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Abstract. Necessary conditions for complex Hamiltonian systems to be integrable are consid-
ered in connection with holonomy representations of the Riemann surfaces of solutions. They
are concerned with analytic continuations of solutions near those satisfying some non-resonance
condition. We prove that if the system is integrable, there exists a system of local coordinates
in which all Poincaré maps associated with loops on the surfaces are solved explicitly.

1. Introduction

This paper is devoted to the study of analytic integrable Hamiltonian systems. In-
tegrable systems are important research objects in the theory of dynamical systems,
mathematical physics, etc., and they have been studied from various viewpoints.
In this paper, we investigate the behaviour of solutions for integrable systems from
complex analytic viewpoint. More precisely, we study the structure of analytic
continuations of their solutions as functions of complex time.

Let (M, o) be a complex symplectic manifold of even dimension 2n, ie.,
M a complex manifold and ¢ a holomorphic two form on M which is closed
and nondegenerate. Let H: M — C be a meromorphic function on M. It
defines a meromorphic Hamiltonian vector field Xg by the relation o(Xg, ) =
dH. The Poisson bracket of two functions F and G is defined by {F,G} =
o(Xr,Xg). Let Gy,...,Gg (k > 2) be functions which are holomorphic in
a domain ) ¢ M. They are said to be Poisson commuting (or in involution )
inQif {G;,G;} =0in Qforall {,5 =1,...,k. We say that the vector field
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Xy is integrable in a domain  if it possesses n Poisson commuting integrals
Gi,...,Gn_1,Gn = H which are holomorphic and functionally independent in
Q. Here the n functions G1p,... ,Gy, are said to be functionally independent in
Q if n differentials dG1, .. . , dG, are linearly independent on an open and dense
subset of €2. ‘

Let t — ¢*(z) € M be the local orbit of Xy through a point z € M at
t = 0 (i.e., ¢°(2) = 2), where ‘local’ means that #%(z) is considered only for
sufficiently small |¢| > 0. The orbit of X through z is obtained by analytically
continuing ¢*(z) maximally with respect to t € C, which leads to a so-called
complete analytic function of ¢. Itis in general a multi-valued function (mapping)
of t € C and defines a Riemann surface I' ¢ M with the local coordinate t.
We are interested in the structure of the Riemann surface T, especially in what
restrictions are imposed on the fundamental group 1 (T") when the vector field
X is integrable in a neighbourhood of T'. In order to approach this problem, we
consider the holonomy representation of n1(T") described as follows.

Let p be an arbitrary point on T and +:[0,1] — T' a closed curve based at
p (i.e., 7(0) = 7(1) = p). Then there exists a unique curve o [0,1] — C with
«(0) = 0 such that + is obtained by the analytic continuation of the local solution
¢'(p) along . The analytic continuation along « gives rise to a map ® which
takes a point z in a small neighbourhood U of p to the end point of the analytic
continuation of ¢*(z) along . We note that p is a fixed point of ®*. Using this
map ®%, we now introduce the Poincaré map associated with the loop ~. To this
end, we choose a local transverse section X to the vector field Xg. Namely, ¥
is a local complex submanifold of M of codimension 1 which contains p and is
transversal to the vector field Xg. Let 7 be the projection map which takes a
point z € U to the intersection of ¢!(z) with £. Then we define the Poincaré
map W7 by
U = 1o P*T": X — X, (1.1)

where 3 is a subdomain of £ such that p € X' and w0 ®%(Z') C X. Moreover,
assuming that T ¢ H~1(R) and setting £, := £ N H'(h) and X}, := X' N
H~1(h), we define the reduced Poincaré map 7 by

ARESR D3RS 1R A (1.2)

It turns out that Xp (or X}) is a symplectic submanifold of dimension 2n — 2
with the symplectic structure o|Xj, and that ¢7 is a symplectic diffeomorphism
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around the fixed point p. We can identify ¥; and p with €272 and the origin
z = 0 respectively and consider the map 7 to be ¢7 € Symp(Czn_z,O). Here,
Symp(Cz"_z,O) is the group of germs of holomorphic symplectic diffeomor-
phisms in C?"~% at the fixed point 0, which is the origin of C**~2. Finally it
is easily seen that ¢7 = 1,b7' for any loop 4’ homotopic to «. Therefore we can
define a representation of 71 (I') = x(T', p) by

p:m(T,p) 2 [y]— ¢ € Symp(C2"_2,O),

where [v] is the homotopy class represented by . The map p gives clearly a
homomorphism from 73 (T, p) to Symp(C2”~2,0) and we call it the holonomy
representation of w1(T,p). The image p(m1(T,p)) is called the holonomy
group of the orbit I'. In §2, we shall discuss in more detail about the holonomy
groups.

Our purpose is to give necessary conditions for integrability of the vector
field X in terms of restrictions on the holonomy groups. Those conditions

are concerned with special orbits satisfying the non-resonance condition defined
below.

Let T C H‘l(ho) be an orbit of Xy through a point p and ~ a loop on T’
based at p. Assume that the linear map D7(p) has no eigenvalue equal to 1.
Here and in what follows, for a mapping f we denote by D f(p) the derivative
(linearized mapping) of f at a point p. Then there exists a family of fixed points
pr € Tp, of W7 satisfying p,, = p and depending analytically on the parameter
h. These fixed points give rise to a family of orbits I', through pj, and a family
of loops 45 C T'j, depending analytically on h, with base points pj, such that
Yhy = 7 and ¢k (ps) = pu. Here we assume that the parameter h runs over
a neighbourhood V' C C of hg and denote the family of orbits by {Tx}v and
that of loops by {yx}v. Since a map f € p(m1(Tn,pp)) is symplectic, the
eigenvalues of D f(py) occur in pairs A;, A7 (1 =1,...,n — 1) (see [1]). We
say that the eigenvalues satisfy the non-resonance condition (or the fixed point pp
is said to be non-resonant) if the following condition holds :

n—1
I 2 #1 forall (ki,...,kn-1) € 2"1\{0}. (1.3)

v=1
We say that the loop family {~y,}v is non-resonant if the eigenvalues of
D+ (py,) are all distinct for any h € V and if they satisfy the non-resonance
condition for some h € V. In this case, the fixed points p; are non-resonant
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generically for h € V.

