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Limiting-type theorem for
conditional distributions of products
of independent unimodular 2x2 matrices

S. K. Nechaev, Ya. G. Sinai

Abstract. We consider a random process which is some version of the Brownian bridge
in the space SL(2,R). Under simplifying assumptions we show that the increments of this
process increase as \/t as in the case of the usual Brownian motion in the Euclidean space.
The main results describe the limiting distribution for properly normed increments.

0. Introduction

The analysis of the asymptotic behavior of distributions of independent unimodular
two-dimensional matrices is a well-developed part of probability theory. The
classical paper by H. Fiirstenberg [1] states, in particular, that, under some natural
conditions, typical products increase exponentially. In this paper we study a
problem which is closely connected with the one concerning the asymptotical
behavior of conditional distributions, under the condition that the products belong
to a compact subset of the group SL(2, R). To be more precise, assume that a
probability distribution P on the group SL(2, R) is given and has the properties

a) P is concentrated on a compact subset K C SL(2, R),

b) P has the density p(g), i.e.
P(C) =f p(g)dg, C cSL(2,R).
c

We consider the products g} = gn - -~ - g1 where all g; € SL(2, R) are
independent and distributed according to the distribution P. We follow the tech-
nique by Fiirstenberg and Tutubalin (see [1]-[3]) and use special coordinates on
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o= (¢ a)

g = Oad)‘Oﬁ (1)

SL(2, R). Namely, each matrix

can be written as

where 04,05 € SO(2) and SO(2) is the abelian subgroup of matrices

_ [ cosp SN L e o
Op (—sengo cos<p)’ T2e=m

A0
Dy= (o ,\—1>

with A > 1. The representation (1) is non-unique since also

d, is a diagonal matrix,

q— (—Oa)d)‘(—-olg) = 0a+7rd,\0ﬁ+1r-

It is convenient to pass to the unit tangent bundle over the Lobachevsky plane
H = SL(2, R)/(e, —¢). The elements h € H are pairs (g, —g). Since —g has
the representation (1) with a + 7, A, 8 then each h corresponds to four triples

In order to have a one-to-one correspondence we shall assume that points of H
correspond to triples «, A, 8 with
E el R opel
2 2 2 2
It is easy to write down the explicit expressions for A, o, 8 through the matrix

elements of g:

M—(a? 402+ +d)N+1=0 )
b+ Al
=T 0 0
a — dA?
g8 =-3 o @)
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The equation (2) defines A uniquely since A > 1. The equations ), 3), @
define uniquely an element of H because of our assumption

Returning to the original situation, suppose that for gi* we have a represen-

tation
91" = 0p(m)dy(m) Oy (m)-
Write
Im+1 = Oy A1 Ot
Then
07 = gmt1 - 91 = Opms (D Oy 40 daem) )0y )
Put
A = ™ 4 iy
and write
Br g1 Oy Ay (m) = 0 (m) dy(m+1) Op(m) -

Then

™) = i1 + o™ (modr), )

1) = (m) 4 g(m) (mod r). (©)

It is essential that Am*t1) (m+1) do not depend on (™). Therefore their evo-
lution with m may be considered independently. The exact equation for Alm+1)

takes the form:
(/\(m+1))4 _ (A(m+l))2 (’\3n+1(A(m))2 cos? ,7(m)_+_

(Alm)? At

SR sin? 4(™) + sin? 4™+ (7)
o ()2
1
+amwai;”*“m)+1:°

Simplifying assumption. Suppose that A(m) > 1 for m > 1. In this approxi-
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mation (7) is replaced by

(A0 — (A2 (Afnﬂ(A(m’)z cos? ™)+

()

(m)y2

+ (—)‘2-—)— sin’ 7(’")) =0
’\m-{-l

which gives the solution

Alm+1) = x(m) 32 cos? 4(m) 4 21 sin? 4(m) (8)
/\m+1
In the same approximation
tgalm = —L—tgy(m (9)
’\m+1

Now we can formulate precisely our problem. Starting with a probability
distribution P take the induced distribution on H which we shall denote by the
same letter. Thus P may be considered as a probability distribution on the space
of triples (¢, A, ). Suppose that we have n independent identically distributed
triples (©m, Am,¥m), 1 < m < n, each having the distribution P. Consider the
sequences of triples

wm = (™), Am+1, Am+1), 0<m<n,

where (p(m) are connected by (5) and (9) with the initial condition <p(0) = 0 and
A1, 1 being arbitrary. Denote by P, the induced probability distribution on the
sequences of triples {wy, },0 < m < n.

