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A Characterization of Hering’s Plane
of Order 27

Oscar E. Barriga

Abstract. Hering’s translation plane of order 27 has been characterized by its order and the
fact that it admits SL(2, 13) in its translation complement (see [1]). We show that, aside from
the Desarguian plane and a Generalized André plane, it is the only plane of order 27 which
admits a subgroup of SL(2,13) of order 13 x 12.

1. Introduction

In section 2 we review the relevant subgroups of SL(2,13),GL(3,3) and
GL(6,3). We show in proposition 1 that GL(6.3) contains a unique conju-
gacy class of subgroups of order 13 X 12 isomorphic to a subgroup of SL(2,13)
of the same order.

In section 3 we introduce three spread sets which admit a given group of
order 13 x 12. We prove in proposition 2 that there are no more such spread sets.
The next lemma characterizes the planes arising from these spread sets and the
following theorem is deduced:

Theorem. The only translation planes of order 27 which admit a subgroup of
order 13 x 12, isomorphic to that of SL(2,13), in their translation complement
are the Desarguian plane, a Generalized André plane and Hering’s translation
plane of order 27.

Our notation is standard and we follow [2].
2. Subgroups of SL(2,13), GL(3,3) and GL(6,3)

Since the order of the normalizer of a Sylow 13-subgroup of SL(2, 13) is 13 x 12,
it follows that SL(2,13) has a unique conjugacy class of subgroups of order
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13 x 12. One representative of this class is generated by the concrete matrices

11 il 2 0
01 07/
As an abstract group it can be presented as

Wi thic Al et =, b R10Y:

The Sylow 13-subgroup of GL(3,3) is of order 13. From the factorization
XB_1=(X-1)(X-1)(X°-Xx-1)(X3+X*+X-1)
(X+x2-1x3-xt-x-1)
in irreducible factors over GF(3), we see that there are four conjugacy classes

of elements of order 13 in GL(3,3). We can choose A with minimal polynomial
X3— X —1 to generate the Sylow 13-subgroup of GL(3, 3). In rational canonical

form
0 01
h—=1.1 "0 1
010

and if
01-1
o 10 1
(10 0

then |z| = 3 and z~'hz = h3. We have that

Ny (ss)((R) = [(—1) x (h)]x(z).
The conjugacy classes of elements of order 13 are represented in (h) by h, h2,
hihs,
A Sylow 13-subgroup of GL(6,3) is of order 132 and,

R0 -
T:{(O hj> |1,]:0,...,12}

being one them, it follows that every clement of order 13 of GL(6, 3) is conjugate

}g J% ) It can be deduced that GL(6, 3) also has
four conjugacy classes of elements of order 13 which are represented in T by

(o 8): (o 2) (5 &) (6 %)

to an element of the form (
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If we let C = (:?2 _OI> then C is of order 12. Moreover if H =
g ’?4 then C"'HC = H'0 and the group G = (H,C) is a subgroup

of GL(6,3) isomorphic to S.

Proposition 1. If Go is a subgroup of GL(6,3) and G is isomorphic to S,
then Go is conjugate to G in GL(6, 3).

Proof. We may assume by Sylow’s theorem that G contains one of

(6 8): (62) (5 ) = (&)

To see that the first three options cannot occur, we need only remark that if
ah' = hia with any 3 x 3 matrix a over GF(3) theni = 5 = O or a = O or
a is invertible. In the latter case h' is conjugate to h7. If we had, for instance,

0>€G0andif00:(

0 h was such that

z W

10
uy if Fec @ M L)
(o 7) @=(3 3)
then Y(h'® —I) = (h—I)Z =0 and AW = Wh' wouldlead 0 Y = Z =
W =0, a contradiction. (Note that —h generates a subgroup of GL(6,3) which
is the multiplicative group of GL(27) with the addition of matrices.) The same

type of argument eliminates the other two and we may assume that H € Gy.

Let Co € Go be such that C3'HCy = H', say Cp = ()Z( %’) Then

weget X =W =0and Y, Zz~% € Cgrss)(h) = (—I) x (h). This shows
that there are 4 x 13% possibilities for C in GL(6, 3). Since

0 =z R 0 0 -I R 0
(—I o) (o hJ‘) <x2 o) (o h*’)’
we see that C' normalizes T', but C fixes no element of T'. Therefore in the group
F = T'x(C), since T does not normalize (C') and no element of 7' centralizes
(C), we have that Ng((C)) = (C). Thus (C) has 132 conjugates in F. Since
both C and —C conjugate H to H19, this accounts for 2 x 132 of the possibilities

and the proof would be finished if Cy was one of these, as the conjugation of C

to Co occurs within FF C N((H)). But this is indeed the case as multiplication

RS TG — 2 ; 0 Y
by J = ( 0 I) leaves invariant the set of all 4 x 13 matrices ( 7 0)

with Y, Zz=% € (~I) x (h) and, if C is conjugate to C then C® = —I while
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(JC)® = I. Thus the remaining 2 x 132 are not matrices of order 12, but are of
order 6. This completes the proof.