We shall show the existence of a system of local coordinates ¢ = (£, n) with
¢,m € C* 1 in which

n—1

pn=1(0,0), o|Th=Y d& A dn (1.4)
=1

and all elements of the holonomy groups p(1(T's,ps)) are in Birkhoff normal
form defined as follows:

Definition. (i) Let G = G(¢) be a holomorphic function (i.e., a convergent
power series) in a neighbourhood of ¢ = 0. It is said to be in Birkhoff normal
form if it is actually a function of n — 1 variables &;m; only.

(ii) A symplectic map f = f(¢) is said to be in Birkhoff normal form if it is
the time-1 map exp Xx with Hamiltonian K = K (¢) in Birkhoff normal form.

In the above, the map exp Xk is obtained by setting ¢ = 1 for the flow
exp(tXxk) of the Hamiltonian vector field

2K . 9K

When K is in Birkhoff normal form, w; := &n; are integrals of this vector field

(i =1y 5w =)

and exp Xk: (&,n) — (&', n') is written explicitly as
& = Eiexp(Ky,), 1= exp(—Ky;), (1=1,...,n— 1). (1.5)

In particular, if the reduced Poincaré map ¢k is in Birkhoff normal form, it has
the form

g=XN&+-, ni= \tm+-- ((=1,...,n-1),
where \;, A;'! are the eigenvalues of the linear map D™ (py).

Our result is the following

Theorem 1. Let {T'}}yv be the family of orbits of a Hamiltonian vector field
Xy through p, € H™1(h) and let {yx}v be a non-resonant loop family
with base points py. Assume that the vector field Xy is integrable in a
neighbourhood of {Tr}v. Then there exists an open and dense subset V
of V with the following property: for any h € 1 fixed, there exists, in a

neighbourhood of py, in £, a system of holomorphic local coordinates (€,n)
satisfying (1.4) in which the reduced Poincaré map "k is in Birkhoff normal
form and furthermore the following holds for any mapping f € p(w1(Th,pn) ):

(i) The linear map fo := Df(pn):(&,n) — (&',n') satisfies the condition
that for each i € {1,... ,n — 1} either of the relations

{ & = i 2 { & = cinj

ni = c;'n; ni=—c; ¢
holds for some j € {1,... ,n — 1}, where c; € C are constants.

(ii) Let G be a holomorphic integral of Xg in a neighbourhood of T'y,. Then
the function G|Zy, is in Birkhoff normal form. Moreover it is invariant
under the linear map fq as well as under f.

(iii) The map :f = fo 1, f is in Birkhoff normal form.

In the above, we consider the family {I‘;.}V as the point set constituting
a local complex manifold of dimension 2. Theorem 1 implies the existence of
coordinates (£, 7) in which the nonlinear part of every map f € p(71(Tx,pn))
can be solved explicitly. It is a nonlinear version of Ziglin’s theorem [12]. The
assertion (i) above is the same as Ziglin’s theorem. Ziglin considered a linear
representation defined by analytic continuations of solutions for the variational
equation (linearized equation) along the orbit of Xpg. In other words, Ziglin’s
theorem corresponds to the linear part of our theorem and it does not contain
anything about the Birkhoff normal forms. This connection between our result
and Ziglin’s one will be discussed in more detail in §3 (c). Also our results
complement those in [5] which dealt with the behaviour (for real time) of solutions
for real analytic integrable Hamiltonian systems. To avoid repetitions, we make
use of several technical details that appear in [5]. A main tool is the convergence
proof of Birkhoff’s normalization in [4], [5].

Although our primary interest is in the structure of orbits of a Hamiltonian
vector field, the results can be formulated in more general form concerning orbits
of several commuting Hamiltonian vector fields. Here an orbit of several com-
muting Hamiltonian vector fields will be defined precisely in §2 (a) and it will
turn out that the orbit of k commuting vector fields is a k-dimensional complex
manifold, which is a generalization of a Riemann surface in the case of an orbit
of one vector field. We shall give the definition of the holonomy group for the
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orbit of k vector fields in §2 (). In §3, after consideration about the existence
of a family of loops (§3 (a)), we shall reformulate the main result as Theorems
2 and 3 which include Theorem 1 as the special case k = 1. Being technically
different from Theorem 1, Theorems 2 and 3 will be formulated as those asserting
the existence of symplectic coordinate system in a neighbourhood (in M) of pp.
The reason why we take the subset V of V in Theorem 1 will be clarified there.
Moreover we shall illustrate our results with a simple example in §3 (d). We
shall prove Theorems 2 and 3 in §4 and §5.

2. Holonomy groups of orbits of several commuting vector fields

In this section, we will consider an orbit of k commuting Hamiltonian vector fields
and will define its holonomy group. Throughout this paper from now on, we let
(M, o) be a complex symplectic manifold of dimension 2n and let Hy,... ,Hg
be k meromorphic functions on M. Although the functions Hy,... , Hj are
assumed to be meromorphic on M, our consideration will be done only in a
domain of M where Hj, ... , Hy are holomorphic. We assume that Hy,. .. , Hg
are Poisson commuting and functionally independent in the domain of M.

First we will clarify the meaning of orbits of several commuting vector fields.

(a) Definition of an orbit of k commuting vector fields

Let p € M and assume that Hj,... , Hy are holomorphic at p and that k dif-
ferentials dHy, ... ,dHy are linearly independent at p. We denote by ¢t the
flow of the Hamiltonian vector field Xp,. For t = (t1,...,t) € ck with
|t| := max; |t;| > O sufficiently small, we set

#(p) = ¢ -0 6 (p).

Here ¢*(p) can be represented in a local coordinate system as a power series in
t1,...,tp which is convergent in a polydisk |¢| < &, and it is called the local
solution of k vector fields Xg,,...,X Hy, through p € M. Taking the constant
& as large as possible; the polydisk |t| < 6 will be called below the domain
of convergence of the local solution ¢(p). Since ¢t1‘,. B ,¢2" commute in a
neighbourhood of p, ¢*(p) is independent of the order of @) .03 ,¢i" in their
composition.

Y
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We define an orbit of k vector fields Xg,,... ,Xq, as the point set in
M obtained by analytic continuations of this local solution maximally. Analytic
continuations of ¢*(p) are defined along continuous curves on C* as follows: Let
a:[0,1] — C* be a continuous curve parametrized by s and satisfying «(0) =
0 € C*. Then we can continue analytically the local solution ¢*(p) along « in the
following way. If |a(s)| > 0 is sufficiently small, we define the point p(c(s); p)
by

p(a(s);p) = $2)(p).

