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On the cohomology of one dimensional
foliated manifolds

Placido Andrade and Maria do Socorro Pereira

Abstract. We show that the cohomology group H! (M, ¥) is an infinite dimensional vector
space, for a dense set of one dimensional foliations on a closed manifold. In particular we
compute this cohomology, for some foliations on the torus T2,

1. Introduction

In this paper we study the cohomology of a closed foliated manifold (M, ¥) for
a foliation given by the orbits of a C*° flow without fixed points. Our main result
is the following

Theorem 2.1. If there exist infinitely many distinct leaf closures of ¥, then
HY(M, 7) is an infinite dimensional vector space.

A statement of denseness and openness for foliations satisfying this sufficient
condition is given in section 3. The result above adds the following information
on the torus TZ.

Theorem 2.3. If 7 is not a minimal foliation on T2, then dim H'(M, 7) = oo.

Notice that for a linear foliation £, on the torus T™ the cohomology of (T", £)
was completely calculated [1],[3],(4], and [8]. Thus, it remains to compute the
cohomology group H 1(M , ¥), for foliations C" conjugate to linear ones, 0 <
r < 1. Theorem 4.3 gives a partial answer to this question.

Theorem 4.3. The following are equivalent on the torus T*

a) dimHY(M, ) =1;

b) 7 is C* conjugate to a diophantine linear foliation.
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1. Preliminaries

The cohomology of a foliated manifold (M, ¥ ), introduced by Reinhart [7], will
be denoted by H*(M, 7). It is also called foliated cohomology, or cohomology
of type (0, ). Details may be found in [4]. Throughout this paper M denotes a
closed manifold, and ¥ a foliation given by the orbits of ¢;, the C* flow without
fixed points generated by the vector field X. For a one dimensional foliation, the
complex of the (0, ¢)-forms reduces to

0 — A%(M, F)BA (M, 7) — 0,

Given a Riemannian metric { ,) on M, and a fixed 1-form § = (X, ), then the
complex of the (0, g)-forms can be described as

A(M, 7) = C=(M), A (M, 7) = {g6;9 € C* (M)},
and d5(f) = X(f)8. Here, C=(M) consists of all C* real functions on M,
and X (f) denotes the X-directional derivative of f. Then the cohomology group
H*(M,¥)= H°(M,7)@® H'(M, 7) is given by
H(M, 7) = {f € C*(M); X(f) = 0},

and
C=(M)
1 HY(M,7) = .
& (M, %) = 1n{x: C= (M) — C= (M)}
This means that if the foliation does not have non-constant first integral then
H°(M,7) = R; otherwise H°(M, ¥) is an infinite dimensional vector space

over R.

2. The main theorem

In order to determine the dimension of H(M, ), by (1) we must try to solve
the partial differential equation X (g) = f, for a given function f € C (M). Of
course, if there exists a solution it can be given on each ¢;-orbit because fixed a
point p € M, we have

@ o6ep) = o(p) + [ 16, ()i
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where the initial condition is g(p). We will make use of (2) to prove our main
result.

Theorem 2.1. Let 7 be a foliation on a closed manifold M given by the
orbits of a C* flow, ¢, without fixed points. If there exist infinitely many
distinct leaf closures of ¥, then HY(M, 7) is an infinite dimensional vector
space over R.

Proof. By (1), to prove that dim H'(M, 7) = oo it suffices to show that given
no € N, there is a linearly independent set {[f;]}/2, in H'(M, 7). Here, [f]
denotes the cohomology class of a C* function f: M — R. To systematize the

proof let us divide it in three cases.

Case L. If there exist an infinite number of minimal sets of the flow, then the
Theorem holds.

Proof of Case I. Denote by u, a minimal set containing a point p € M. Let
{up‘. }$2, be a collection of distinct minimal sets of the flow. Recall that two
distinct minimal sets are disjoint.