Lemma 1. The probability distribution P, is a Markov chain.

Proof. Suppose that we are given w,,_1,wn. The equality (5) gives a possibility
to write a{™=1) as a function of ¢, (™), namely

alm ) = olm _ o (mod ).
Knowing a(™=1) we can find v(™~1) from (9):
tgy ™1 =23, - tgal™Y)
and 1, from the equality

Y =11 = pmD)  (mod ).
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This shows that 1y, is a single-valued invertible function of
¢(m—1)’Am’¢m,¢(m)_

If the density p corresponding to P is written in the form

p=p(p,A) - p(¥ | ©,A)

where p(v | @, A) is the conditional density of +, provided that ¢, A are fixed,
then

plom | om-1) = Pt dmr) P | o)< | 2555 (10
In the last expression ), is the above-mentioned function of
om0 o A, ™).
It is obvious that the conditional density p(wm | Wm—1, ... ,wm—k) depends only

0N Wyp, W, —1. Thus we proved that P, is a Markov chain and found its conditional
transition density. [J

Formula (8) shows that

A1) = A exp{ F(wm1,9m)}

where
1 —_— .
F(wm-}—l)wm) — "2' ln(/\fnﬂ (;052 7("") + Am2+1 sm2 '7(m))-
We shall use it in a more convenient way:
In /\(m) - Z F(Wk+1,wk) (11)

1<k<m

Take two numbers a, b and denote by @, the conditional distribution induced by
P, under the condition a < In A(®) < b. Remark that now we have to remove
our simplifying assumption and so (") are no longer bigger than 1.

Fix a number x, 0 < » < 1, and put n; = [xn]. Our main problem in this

paper is to study the limiting probability distribution as n — oo for T In A(m1)
ni

where the distribution of A(*1) is determined by Q..

We shall use the Cramer’s method in the theory of probabilities of large
derivations for- sequences of independent random variables. Write the density
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corresponding to P, in the form

mo(wo, w1, - - - ,wn) = mo(wo) ﬁ 7 (W, | Wm—1) (12)
m=1

Here 7(wp | Wm—1) is the transition density found in the Lemma 1. For any
B,—co < B < oo, introduce the new probability distribution P,(B) whose
density equals to

n
ﬂ E F(wm»wm—l)

e m=1 s
mg(wo, w1, .. ,wn) = = mo(wo) [ m(wm | wm-1) (13)
F— n(ﬂ) m=1 .
and —— () is the normalizing factor which is analogous to partition function

in statistical mechanics. Then (13) is a non-homogeneous Markov chain.

The joint probability density corresponding to @y, equals

ro(wo) T1 7(wm | wm-1)

7(wo, w1, ... ,Wn) = m=l
>
n
where Y is the probability that @ < In An) <b,ie.
n
n n
.= / mo(wo) [[ w(wm | wm-1) II dwm
i {wo,.. ,wn}:a<In A <b =l m=0
Since for any g (see (13))
n
L -8 Y. F(wm,wm+1)
T{ w0, 001 < v s} = Bgltloyn: = sWn) == n(B)e ™=t

we have

Z <= . (B)ePe / mg(wo, ... ,wn) 1'_:[ dwp,, (14)

{wo,-.- ,wn }:a<In A(M) <b
n
S > = . (8)e / 7g(wos.. wn) ] dwm.  (15)
b {Wor. wn}:a<In A<D =D
Denote
w = (@I,AI,SOI), W' = (@II, All,plr)’
consider the positive kernel

Kp(w" | w') = n(w" | W) exp{BF (" | ')}
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and the corresponding inlcgfal operator

(Kpf)w") = [ Kp" | )] @)de.
The adjoint operator has the form

(K1) = [ Kol | &)1 @")d".