3. Spreads admitting the group G

It is easy to see that Cgr,(s,s)(z) = (—I) x (z) X (w) where w is an element of
order 3 with minimal polynomial (X — 1)2. If z is chosen as in 2 then we can

0-10
w= 1-10].
-1-11

Proposition 2. Let V denote a 3-dimensional vector space over GF(3). Then
the following are the only three non-isomorphic spread sets on V. @V which
define planes admitting the group G = (H, C).

1) ; = (h)z? U (h)(—=?)
2) ¥ = (k) U (h)(-2)
D Bs = {(-1YRwz*h” |i=0,...,12:7 = 1,2}

put

Proof. Let ¥ C GL(V) be an arbitrary spread set defining a spread on V @ V
which admits the group G. By [2] the spread is of the form {(V,0),(0,V)} U
{(V,VM)|M € £}. Since H fixes both (V,0) and (0,V') while C interchanges
them, it follows that G = (H, C) permutes {(V,VM)|M € X}. Since H has
no other proper invariant subspaces than (V,0) and (0,V), it follows that H has
two orbits of length 13 on {(V,V M)|M € X}. Thus:

{(V,VM) | MeZ}={(V,VM)H' |i=0,...,12}U
VUV VMOE ] 4d=0y..,12}
where M, M are chosen so that (V,V M) and (V,V M") are in the distinct orbits

of H.

8 2-) which is of order 3. Thus

C* permutes the orbits of (H) and, since it fixes (V, 0) and (0, V'), it must also fix
the two other orbits. But then, being of order 3, it must fix at least one component
in each. We may assume that these components are the (V,V M), (V,V M’)
chosen above. On a fixed component C* fixes the origin and the point at infinity,

Since C normalizes (H) so does C* = <

therefore it fixes at least two of the remaining 26 points. It follows that C* is
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planar and, since 62 + 6 > 27, the order of the fixed subplane must be 3 and
C* has no other fixed component than (V,0), (0,V),(V,VM),(V,VM'). We
conclude also that M = 27! Mz, M’ = z~ M’z and so M, M' € CaLs,3)(z)-

Now C?3 is of order 4, it commutes with C*, thus it permutes the fixed
elements of C*. Since it interchanges (V, 0) and (0, V), it must fix both (V, VM),
(V,V M) or interchanges them. From (V,V M)C? = (V,V M) it follows that
M = —M~'z which is a contradiction as M? = —z would imply that M
is an element of order 12 in CaL(s,3) (z). Since there is no such elements in
CaL(ss)(z) we conclude that M' = —M~z.

We have shown that the spread
{(V,ZVM)H' |i=0,...,12} U{(V,V(-M'2))H | i =0,...,12)

is determined by M € Cgy(s 5)(z).

It is an easy calculation to see that for M = +w, +w?, +wz or tw?z we
do not get a spread.

The possible spreads are then determined by the pairs {M,—M ~lz} =
{—I,I}, {I,—:C}, {x2’_x2}’ {wz2’_w212} or {wzxz:_wzz}'

The first two pairs produce isomorphic spreads, as can be seen using [2;

26], as the spread set given by {—1I,z} becomes that given by {I,z} under the

action of ¢ = (g _OI) By the same result, applying A = (:l)l g) to the

spread defined by {wz?, —w?z?} and applying pu = ('(‘; _0z> to that given by

{w?z?, —waz?}, the spreads coincide and the last two pairs produce isomorphic
planes.

The spread X; is defined by {z?, —z?}, 5, is defined by {I, —z} and =3
is defined by {w?z?, —~wz?}. The proof of the proposition will be completed
once we establish that these are non-isomorphic. Both this and the proof of the
theorem follow from the next lemma.

Lemma 3. If II; denotes the plane defined by the spread set T; then 11y is
Desarguian, 113 is a generalized André plane and 113 is Hering's plane of
order 27.
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Proof. Since
(V,Vhiz?) (g ,?9) = (V,Vhiz?)

‘and

V(=) (§ ) = WVEE),

(i =0,...,12), it follows that the kernel of the plane defined by X1 contains a
group isomorphic to (k). Since it also contains —I and since (h)y x (—I)uU {0}
is isomorphic to GF(27) as a field, it follows that II, is Desarguian [2].

The plane defined by 25 does not admit (z, y) — (y, ) as (V,V(-hiz)) —
(V,V(—h*z?)) and —h*z? ¢ %y. If

J—Ioandr—ho
“\0 h “\0 I

then a straightforward calculation shows that ¢ is an ((o0), (V,0))-homology of
order 13, r is a ((0), (0, V'))-homology of order 13 and each component is in an
orbit of length at most 13 under (g) x (r). Since 13 is a primitive divisor of
33 — 1, the plane defined by X3 is a generalized André plane by [3; 5.2.1].

Finally, the spread defined by X3 is invariant under

2.2
i zwu T wu

T'w'u —wu

where u is an involution inverting z and commuting with w. If z,w are chosen

0-1 1
TRt R Bl X
- 0 0-1

But then since (W, H,C) = SL(2,13) as can be seen in [1], it follows from the
same reference that the plane defined by X3 is Hering’s plane of order 27. This

as before, one can choose

completes the proof of the lemma, the proposition and the theorem.
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