Next, let 0 < 81 < 1 and assume that 8; = «(s1) is contained in the domain of
convergence of ¢*(p). Then one can consider the local solution of Xg,... , X H,
through ¢#(p) and therefore we define the point p(a(s);p) for s > s; by
o(a(s);p) := ¢*(4)=P1(4P1(p)). Further we can define inductively the point
p(a(s);p) € M by

p(a(s);p) = ¢PNo ¢PN-10 -0 ¢P1(p) (2.1)
with

Bi = afsi) — a(si-1),

0=s59<81<82< < SN=35s,

where Hy, ... , Hy are assumed to be holomorphic at points ¢(a(s;); p) and for
every 1+ = 1,..., N, f3; is contained in the domain of convergence of the local
solution through ¢Pi-1o -+ o ¢#1(p). If this procedure is possible up to s = 1, it
is called the analytic continuation of the local solution ¢¢(p) along a. Let

C(p) := {e:[0,1] — C*¥| a = af(s) is continuous in s € [0,1], «(0) =0
and p(a(s); p) is well defined for all 0 < s < 1 }.

Then the orbit T of k vector fields Xg,,... ,XH, through p is defined as

L= U {p(a(s);p) e M|0 < s < 1}
a€eC(p)
Here T is independent of p in the following sense: If p’ is an arbitrary point
on T', then the analytic continuation of the local solution through p' gives rise to
the same orbit as I'. For every point z € T, there exists a unique local solution
¢'(z) for t € CF with |t| > 0 sufficiently small. Since ¢(z) gives a one-to-one
correspondence between a neighbourhood of z in I' and a neighbourhood of ¢t = 0
in C¥, the orbit I" is a k-dimensional complex manifold with the local coordinates
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t = (t1,... ,tk). One can easily see that dHj, ... ,dHj are linearly independent
at every point on I' (see [[5], Proposition 2.1]).

(b) Definition of the holonomy group

Let us now define the holonomy group of the orbit T' of k vector fields defined
above. In what follows, we let p be an arbitrary point on I'. We assume that

T c HY() ; H:=(Hy,...,H:), hec*

To any closed curve (loop) v:[0,1] — T based at p (ie., 7(0) = ~(1) = p),
there corresponds uniquely a curve a:[0,1] — c* with «(0) = 0 such that v is
parametrized as

v(s) = p(a(s);p) (s €[0,1]).

The analytic continuation along « defines a mapping
%z — p(a(l); 2).

Here 2 is assumed to be in a small neighbourhood of p and p(a(1);2) is the
end point of the analytic continuation of the local solution ¢°(z) along a. Since
the vector fields Xpg, are hamiltonian, ®* is symplectic, ie., (®%)*0c = o.
In fact, if we set B; = (BY,B%,...,BF) in the expression (2.1), the map ¢ﬂ,

1
(= ¢f" oo ¢i‘ ) can be expressed as

P = eprA with H; = Zﬂ'

v=1
since the vector fields Xg,,... ,X H, commuie locally. Here the time 1 maps
¢Pi are symplectic and therefore the composition * is symplectic.

Let 3 be a local complex submanifold of M of (complex) codimension k
such that ¥ 3 p and

T,M = T,% & span (Xg, (p), - - - , X1, (p))- (2.2)

We call X a transverse section to the k vector fields Xg,,... , X H, atp. By the
transversality (2.2), for a small neighbourhood U of p we can define the projection
map « by

7 U Dz n(2) =20 {$(2) | ¢'(2) € U (]t]: small)}.
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Then in the same way as in §1 we can define the Poincaré map ¥ and the reduced
Poincaré map " by (1.1) and (1.2) respectively. Here £, =X N H ~1(n) with

= (Hy,... ,Hy) is a symplectic submanifold of dimension 2n — 2k with the
symplectic structure o|X; and the map 47 gives a symplectic diffeomorphism
around a fixed point p (see [[5], Lemma 3.1]). Consequently the map U7 can be
considered as a family of parametrized symplectic diffeomorphisms.

In the above, the choice of ' depends on the loop v. For example, if we
consider a composition 4™ with large n in place of «, then X' would have to
be chosen very small. By this reason, we consider the mappings W7 and 47 as
U7 € Diff(Z,p) and ¢ € Symp(Zp, p) respectively. Here, Diff (2, p) is the
group of germs of holomorphic diffeomorphisms in % at the fixed point p, and
Symp(Zy, p) is the group of germs of holomorphic symplectic diffeomorphisms
in X, at the fixed point p. In what follows, we will use the same notation as these
to denote groups of germs of holomorphic (symplectic) diffeomorphisms at a fixed
point. Introducing local coordinates, we can identify the groups Diff(2, p) and
Symp(Xp, p) with Diff (€25, Ol Symp(C"~?¥,0) respectively, where we
consider C2"~2¥ a5 a symplectic manifold with the standard symplectic structure

Ao

o = E dé; A dn;. The mappings ¥7 and " are independent of the choice
=1

of the transverse section ¥. In fact, if we introduce a special coordinate system

(u,v, €, n) satisfying (3.1) below, then one can easily see that the expressions of
U7 and 4" in this coordinate system are independent of the choice of X.

If 4' c T is another loop homotopic to v with the base point p, the corre-
sponding curve o C C* is also homotopic to a with the same endpomts From
the local s1ngle—va1uedness of the solutions it follows that ¥7 = ¥ and hence
7 = 4. We define a representation of 1 (T, p) by

p:m1(T,p) 3 [7] = ¢7 € Symp(Zn, p).

Clearly the map p gives a homomorphism from (T, p) to Symp(2p,p). The
map p is called a holonomy representation of w1 (T, p) (or of I' ) and the image
p(71(T,p) ) is called the holonomy group of T. The holonomy group is indepen-
dent of the choice of the base point p as well as that of the transverse section % in
the following sense : Let p € I' and ¥ (> p) be another pair of a base point and a
transverse section and let p: (T, p) — Symp (f)h, p) be a representation which
is defined in the same way as p. Then (T, p) and x1(T', p) are isomorphic and
we note that there exists a curve a:[0,1] — C¥ connecting p and p. The map
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@ induces a local symplectic diffeomorphism from a neighbourhood of p in X
into a neighbourhood of p in $1. Therefore the holonomy groups p( 71(T,p))
and p( 71 (T,p)) are conjugate via the local diffeomorphism .