Lemma 2. The operator Kg has a positive eigenfunction
ha(w') = ha(¢', X', ¢") = p(¥', X)gp(4', X', ©)
where gg satisfies the following conditions:
1) gp(¢', X,9') =0if p(p', ') = 0;
2) for some positive constants cy,cz
c1 < gp(®', N, 0') <z
if p(¢', ') > 0. The adjoint operator K has a positive eigenfunction
h/*g(w” - h;é(@", A",(p”)
such that

c1 < g;,(q)",)\", ") < ca.

The corresponding eigenvalues for Kg and Kg coincide. We denote this
common eigenvalue by A(B).
Proof of the lemma is given in Appendix.
Now rewrite 7g(wo,w1, ... ,wn) (see (13)) as follows:
mo(wo)gp(wo) i ePFWmem—1lgs(wm)
= a(B)g*(wn) o=y AB)gs(wm-1)

mp(wo,wi, - .. ,wn) = A"(B)

The function
eﬁF(w”’w')hb (wll)
pﬁ (w"’ w,) = * ’
A(B)hp(w')

can be considered as the kernel of a stochastic operator Pg. The corresponding

invariant measure for Py has the density vg(w') = hg(w')hj(w'). The functions
98,9p arc normed in such a way that hg(w') is the density of a probability
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measure. Thus we have

Z < A™(B)e” ﬂa/gﬂ(wo)wo(wo) H pg (Wm, Wm— 1) H dwy, (14')

Z 2 An(ﬂ)e . /gﬂ wo)7r0 wO H Pﬁ(wm,wm—l) ( ) H dwy, (15')
m=1 Wn
where Q is given by {wo,... ,wn}:a <In ) < p.

Lemma 3. There exists one and only one Py for which
/F(w",w')pﬁ0 (w",w" g, (w)dw'dw” =0

Proof of this lemma is given in Appendix.

Since
In ’\(n) = Z F(wm’wm—l)

m=1

we can use the local central limit theorem for Markov chains with a compact

phase space which gives

m=1 (O)n)
a<In A(M)<p

95, (wo)mo(wo)dwohj, (wn)dwn (16)

\/_

as n — oo. The constant ¢ = o(B) > O enters into the asymptotics of the

variance:

Dg, (z": F(wm,wm_1)> ~ no

m=1

as n — oo. Here Dg, is the variance of the sum

z—: F(wm,wm 1)

with respect to the probability distribution Pg,.

Take two numbers ug,ug,u; < ug and consider the probability

1
gn = Qn {u1 < ﬁln/\("‘) < uz}-
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‘We have
1
qn = 2‘
n

7o (wo) X

{wo,.- ,wn}:uIS% In A("1) <uy,a<Iin A(M)<Bb

XH (W | @ 1)Hdwm

m=0
17)
ARB) _ ) (
< —12(-—)e fa mo(wo)gj, (wo) X
n ulgﬁlnk("l)Suz,aglnA(n)sb
n
x I pgo(wm | wm—l) H dw,
m=1 ﬁo k=

and the analogous inequality from the other side. It follows from the local central
limit theorem for Markov chains that for the Markov chain with the transition
density pg, and stationary distribution hg, - h;,o the probability density

u2

1

2mony

e 20my

DB, {ln Aln) = u} ~

For u = O(y/n),v = 0 = (y/n) the conditional probability density

1 __(v—uw)?
1 )\(n) — 1 ,\("1) - Ry o 5T QOSSR
Pbo { " Sl u} V2r0(1 - n)ne

This yields

mo(wo)hp, (wo) H Po(@m | Wm-1) - ks (w y L H iy, =~
rur<In A </, m=t "
a<in A(M)<b

1 Yz ___u? 1
~ ————-———/ e 20(1=-%) dy - ./gzo(wo)ﬂ-o(wo)dwo

[ ()

Returning to (15"), (16), (17), we have

gn < e_ﬁO(a_ )

2
.
b _—1___/6‘20(1—51) du. (18)
V2ro(1 — x)
uy
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In the same way we get the inequality from below

gn > e~Polb=2) (19)

2
[T,
\/27r0(1 — %) &

Now we can formulate and complete the proof of our main theorem.

