s result and prove it by our method.

We let T2 = RZ?/Z% denote the torus. We consider any C* Riemannian
metric on T2. For any u € H;(T?,1Z), let £, denote the length of a shortest
closed curve on T? representing u. It is well known that such a curve exists
and is a geodesic. Bangert [2] showed that there exists a unique norm || || on
H1(T?,R) such that £, = ||u||, for every u € H1(T?,Z). Let B be the unit ball
of Bangert’s norm. Let z be an element of the boundary B of B and let [z
denote the one dimensional subspace of Hj(T'?,R) which contains z. Bangert’s
result which we have referred to is that B has a tangent at z, provided that
[z] 0 Hy(T2,7) = 0.

We may prove this, as follows. Choose a basis v, w of Hy(T?,Z), so that
every element of H;(T?,Z) can be represented uniquely as a linear combination
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mv+nw, with n,m € Z. Let ~, be a closed curve which represents the homology
class v and has minimal length. Let 4,, be a lift of v to the universal cover R? of
the torus and let T, be the Deck transformation of the torus which corresponds
to w.

Choose some C? diffeomorphism ¢ : R/Z — vy, andlet $: R — 3, be a
lift of it. For any z,z' € R, let h(z,z') denote the distance between @(z) and
Tw@(z'). Here, the distance is measured by the lift to R? of the given metric on
T?. The function h satisfies the conditions (H). We leave the verification to the
reader. It is easily verified that

Ap(w) H(w + wv) € 3B.

Thus, as we vary w from —oo to co, we obtain a parameterization of B N ¥,
where ¥ is the half plane

X ={av+pw:p >0}
in H,(T?,R)

Bangert’s theorem that 3 B has a tangent at z, provided that [z]N H; (T?,Z) =
0, follows immediately.

6. Aubry’s Discussion

There is a close connection with the results presented in this paper and the dis-
cussion in [1, §5], as S. Aubry has pointed out in a letter to me. The part of
his letter which is relevant to this note follows: “There is no rigorous proof in
[1,85] but only ‘physicists’ ideas’ and thus many conjectures. However, I think
that some of them could be turned into rigorous statements.”

“The function ‘average action” A(w) which you consider is called in my paper
‘energy per atom’ t(£) and then w = £/2a. Since t(£) is a convex function, the
right derivative 1'% (£) and the left derivative '~ (£) of $(£) are both defined. In
this work, I have been especially interested in the inverse function £(x) implicitly
defined by the inequality '~ (£) < u < ¢t (£). Although the results were not
presented in mathematical terms, they implicitly suggested several mathematical
conjectures for this curve £(u) (which I called the Devil’s Staircase) which are
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1. “For each rational number r/s £(u) has a constant plateau (where £(u) =
2ar/s). This plateau is determined by ¢'~(2ar/s) < p < ¢'*(2ar/s). The
width ¢'t(2ar/s) — ¥'~(2ar/s) is strictly non-zero unless the periodic cycle is
continuously non-degenerate on an invariant circle. (The fact that this width is
zero is equivalent to saying either of the following: a) the Peierls-Nabarro-barrier
of the commensurate structure is zero, or b) the energy difference between the
advanced and delayed discommensurations is zero, as was discussed in [1]).

2. “For irrational w = £/2a, we expected that ¢'~ (£) = ¢'*(£) because the
defect energies go to zero at the incommensurate limit.

“In fact, these two statements were well known and well admitted in physics
for the theory of incommensurate structures although no rigorous statement for
any model existed. In one of the preprints you sent me, you gave a proof of these
two conjectures for the twist map.”

The last sentence refers to a preliminary version of this note. Conjecture 1
is equivalent to the statement that “A is differentiable at p/q if and only if there
exists an invariant circle which goes around the infinite cylinder which consists
entirely of orbits of rotation symbol p/q”, which we proved in §4. Conjecture 2
is equivalent to the differentiability of A at irrational numbers, i.e. the main result
of this note.

Appendix.

Errata to [5].  As noted above, the definition of K given in [5, §4] has
to be changed in order for the inequalities [5, 4.4a] to be correct. Likewise, the
definition of K () given in [5, §4] has to be changed in order for the inequalities
[5, 4.4b] to be correct. We have already given the correct definition of K in §3,
but we repeat it here.

In this Appendix, we use the notation from [5]. Thus, Ao denotes the set of
z € R for which h(z, z) takes its minimum value (which is O by normalization).
(Ao and h were denoted A and H in §3.) We let I be an interval of length 1
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with endpoints in Ag. The correct definitions are:

o= ZKJ =+ / 82h(:1:,:::+)d:c,
I InA,

K(&) =Y Ks(€) + / Ba el o T
J

InAg

where in each case the sum is taken over all complementary intervals J of Ag in
I.

The first error in [5] is the inequality >~ ; Ly < L, which was asserted in [5,
§4]. The correct inequality is

ZL; -+ / dzh(z,z+)dz < L.
J IﬂAo

The argument given in [5, §4] is, of course, erroneous for the inequality >~ ; Ly <
L: the error is the statement that “the contribution of the second term [of the right
side of [5, 34] to > ; L] is f:“ d2h(y, y+)dy”, but this becomes correct if
> s Lyisreplaced by 3°; Ly +I [ 92h(z,z+)dz.

NAg

The second error is the formula

z+1
K=Y hy,y)+ / B2h(y, y+)dy + un(A5)
yeB z

in [5, §4], which, however, is correct (by [5, 3.4]) for the definition of K which
we have given here, although it is not correct for the definition of K given in [5,

§4).

The principle results of [5] are deduced from [5, 4.4]. However, all that is used
is that there exist real numbers K and K (&) such that [5, 4.4] and [5, 4.2] hold.
But [5, 4.2], i.e. Po;(€) = K(&)— K is unchanged by the new definitions, since
we have added the same quantity to K (§) as to K in changing the definitions.
Thus, the proof given in [5, §4] of [5, 4.2] is still valid with the new definition.

Finally, we note the following misprint in the proof of [5, 4.2]: in the expres-
sion given on page 208 of [5] for Go4 (z), the quantity K should be replaced by
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K, where J is the complementary interval of Ap which contains &.
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