3. Statement of the results

We will state the results for orbits of k commuting vector fields. The main results
will be formulated as Theorems 2 and 3 in subsection (b) and it will turn out that
Theorem 1 is a corollary of Theorems 2 and 3. We will use the same notation as
in the previous section.

(a) Existence of a family of fixed points of ¥ and a special local coordinate
system

Let T' be the orbit of k commuting vector fields Xg,, ... ,Xq, through a point
p and assume that

I c H (ho) with hg € C*.
Let us consider the Poincaré map W7 associated with a loop v € T" based at p..
We first claim that fixed points of ¥7 in ¥ form a holomorphic curve under a
nondegeneracy condition.

Proposition 1. Assume that the linear map D" (p) has no eigenvalue equal
to 1. Then there exists a unique family of fixed points pp, € Ly of W7 such
that py, = p and py, depends on h close to hq analytically.

This is easily proved. In fact, let us consider the equation ¥7(z) = z in a
neighbourhood of p and note that det ( D47(p) — I') # 0 under the assumption.
Then, by the implicit function theorem we obtain a unique family of fixed points
z = pp, of W7 stated above. O

We can easily see that there exists a curve ay:[0,1] — ck depending on h
continuously and satisfying

ap(0) =0, ok, =a, P%(pr)=ps.
Hence there exists a family of closed curves
Th:s = p(an(s)ipn) (s €10,1]).

The statement of Proposition 1 is local. Namely the parameter h is re-
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stricted to a small neighbourhood V},, of ho. Applying Proposition 1 to the map
U7k with h € V,, we can also continue the family of curves {ap} (or loops
{7n} ) to a family with parameter h running over a neighbourhood of hq larger
than V},,. We denote by V' the neighbourhood of ho where the parameter h runs
over and denote by {v,}v the family of loops «,. However the size of V will
not be important for our purpose. Therefore we will not necessarily take V' as
large as possible for the formulation of our main results.

Definition. Let I' be an orbit of k vector fields Xg,,... , X H: AloopycCT
is said to be nondegenerate if the assumption of Proposition 1 is satisfied. The
family of loops {y,}v described above is called a nondegenerate loop family
with base points pp.

Let {yr}v be a nondegenerate loop family with base points pj and let I';, be
the orbit of Xg,,...,Xn, through p,. We have a family of orbits {Th}v =
{Th:h € V} suchthat 4, C T'y. For any h € V fixed, we consider the holonomy

_representation

p:71(Th, pn) — Symp(Zh, pn)-
The definition of the representation p implies that p([ya]) = ¢h(= ¥7A|Z},).
Our results will be concerned with the holonomy groups p( 71(T's,ps)) in the

case when the vector fields Xg,,...,X H, are integrable, and the loop family
{7 }v will play a key role for their formulation.

Let us consider mappings belonging to Diff(X,p,) or Symp(Zy,ps) in a
special coordinate system. For any h € V fixed, it is easily verified that in

a neighbourhood of p; there exists a system of local symplectic coordinates
(u,v,&,n) with u,v,€ C*¥ and £,9 € C" ¥ such that

k m
H=uv, a=2du,~/\dv,~+2d£,-/\dn,- (m=n-k) (3.1)
i=1 =1
and

pv = (0,v,0,0). (3.2)

For the proof of this fact, we refer to the proof of [[5], Proposition 4.1]. In this
coordinate system, we define the transverse section X by

L ={(u,v,€,n) €U |u=0},
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where U is a neighbourhood (in C2") of ps = (0, h,0,0). Then X, is given as
Zh={(w,v,§,n) €U|u=0,v=h}

Let G be an integral of Xpg,,... ’XHk and assume that it is holomorphic in
a neighbourhood of pj,. Then we have identities {G, H;} = 0, equivalently
dG/du; = 0. Hence G is a function of v, £, n and we write it as G = G(v,¢)
with ¢ = (&, 7). We consider the Poincaré map W7k as W7k € Diff (GR35 xn)i
where z;, = (h,0) with coordinates (v, ¢). Then W7k can be written as

Wh(v,¢) = (v, TH(c)),

where W,» := |25 — T, and it is a symplectic diffeomorphism . We
note that p, is a fixed point of \IIZ" for any v. More generally, for any loop v on
I’ with the base point pp, the Poincaré map F := W7 can be written as

F(v,¢) = (v, f(v,6)), (3.3)
where f(v,¢) € C?"~2¥ is a holomorphic vector function of v and ¢ in a neigh-
bourhood of (v,¢) = (h,0) such that f(h,0) = 0. It is to be noted that
f(v,0) # 0 for v # h in general, namely p, is not necessarily a fixed point
of W,

The representation p can be viewed as
p:71(Th, pa) — Symp(C*"~**,0)

and any map f € p(n1(Th,pn)) can be written as ¢' = f(¢) defined in a
neighbourhood of a fixed point ¢ = 0. For f € p( 71(T,pn) ), let us decompose
it into its linear and nonlinear parts as follows :

f=foof; fols)=DfO)s, F(¢)=¢+O0(s*). (3.4)

Here Df(0) = Df(ps) in the previous notation and O(|¢|?) denotes a vector
function of ¢ whose components are convergent power series in ¢ containing only
terms of order > 2.