Theorem. The limiting probability distribution of ln M) with respect
to Qn is Gaussian with the variance o(1 — ).

Proof. Having the interval (a,b), decompose it onto small parts a = ap < a1 <
az < -+ <a, =>bsuchthata; —a;_1 <e where e > 0 is a given number.
Then from (18) and (19)
1
Polur < ——InAM) <y a<lnA® <p} =
_E P{a;_1 <In (" < a;}
P{a <InA(® < b}

1 n
xP{ulﬁ\/—Z_l-ln)\("l)Suz | aj_lgln)\( )Saj}:
P{aj_1 <In A < aj}

\/27ra 1——n / S T du Z::l P{a <InAl®) < b} (1+

J

+8(e))

where |51(.”)(e), < 2¢ for all sufficiently large n. This gives the desired result. [

Appendix

Proof of Lemma 2. We start with the aualysis of hg. Take an arbitrary function
u(w') of the form u(w') = p(p', X') - (¥, X', ¢') where v is equal to zero if
p(¢’, ') = 0and

dy < v(®', N, ¢") < dy
otherwise, where dy, dy are two positive constants. Then from the definition of
K and (10)

N L w'w' ’
(Kau)(o") = ple",X) - [[o(@, X, (e | o 0)| T |- PP e
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Put v1(®, ", \") = 0if p(¢”,\") =0 and
vl(w”) = UI(QH wl' AII)

dy’
= [v@ X, ple, )| 55

Then v; satisfies 1. We may assume that

p(¥', ¢, N)

p(¥", ¢, X')

for some constant d. Otherwise we can pass to some power of the operator Kg

ﬁF(w” w')dq)l

<d>0

for which it holds. For two different values

(6”’¢H’X' ) — a-u (@ ’-S—O-II,'X") _ i):u

we have
—l d—’(!_)l n 1
. @l,/\l, ' 1 == eﬂF(w W )d@l
@) _ J o (¥ | ') i
01(5") . =)
[ (@, 3, 0)p(B | ', N) Sil ePF (") 4o
©
d—l
max E—l
<d- —— exp f{max F(w",w') — min F(w",w')}.
min |—

Here '¢) z,b are the values of 4’ which correspond to @", @ for the same w'.
Put Lgv = vy. We see that the operator Lg is an operator with the positive
kernel on a compact set and therefore by the Brouwer’s fixed point theorem it has
a positive eigenfunction and the corresponding positive eigenvalue.

The same arguments work for the operator K. The fact that the correspond-
ing eigenvalues coincide is shown by simple direct arguments. [

Proof of Lemma 3. The statement of the Lemma is rather well-known in statis-
tical mechanics. It means that 3 is found from the condition that the expectation
of F(wy | wp) with respect to the stationary Markov measure with the transition
density pg,(w",w') is zero. It is easy to show that the derivative

;1% / F(w",w')pp(w",w")vg(w')dw'dw" > 0 (20)
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because
/F(w",w')pﬂ(w”,w’)up(w')dw'dw" =
1 s B E F(wm,wm-1) "
= tim 2 Ztn [ mofue) TT wlem | om-s)e = .

m=1 m=0
(21)

and therefore

n
_;_ﬂ / F(w",w')pﬂ(w",w’)vﬂw'dw" = lim% Varg (Z F(wm,wm_l))

m=1
where Varg is the variance which is found with the help of the distribution Py (8).
Thus (20) is shown.

This yields that the expectation (21) is a monotone increasing function of A.
It is easy to find periodic sequences {w} for which the sums over a period

t
Z F(wm | wm_l)
m=1

are positive as well as periodic sequences for which this sum is negative. Then
the limit of the 1.h.r. of (21) is positive as 3 — oo and is negative as § — —oo.
Therefore there exists one and only one value of So for which is it zero. U
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