Given ng € N. Take the minimal sets p,, , . .. s Mpp,, - Since they are compact
and disjoint, we can choose open disjoint neighbourhoods, say Vi, ... ,V,,, satis-
fying pp. € V;. By standard methods, we construct a C* function f;: M — [0, 1]
with compact support contained in V; such that f,.“l(l) =pppfori=1,...,no.
Let us show that {[f;]}]°, is-a linearly independent set in H'(M, 7). Suppose
that there is a zero linear combination with real coefficients

no

3) d_rilfsl=o.

i=1

By (1), there exists a C* function g: M — R such that
o
(4). X(g) =) rif;
i=1
Take the point p;, € upio. By (2) and (4), we have
ng t
® 0(641pi)) = 0(pie) + 2075 [ 13(6u(pi))ds.
f=1

Since each minimal set Bp; 18 ¢-invariant, the supports of { f;}?:"l are disjoint,



82 P. ANDRADE and M. S. PEREIRA

f,-(upj) =0if i # 7 and f;(up,) = 1, it follows that (5) reduces to

g(¢t(p.-0)) = g(pio) +1i, At fio(¢a(pio))ds'

If r;, # O, this gives a continuous unbounded function on M which is impossible.
Therefore r;, = 0, and we have shown that {[£;]};2, is a linearly independent
set in H(M, 7). Then the theorem holds. This completes the proof of the case
I

We observe that each compact invariant set of the flow ¢; contains a minimal
set. Since the manifold M is compact then there is at least one minimal set. In
the remaining cases we will need the following lemma. Notice that a(p) (resp.
w(p)) denotes the o-limit set (resp. w-limit set) of a point p € M under the flow

1.

Lemma 2.2. Suppose that there are only finitely many minimal sets of the
flow ¢¢. Then given an infinite set S = {po,p1, ... ,Pn,---} C M there exists

an infinite subset S' = {pi,,Pi,s--- »Pin,---} C S such that
Ar=(Yalpi,) #{} and A= (wlp) # { }.
=0 =0

Proof of the Lemma. Let {u};.2, be the collection of all minimal sets of the
flow ¢;. Define a finite index set by

j:{(il,...,ip); 1§i1<---<ip§moand1§p§mo}

For I = (§1,...,4p) € J, let pr = pg, U -+ U g,

Now, given an infinite set S = {po,... ,Pn,..-}, for I,J € T let Sp;
consist of all points py € S such that the union of the minimal sets contained
in the o-limit set o(pg) is pr and the union of the minimal sets contained in
the w-limit set w(py) is ps. One may show that {Srs}1 Jes is a finite partition
of S. Since S is an infinite set then there are indexes, say Io, Jo, such that
S1y0o = {Pigs--- »Pin,---} is an infinite set. So, by construction we have
Ni=o a(p;j) D puy, and ﬂ;":ow(p;j) D py,. This completes the proof of the
Lemma. )

Let us return to the proof of the theorem. From now on we suppose that
there are infinitely many distinct orbit closures of ¢, but that there are only
finitely many minimal sets. Let T = {&(p;)}2,, a countable family of distinct
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orbit closures. By Lemma 2.2, we may assume that ;2o a(p;) # { } and
NiZo(wp,) # { -
Now, inclusion defines an ordering on T', so there are two possibilities: a)

there exists a totally ordered infinite subset 7' C T'; b) any totally ordered subset
T' C T is finite.

Case II. If there exists a totally ordered infinite subset T' C T, then the
theorem holds.

Proof of Case II. Given no € N. Take ng + 1 leaf closures in 7", say
5(piy),o(piy)s - - - ,0(Pip,).- We may assume, without loss of generality, that
i; = j, and that 3(po) C @(p1) C -+ C (pn,). We choose open flow boxes
Bo, By, ... , By, suchthat p; € B; and BN B;j ={ } for 0 < ¢ < j < no. By
assumption, since & (p;) = 7(pi+1), we can choose the flow boxes small enough
to ensure that if B; NG (p;) # { } then ¢ < 3. (Figure 1).

ag.(P;)

| S

Fig. 1

Now we construct a C* function f;: M — [0, 1] with compact support contained
on B; and f1(1) = p;, for i # 0,4 =1,... ,no. Let us show that {[fi]}}2
is a linearly independent set in H1(M, 7). Suppose that there is a function
g: M — R satisfying (4). Observe that the leaf closure 7 (po) does not meet the
support of any f;. Then g(a(po)) is constant because X(g), = 0, for p € 7(po).
Assume that g(7(po)) = 0. Take the point p;. By (2) and (4), we have

(6) 9(¢e(p1)) = g9(p1) + Zr./ fi(¢s(p1))ds.
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By construction, the pj-orbit does not meet the flow boxes Bg, ... , Bn,. Hence
it does not meet the supports of fa,... , fn,. Therefore (6) reduces to
t
) o($or)) = 9(or) +71 [ 11(6u(p1)s.
Recall that the intersection
A= () a(p;) and Ay = () w(p;)
=1 =1

are non-empty sets. Since g(@(po)) = O then g(Ax) = 0, for k = 1,2. From
this fact we will show that r; = 0. Take ¢' € A; and ¢" € Az. By definition of

limit sets we have )

qg:= mco ¢tk(p1)

li
n

€5 i dh(m)

Recall that g is continuous. From (7), it follows that
tk
0(¢") = 9(p1) + limry /0 f1(6s(p1))ds = O;

9(¢") = g(p1) + limr, /Otk f1(¢s(p1))ds = 0.