By using the above coordinate system, we can prove

Proposition 2. Let T' ¢ H~1(h) be an orbit of k vector fields Xy, ... ,X H,
containing a nondegenerate loop. Then, for any integral G of Xu,,... ,XH,
which is holomorphic in a neighbourhood of T, its derivative dG is linearly
dependent on dH,,... ,dH} at every point on the orbit T.
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Proof. Let v be a nondegenerate loop on I' and 7 the reduced Poincaré map
associated with 4. Let p be an arbitrary point on - and (u, v, £, n) coordinates in
a neighbourhood of p satisfying (3.1) and (3.2). By assumption, G = G(h,¢) is
invariant under %7 and therefore G( k,v7(¢) ) = G(h,¢). Noting that ¢7(0) =
0, the differentiation of this identity with respect to ¢ yields
A G oG
(RTINS N0 = Dl

where ¥( ) denotes the transposition of a matrix. If 3G /8¢ (h,0) # 0, this implies
that D7(0) has an eigenvalue equal to 1. It contradicts the assumption that -y
be nondegenerate. Therefore the following relation holds at the point p:

k

dG = Zc;dH; for some vector ¢ = (cy,... ,cx) € CF. (3.5)

i=1

Since X H; = d/du; and G is independent of u in the neighbourhood of p, the
relation (3.5) holds with the fixed constant vector ¢ along the part of ' contained
in the neighbourhood of p. Moreover by successive use of the same coordinate
system as above, one can see that the relation (3.5) holds along the whole orbit
I'. This completes the proof. 0O

Let {yn}v be a nondegenerate loop family and {T's}y the family of orbits
such that 4, C TI'j. Then it follows from Proposition 2 that for any integral
G of Xpg,,...,Xg, the relation (3.5) holds everywhere on the family {Tr}v,
where the constant vector ¢ depends only on h. In view of integrable systems,
this indicates a special property of the orbits considered above.

(b) Main results

To state the results, we begin by preparing some definitions. Let us consider the
loop family {~,}v associated with a nondegenerate loop v = yp,.

Definition. A nondegenerate loop family {~4}y with base points pj is called
a non-resonant loop family if the eigenvalues of D"k (pj) are all distinct for
any h € V and if they satisfy the non-resonance condition for some h € V.

Here, since the map 7k is symplectic, the eigenvalues of D) (pj,) occur in
pairs J;, A;l (f=1,...,m; m=n—k) (see [1]). We say that the eigenvalues
satisfy the non-resonance condition (or we say that the fixed point pj is non-
resonant) if condition (1.3) holds with n — 1 replaced by m. For a non-resonant
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loop family, the fixed point p, is non-resonant for any h belonging to a residual
subset of V' (see [[5], Lemma 5.2]). In other words, the fixed points are generically
non-resonant.

Our results will be obtained through normalization of the map ¥7. It is
well known that if the eigenvalues of the derivative D¥,"*(0) satisfy the non-
resonance condition, there exists a formal symplectic transformation which takes
W,k (= ¥k (v,-)) into Birkhoff normal form. To prove the convergence of this
transformation, we involve the so-called small divisor problem and we have di-
vergence in general. Furthermore it is not possible in resonant case to find the
transformation even formally. However in our situation associated with integrable
systems, we can prove the existence of a convergent symplectic transformation
which takes WoP into Birkhoff normal form for any v. This is the content of The-
orem 2 below. In order to state the results, we introduce the following definition.

Definition. (i) A holomorphic function G = G(v, ¢) is said to be in parametrized
normal form if it is in Birkhoff normal form for each v fixed.

(ii) A map F € Diff (Cz""‘, z3) is said to be in parametrized normal form if it
has the form (3.3) with f(v,¢) being in Birkhoff normal form for each v fixed.

We introduce a further definition. Let G(v,¢) be a convergent power series
in ¢ around ¢ = O with coefficients holomorphic in v. It can be written in the
form

G = G(v,0)+G°(v,¢) + G (v,¢) +--+; G°(v,¢) #0, (3.6)

where G%(v,¢) (d = 0,1,...) are homogeneous polynomials in ¢ of degree
s + d with coefficients holomorphic in v. The integer s > 1 is the degree of the
polynomial G°(v, ¢) in ¢. We call the function G°(v,¢) the lowest order part
of G.

To obtain the result, we assume that there exist m functions G; (i=1,... ,m)
holomorphic in a neighbourhood of {T's}v such that the following two conditions
are satisfied :

[C.1] {H;G;}=0foralli,j;
[C.2] In a neighbourhood of p, with coordinates (u,v, & ,n) satisfying (3.1)
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and (3.2), the lowest order parts of G; = G;(v,¢) (i =1,...,m) are
functionally independent functions of ¢ for v = h fixed.

Here, condition [C.1] implies that G; are integrals of Xz ,... , X H,: More-
over condition [C.2] includes that vy,... ,v; and Gy,... ,Gp, are functionally
independent functions of v and ¢ and consequently Hy,... ,Hx and Gy,... ,Gp,
are functionally independent in a neighbourhood of {T'p}y. Conversely it will
turn out that the functional independence of Hy,... ,Hg and Gy,... ,Gp, almost
implies condition [C.2] (see Proposition 3 below).

Now our results are stated in the following two theorems.

Theorem 2. Let {T'x}v be the family of orbits of k commuting vector fields
Xn,,--- ,Xn, through py € H~1(h) and let {yn}v be a non-resonant loop
family with base points py,. Assume that there exist m(= n — k) functions
G; (i=1,... ,m) holomorphic in a neighbourhood of {Thn}v and satisfying
conditions [C.1] and [C.2] for some h € V fixed. Then, in a neighbourhood
of pn there exists a system of holomorphic local coordinates (u,v, &, n) with
u,v € Ck, £, n € C™ in which the following holds together with (3.1) and
(3.2) :
(i) The Poincaré map Wk is in parametrized normal form.

(ii) Any holomorphic integral of Xg,,... ,X Hy, in a neighbourhood of Ty
is in parametrized normal form.

Next we consider arbitrary mappings belonging to the holonomy groups
p(71(Tv,py) ) with v sufficiently close to h.

Theorem 3. Assume the same hypothesis as in Theorem 2 to be satisfied. Let
v € V be fixed arbitrarily in a sufficiently small neighbourhood of h. Then, in
the coordinates introduced in Theorem 2, the following holds for any mapping
&= P( ”l(rv,l’v)) :

(i) The linear map fo := Df(py):(&,n) — (&',n') satisfies the condition

that for each 1 € {1,... ,n — 1} either of the relations
{ : :11 or : ' 11 (3.7)
s % N 7% =-¢ &
holds for some j € {1,... ,n — 1}, where c; € C are constants.
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(ii) Let G be a holomorphic integral of Xg,,... ,X H, in a neighbourhood
of Ty. Then the function G|X, = G(v,-) is invariant under the linear

map fo as well as under f.

(iii) The map ? =fo 1, f is in Birkhoff normal form.

Remarks. (i) In the above, it is not assumed that Gy, ... ,G,, are in involution.
However that condition is hidden behind the assumption that the family {~,}v
be non-resonant. Actually the assertion (ii) of Theorem 2 implies that they are
in involution. Hence the vector fields X H, are integrable in a neighbourhood of
{T'x}v under the assumptions of Theorem 2.

(i) The assertion (i) of Theorem 3 is independent of coordinates. Namely we
can also claim as follows: Let E; and F; be the eigenspaces of Dy (p,)
corresponding to the eigenvalues A; and A7 ({ = 1,... ,m) respectively. Then
the linear map A := Df(p,) satisfies either of the following condition (a) or
().

(@) AE; =E; and AF;=F; forsome je€ {1,...,m},

(b) AE; =F; and AF;=E; forsome je€{l,...,m}

(iii) Let F := ¥" € Diff (X, pp) be the Poincaré map associated with a loop ~.
Then it follows from Theorem 5.6 of [5] that F is also in parametrized normal
form if F and ¥'» commute. (In [5], we called it simply ‘normal form’ in place
of ‘parametrized normal form’ in the present paper.) This is a special case of
Theorem 3.

Theorem 1 is a corollary to Theorems 2 and 3. It is due to the following

Proposition 3. Let Gy, . .. ,Gy, be holomorphic functions in a neighbourhood
of {Tr}v satisfying two conditions [C.1] and

[C3] Hi,...,Hpand Gy,...,Gy, are functionally independent.

Then for any h € V fixed, there exist a neighbourhood V,(C V') of h and m
functions G1, . .. ,Gm holomorphic in a neighbourhood of {T', }Vh such that
the following condition holds together with [C.1] (for G; replaced by G‘.-) -

[C.4] There exists an open and dense subset f}h of Vi, such that the lowest
order parts a?(v,g) (# = 1,...,m) are functionally independent
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functions of ¢ for any v € Vi fixed.

We will prove this proposition in the next section. If we assume that
G, ... ,Gy, satisfy conditions [C.1] and [C.3], then by Proposition 3 there exists
an open and dense subset V of V such that condition [C.2] holds for any heV
and hence the conclusions of Theorems 2 and 3 hold. In particular, Theorem 1
follows from Theorems 2 and 3.

As we stated after Proposition 2, the family of orbits {I', }y has the special
property that

rank(dHl,... ,de,dGl,... ,dGm) =& “on {Ph}V,

where Hy,...,Hy and Gy,... ,Gp, are n integrals of Xg ,... , XH, given
in the assumption of Theorem 2. This implies that the family {T',}y forms a
complex manifold of dimension 2k which constitutes singularities of rank k of the
map F = (Hy,...,H,G1,... ,Gp): 2 — C", where 1 is a neighbourhood
of {T's}v. Theorem 2 shows, roughly speaking, that for integrable systems lo-
cal diffeomorphisms defined by analytic continuations near such singularities are
essentially determined by their linear parts.

(¢) Connection between Theorem 1 and Ziglin’s theorem

We briefly discuss the connection between our results and Ziglin’s theorem [12]
(see also [6]). Our results can be considered as a nonlinear version of Ziglin’s
theorem dealing with monodromy representation of one orbit I' for a Hamiltonian
vector field Xg. The Riemann surface I' is assumed to contain a loop y such that
the fixed point p of the associated reduced Poincaré map is non-resonant. More
precisely, Ziglin did not consider the Poincaré map but analytic continuations
of solutions for the (reduced) normal variational equation (linearized equation)
along I'. The analytic continuations are associated with loops on I' and induce
transitions between the systems of fundamental solutions. It gives rise to a linear
representation 7: 71 (T, p) — GL(2n — 2,C). The image §(x1(T,p)) is called
the monodromy group and its element is called a monodromy matrix. The matrix
?([]) corresponds to the linear mapping D7 (47 = p([])) in our case, and
the eigenvalues of 3([y]) are the same as those of Dy".

Ziglin’s theorem gives a necessary condition for the existence of meromor-
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phic integrals of Xy under the assumption that the eigenvalues of some mon-
odromy matrix satisfy the non-resonance condition. The necessary condition is
the same as condition (i) of Theorem 1. Conditions (ii) and (iii) are new ones
which are not contained in Ziglin’s theorem. As we shall see in the proof (§4),
condition (i) is obtained from the invariance under fy of the lowest order parts
G?(v, ¢). Condition (ii) implies that all homogeneous parts in the expansion of
G; are invariant under the linear map D f(ps). It means strong restrictions on
D f(pp) in addition to (i).

Clearly our main result, Theorem 1, can be considered a generalization of
Ziglin’s theorem. However there are some distinctions between the formulation
of our result and that of Ziglin. Namely, Ziglin’s theorem is concerned with one
orbit T' containing a loop v for which the non-resonance condition holds. Our
result is concerned with a family of orbits {I';}y, stating a necessary condition
for the existence of holomorphic (not meromorphic) integrals for any h € V.V
being an open and dense subset of V. Notice that there exists in general a dense
subset V' of V such that for h € V', pr is a resonant fixed point of ¥, i.e.
condition (1.3) fails. Nevertheless, our result implies that an assertion similar to
that of Ziglin’s theorem holds true also for these parameter values.

Ziglin’s theorem is useful for proving non-integrability of specific systems,
and there appeared many papers concerning its application (see survey papers [7,
11] and also [2, 3, 9, 10, 13] for details). In order to apply Ziglin’s theorem, it is
a key point to find a special solution which can be written more or less explicitly
(such as elliptic functions, etc.) so that the eigenvalues of monodromy matrices
can be known via the corresponding variational equation. Since we deal with
more general non-linear monodromy, similar applications seem more difficult in
this case.

(d) An example

Finally we will give an example to illustrate our results. Let us consider a Hamil-
tonian system

¢ = s pi = — : (i = 1,2) (3.8)
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with Hamiltonian of the form

H(g,p) = 30 + ) + Ular, )

U(q,q2) = %(Aqf + Bg3) + Cqiqa + %Dqg,

where A, B,C, D are real constants. It depends on the values of A, B,C,D
whether this system is integrable or not. For example, a criterion based on Ziglin’s
theorem shows that if A = B(# 0), the system is integrable in the whole phase
space C* only when C/D = 0, 1/6, 1/2, 1 (see [3]). Among them, the cases
C/D = 0,1/6,1 are actually known to be integrable (see [8]). The cases
C/D = 0, 1 are trivial ones which are reduced to separation of variables by a
linear symplectic transformation. Let us consider the nontrivial case C/D = 1/6,
for which the system is integrable for any choice of A and B (A # B in general)
with an additional integral

G(g,p) = (44— B)(p2+Aq¢?)+4C{Aq2q2—p1(p192—P291) }+C? (g} +442¢2).