Note that {f;};-2, are non-negative functions. Set
%
p1 = hm/ f1(¢s(p1))ds > 0;
+o0 Jo

t
p2 = l_ig;/o * f1(¢s(p1))ds < 0.

If py = oo or ps = —oo (the p; orbit might pass through the support of f;
infinitely many times), then r; must be zero because g is a bounded function;
otherwise we have

9(q") = g(p1) + r1p1 = 0;

9(¢") = 9(p1) + r1p2 = 0.
Then r1(pz — p1) = O, thus r; = 0. Now repeating the process above we show
that r; = O for 1 = 2,...,no. So, we have shown that {[f]}}2; is a linearly
independent set in H(M, 7). From this the theorem follows and the proof of
Case II is complete. -

Case IIL. If every totally ordered subset T' C T is finite, then the theorem
holds.

UIN II1E CUMNUIVIVLAUU 1 U UING UV IVINAL DA L 107 IVAIM VAL \riass —e

Proof of Case IIL Since T = {o(p;)}{2, is an infinite set, and any totally
ordered subset is finite, we can choose T C T with infinitely many elements
such that if two distinct orbit closures, @(p;), @(p;), belong to T then neither of
them contains the other. We may assume without loss of generality that 7' = T..

Given ng € N, take nq + 1 distinct elements in T, 5(po),7(p1), - - . ,(Pn,)-
Since o(p;) No(p;) = { } for ¢ # j (otherwise T(p;) C @(p;) which is
a contradiction) one can find disjoint flow boxes, Bg, By, ... , By,, such that
p; € B;and B;no(p;) = { }fori # 7,4,57 =0,... ,np. Now take C*
functions f;: M —[0,1] such that f7!(1) = p; and supp f; C B;, for i # 0,
1 <1 < ng. As before it may be proved that {[f;]}1°, is a linearly independent
set in H(M, F). Suppose that the function g: M — R satisfies (4), and g(po) =
0. We use the facts that g(o(po)) = O, that the intersections A; = () a(p;) and
Az = Nw(p;) are non-empty sets, and that

(88 = o(p) + 3o [ 16,

By an argument similar to that used in the Case II, one can conclude that r; =
- = rp, = 0. This completes the proof of Case III, and the proof of the
theorem.

Corollary 2.3. Let ¥ be a foliation on the torus T? given by the orbits
of a C* flow, ¢, without fixed points. If ¢; is not a minimal flow then
dim H(T?, 7) = oo.

Proof. If a flow ¢; on T is not a minimal flow then the foliation has an annular
surface, A, foliated by lines asymptotic to the boundary [2]. Therefore we can
choose infinitely many leaves inside A whose closures are distinct sets. By 2.1,
the Corollary follows.

3. Denseness and openness

Denote by NSX (M) the set consisting of all C* non-singular vector fields
on M endowed with the usual C'! uniform topology for vector fields. Let U con-
sist of those vector fields whose flows have infinitely many distinct leaf closures.
Denote by ((} the interior of U.

Proposition 3.1. U is dense in NSX(M).
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Proof. Let X € NSX(M). By the Closing Lemma [6], we may find a vector
field Y € NSX(M) C* close to X whose flow has a closed orbit. By ([5],
lemma 2.5 pg. 103), there exists a vector field Z € NSX(M) C? close to
Y whose flow, ¢, has a hyperbolic closed orbit, say y. We may assume that
the weak stable manifold of 5, W*(y), is non-empty; otherwise < is a source
orbit, and we take the weak unstable manifold of . We know that W*() is
a ¢¢-invariant immersed manifold on M whose dimension k is bigger than one.
It is clear that distinct orbits on W*(v) have distinct closures. Let’s show that
zel. By (5], each vector field Z' € NSX(M) C' close to Z must have
a hyperbolic closed orbit 4’ near v and the weak stable manifold W*(+') has
the same dimension as W?(«y). We conclude that Z' € U. Then U is dense in
NSX(M). The proof of the Proposition is complete.