In what follows, we will illustrate Theorem 1 with this simple example. We
note that, if we set ¢ = p; = 0, the system (3.8) is reduced to the system with
one degree of freedom. Its phase curve is given by

1
5?3 +U(0,92) = h, (3.9)

where h is the energy parameter. This is solved for g2 as an elliptic function of
t € C. To illustrate the non-resonance loop family, let us assume that B > 0. The
origin (¢,p) = (0,0) is an equilibrium point with the characteristic exponents
++1/—A and ++/—B. Therefore the solutions (3.9) with q; = p; = 0 give rise
to a family of real periodic orbits v, € H~!(h) for t € R bifurcating from the
origin, whose periods tend to 2w /\/E as h — +0. This family corresponds to
the one whose existence is established by Liapunov’s theorem [1] provided that

v/A/B is not an integer.

In view of our theory, it defines a loop family {y,}y with v, C T), C
H~1(h), where T, is the analytic continuation of ~,. Here we may consider
V to be extended to a complex domain. If /A/B is not a rational number, it
is a non-resonant loop family because the Floquet multiplies of ~yj, converge to
exp(27ri\/B—/A) as h — +0 (see [[3], Proposition 1]). Hence Theorem 1 is
applicable. In this case, the orbits (3.9) are doubly periodic function of ¢ and the

Riemann surfaces I'j, are homeomorphic to a punctured tori of dimension 2 (with
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one point removed which corresponds to the pole in the ¢-plane of the solution).
Ziglin’s theorem, i.e., the assertion (i) of Theorem 1, implies that the linear parts
of the reduced Poincaré maps associated with the two independent periods, one
of which is that of v, commute or permute (see [[3], Theorem 1]). Also, the
assertions (ii) and (iii) of Theorem 1 are valid for any h € V, 1% being an open
and dense subset of V.

4. Proof of Theorem 2

Theorem 2 is already proved in [[5], Theorem 5.6] in different situation. In this
section, we give a brief review of its proof. It plays a role of preliminaries for the
proof of Theorem 3. Also we will prove Proposition 3 at the end of this section.

Let {1 }v be the non-resonant loop family given in the assumption of Theo-
rem 2. We consider all functions locally in the coordinates (u, v, £, ) introduced
in §3 (a) in a neighbourhood U of p, = (0, h,0,0). Let us expand functions
G; = G{(v,¢) in the form (3.6) and assume that the coefficients are holomorphic
functions of v in a sufficiently small neighbourhood V}, of v = h.

For any v € V}, G;|Z, = Gi(v,-) are integrals of the reduced Poincaré
map ¥ 7 and hence we have

Gi(v,¢7(s)) = Gi(v, ).

Then comparison of the lowest order parts gives
GP(v, DY™ (p)s) = GP(v,6)- (41)

Since the eigenvalues of D (p,) are all distinct, we can choose the coordinates
(u,v, &,n) so that

Dy (py) = diag(A1(v),. .. ,z\m(v),/\fl(v), . ,z\,_nl(v)) (4.2)

(see the proof of [[5], Proposition 6.1]). We recall that the fixed points p, are
non-resonant for any v belonging to a residual subset of V}. Therefore from the
identity (4.1) with (4.2), one can easily see that G{(v,¢) are polynomials of m
variables w; = £;n; with coefficients holomorphic in v. Consequently condition
[C.2] implies that for any v € V), fixed the following holds :

det (aG?) £0, (43)

dw;
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Theorem 2 follows from Theorem 5.6 of [5]. Actually, Theorem 5.6 of
[5] implies the existence of a system of holomorphic symplectic coordinates
(u, v, &, n) in which the assertion (i) holds. Also the theorem shows that a func-
tion of v and ¢ is in parametrized normal form if it is invariant under ¥7. Since
any integral of Xp,,... ,Xpg, is invariant under W7, it is also in parametrized
normal form. Hence the assertion (ii) is proved. To prove Theorem 5.6 of [5],
we involved a typical small divisor problem when proving the convergence of
a formal change of symplectic coordinates. But we overcame the difficulty by
using the existence of additional integrals Gy,... ,Gp, (see [4, 5]). Condition
(4.3) plays an essential role in the proof of the theorem and also in the proof of
other assertions in Theorem 2.

Finally we will prove Proposition 3.

Assume that G;(v, ¢) are holomorphic in V}, x E, V}, and E being a neigh-
bourhood of v = h € C* and that of ¢=0¢€ g2 respectively. Condition [C.3]

implies that
(6(G1,... ,Gm)) _
rank ([ ——— ) =m
a(gly v et ,§2m)
on an open and dense subset of Vj, X E. This does not necessarily imply the
same condition with G; replaced by their lowest order parts G?. However we can
prove the following

Lemma 1. ([S, Lemma 5.8].) Let Gi(v,¢) (f = 1,...,m) be convergent
power series at ¢ = 0 whose coefficients are holomorphic functions of v in
a neighbourhood Vy, of v = h. Assume that vy,... ,vx and Gy,... ,Gp, are
functionally independent. Then there exist m(= n — k) functions Gii\.. 304
which are polynomials of Gy, ... ,Gnm With coefficients holomorphic in v such
that G%(v,¢) satisfy the condition

A0 A0
a(gli gi0r3 )§2m)
on an open and dense subset of Vi, x C*™ .

In the above, we take the neighbourhood V}, in the assumption to be suffi-
ciently small. Otherwise the V}, in (4.4) has to be replaced by a neighbourhood
smaller than V.

The condition (4.4) implies the existence of an open and dense subset 17;. of
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V}, such that a?(v, ¢) are functionally independent functions of ¢ for any v € Vi
fixed. Namely condition [C.4] follows. Moreover by their construction, we can
write G; = P;(G1,. .. ,Gm), P; being polynomials of the form

Pi(21,-- ,2m) = D Cia(v)2® (4.5)

by using multi-index notation. Here ¢i «(v) are holomorphic functions of v € Vj,.
If we replace v in (4.5) by H, then G; = Pi(Gi,...,Gm) is defined in a
nelghbourhood of {T'y }v,. Consequently holomorphic functlons H,,... ,Hiyand
G G,,, satisfy condition [C.1] also. This completes the proof of Proposmon
3 'O '

5. Proof of Theorem 3
In what follows, we will abbreviate the ‘Birkhoff normal form’ as ‘normal form’.

First we will prove the assertion (i). In a neighbourhood of pp, let us take
a system of symplectic coordinates (u,v,§ ,n) established in Theorem 2. Our
purpose is to show that the linear map ¢’ = fo() satisfies (3.7) in this coordinate
system. Notice that G;(v, -) are invariant under any mapping f € p(71(T'v,pv))-
Tt implies that the lowest order parts Gy := GY? (v(, -) are invariant under the linear
map fo= Df (p.,) Namely we have the identity

G fo = GY. (5.1)

From the relation (5.1), we can conclude the assertion (i) by using the

argument by Ziglin [12] in the following way: First we set §& = 1/wje"’i 5

i = @€ 3. Then G? = G?(v,) being in normal form, it follows from
(5.1) that

i": 3(GPo fo) Owj _ 0G}

=1 Ow;; a9, a9,

where w} = (€;n;)o fo(s)- Since it follows from (4.3) that det (8G?/3wj) #0

for any point ¢ in an open and dense subset of the neighbourhood of the origin,

we can conclude that 9w} /38, = 0, which implies the functional dependence of

=0 (L= 1,550 s},

w;- and wy, ... ,wn. Therefore w; can be written as

m
w,'- = Za;jw,- (a;j (S C).
=1
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We note that the equation w) = O defines a pair of planes. Introducing new
variables ¢; = & + n; and p; = & — n;, we have

m
J
Z — (4] - P})-
In order that the equation w; = 0 deﬁnes a pair of planes, the right-hand side has
to be equal to (aij/4)(q] - pJ) for some j € {1,... ,m}. This implies that
W = ot . (56.2)

Moreover from the symplectic character of the linear map fo, it follows that
a;; = 1 or —1in (5.2) and hence we have, the relations (3.7). This completes the
proof of (i).

Next we will prove the assertion (iii). By Theorem 2, the functions G; =
Gi(v,-) are in normal form. The condition [C.2] implies that they satisfy con-
dition (4.3) for any v fixed in a sufficiently small neighbourhood of h. Let
f € p(m1(Ty,py)) and GSO) = G‘(O)(v, -) functions defined by

¢ =Gofo (@(=1,...,m). (5.3)

Then GSO) are also in normal form because fo satisfies (3.7). To prove that the
‘nonlinear part’ ? is in normal form, we note the following lemma.

Lemma 2. Let f € Symp(C?™,0) be of the form

£(5) =¢+0(sI*Y)

with a positive integer d. Then it can be written as

£(6) = ¢ + JVW(5) + O([s|**1) = exp Xwo (¢ + O(Ig "))
with
W(¢) = W‘”‘z,};’. o WAL
where Wi are homogeneous polynomials in ¢ of degree j.

In the above, the notation O(|¢|#) with a positive integer d denotes a (vector)
function of ¢ whose components are convergent power series in ¢ containing only
terms of order > d.



118 HIDEKAZU ITO

For the proof of Lemma 2, we refer to [[4], Lemma 2.7]. By this lemma,
the transformation ? can be expressed (at least formally) as

F=lim /5 fO) = frofro oo fy
with
ful¢) =expXw; W= Wet? ... widtl (d= 2V_1)- (5.4)

Our purpose is to prove that each transformation f, is in normal form. To this
end, let us first introduce, in addition to (5.3), the notation

&) = 6% 1,
By the definition of f (v), :f can be written as
7(6) =M (c+0(cl*Y)  (d=2";v=0,1,...),
where we assume f (0) = jdentity. From this relation, we have
Gio f=6MF =G vo(s|H)  (d=2), (55)

where s; are the degrees of the lowest order parts G? (as homogeneous polynomi-
als in ¢). Suppose that f (¥) is in normal form. Recalling that G'(.O) are in normal
form, GE") are also in normal form. Since f,, can be written as (5.4), we have

G (e) = 6 funl)
=GY() + L) W) +0(sl ) (d=2Y).
Let us define an operator Py acting on the space of all power series by
PNG = Ecaa(v)fana for G= ang(v)f"nﬂ,
a a,B

where we used the multi-index notation. Since G; = Gjo f are in normal form, it
follows from (5.5) with v replaced by » + 1 that G are in normal form up to
terms of order s; +2d— 1 with d = 2%, ie., GV = PyG ) £ o(|g|5+29).
since PyG*) = G and Py{G*),W} = 0, this implies that

{GY(6), W ()} = O(Isl"*+*%).
We set é,- = GS") for convenience of notation. Then, by comparing the homo-

geneous parts of degree's; + £ (£ =d,... ,2d — 1) in the equations above, each

homogeneous polynomial W¢*2 satisfies the system of m equations
t—d

- @ W =1, m),

u=1

LD;WH?t = Ff; Ff:=
Zan )

=1

ok
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where D;W 2 = {w;, W2} and G¥ (u = 0,1,...) are homogeneous parts
of degree s; + u in the power series expansion of G in ¢. We note that Fd =0
in the above. By the relation (5.1), the lowest order parts of Gi = =G; *) and G;
are the same, i.e., G? = G?. Therefore it follows from condition (4.3) that

D;W¥r=0 (j=1,...,m).

This implies that W?+? is in normal form. Hence we can see that F**! = 0 and
can prove inductively that W4+3, .. WZ24+1 are in normal form. Therefore the
transformation f,;; is in normal form and hence f (v+1) — f ®), fu+1 is also in
normal form. It can be written as

¥+t
) =expXw; W= Y. W),
=3
where W¢ are homogeneous polynomials in ¢ of degree £ and they are in normal
form. Therefore, by induction it turns out that the transformation :f is in normal
form up to terms of arbitrary order, that is, ? is in normal form. This completes
the proof of (iii).

The assertion (ii) follows from (iii). In fact, from the assertion (i) it turns out
that for G = G(v,-) the function G’ := G fo is in normal form and furthermore
Gof = G'o? = G' because of the assertion (iii). Since G is an integral of
f € p(71(Tv,py) ), we conclude that G = G'. Hence it turns out that G is
invariant under the transformation fo. This completes the proof of the assertion
). 0O
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