4. Applications

Remark 4.1. By straightforward application of the method used in the proof of
2.1, one can prove a slight generalization of that theorem, namely: If there exist
n distinct orbit closures, then dim HY(M, ¥) > n.

Therefore we conclude that if dim H(M, ¥) = k < oo then there are at
most k distinct orbit closures. However we do not know of any example for
2 < k< o0:

Proposition 4.2. Let 7 be a one dimensional foliation on M given by the
orbits of a smooth flow, ¢y, without fixed points. If diim H'(M, 7) = 1 then
¢¢ is a minimal uniquely ergodic flow.

Proof. Assume that dim H1(M, 7) = 1. By remark 4.1 it follows that ¢ is a
minimal flow.

Let us show that ¢; is uniquely ergodic, i.e., there is a unique probability
measure, g, on the Borel field of M satisfying pu(A) = p(#:(A)) for every Borel
set A in M, and t € R. Indeed, by (1), a function f: M — R represents the zero
element in the cohomology group H(M, 7) if and only if there exists a function
g: M — R such that X (g) = f. Hence, given a ¢;-invariant probability measure
u, we have

/ (9ot —g)du=0.
M
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Since M is compact and X is C? then w:;g converges uniformly to X(g).
Thus

8 _ 1 gode—g .,
€)) /MX(y)du lim /M——t du = 0.

This means that the image of X : C*(M) — C*(M) is contained in the
kernel of u: C*(M) — R. Since there exists at least one ¢;-invariant probability

measure po, the kemnel of any measure is a codimension one vector space of
C* (M), no(X(£)) =0, and

. C>(M)
dim —————— =1,
X(C=(M))
from which the proposition follows.

Let 7: R™ — T" = R™/Z" be the canonical projection. A symbol with a bar
over it denotes an object on the torus and one without a bar its lift.

Theorem 4.3. Let 7 be a one-dimensional foliation on the torus T? given

by the orbits of a smooth flow $t without fixed points. The following are
equivalent

a) dim HY(1%,7) =1,
b) 7 is C* conjugate to a diophantine linear foliation.

Proof. (a => b) Assume that dim H(M, 7) = 1. Notice that a diffeomorphism
of foliated manifolds F': (M, ) — (M’, ¥') induces an isomorphism

F*H*(M',7') - H*(M, 7).

By proposition 4.2, ¢, is a minimal flow. It is well known that in this case, up to
a diffeomorphism, the foliation 7 is transverse to a canonical circle bundle. Here
we may assume that the lifting is transversal to the y-axis ant that the infinitesimal
generator of ¢; is the vector field

g d
PR gyctates
3z+a3y’

where a:R? — R is a Z%-periodic C* function. From dim H!(T2,7) =1 and
(1), there exist § € C*(T?) and ag € R such that X(g) = ap—, or equivalently
X(g9) = ap — a. Let us show that the map G:T? — T2 defined by its lifting
G(z,y) = (z,y + 9(z,y)) is a diffeomorphism. We only need to show that the
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derivative DGp: T2 — T} is 1 — 1 for every p € T? because G is homotopic to
the identity. Let JG be the Jacobian matrix of G, namely

1 0
G =
I (gz 1+9v).

Here, f, and f, denote the partial derivatives 8 f/dz and 9 f /dy, respectively.

For a contradiction, suppose that the Jacobian vanishes at (zo,yo). This
means that 1+ gy (2o, y0) = 0. Recall that X(g) = ao — a. Then from X(g)y =
(oo — @), we obtain X(1+g,) = —ay(1+gy). The last equation can be solved

14 0,(8(e9) = (1 + 6y ) exp(— [ ay(Bm )}

Hence we conclude that 1+g,(¢¢(2o,y0)) = O for t € R because 1+g, (z0,%0) =
0. Let po = 7(zo, yo) € T2. Now, the minimality of ¢, and 1+, (#:(po)) =0
imply that '§V(T2) = —1. However, g, must vanish at an extreme point of g.
This contradiction shows that the map DG:T% — T2 is 1 — 1 for every p € y i

Let %,, be the foliation given by the linear vector field
d

Loy = EP & aoa—y-

One sees that G.(7) = Fa, because G.(X) = Lq,. From the remark at the
beginning of this proof, we know that dim H'(T?,%,,) = 1. By [3], [8], it
follows that co must be a diophantine number. The proof of a) = b) is complete.
The proof of b) = a) is immediate.
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