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Some remarks on the geometry
of austere manifolds

Robert L. Bryant

Abstract. We prove several structure theorems about the special class of minimal subman-
ifolds which Harvey and Lawson have called “austere” and which arose in connection with
their foundational work on calibrations. The condition of austerity is a pontwise condition
on the second fundamental form and essentially requires that the non-zero eigenvalues of the
second fundamental form in any normal direction at any point occur in oppositely signed pairs.
We solve the pointwise problem of describing the set of austere second fundamental forms in
dimension at most four and the local problem of describing the austere three-folds in Euclidean
space in all dimensions.

0. Introduction

This paper contains several new results on the geometry of a special class of
minimal submanifolds of Euclidean space, the class of austere submanifolds, first
introduced by Harvey and Lawson in their 1982 paper Calibrated Geometries.
Austerity is formulated as an algebraic condition on the second fundamental form
of a submanifold and essentially asserts that the eigenvalues of its second funda-
mental form, when measured in any normal direction, occur in oppositely signed
pairs. This generalizes the well-known properties of the second fundamental forms
of complex submanifolds of C™ (which are, of course, austere submanifolds of
E2n)‘

In §1, we give the precise definition of austerity and give several examples
to show that the class of austere manifolds is not trivial. Most of this section is
drawn directly from the aforementioned work of Harvey and Lawson.

The algebraic conditions which express austerity are rather complex and it is
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not at all clear how one might classify all the possible austere second fundamental
forms, even pointwise. In §2, we develop some algebra which allows us to
classify all of the possible second fundamental forms for austere submanifolds of
dimension at most four (Theorem 2.5). Along the way, we prove some algebraic
results which are interesting in their own right regarding the common zere locus
A, of the O(n)-invariant polynomials of odd degree on the space S,, of symmetric
n-by-n matrices. In particular, we construct several maximal linear subspaces of

An.

In §3, we classify the austere manifolds whose second fundamental forms
belong to one of the types found in §2, namely the so-called simple austere second
fundamental forms. Our result (Theorem 3.1) is that these austere submanifolds
all belong to a family of “generalized helicoids”. This result is, perhaps, the
deepest result in the paper and is proved by a straightforward but rather involved
analysis of the structure equations.

For submanifolds of dimensions one or two, it turns out that austerity is the
same as minimality, so the first interesting case is that of austere three-folds. In
§4, we classify all of the austere three-folds in E3t". We find that, up to rigid
motion, they are essentially of four kinds: (open subsets of) a linear E3 c B3t
(open subsets of) generalized helicoids of dimension three in E3 (defined in §3),
(open subsets of) orthogonal products of a line with minimal surfaces in E2tT,
and the “twisted cones” (defined in §4) over minimal surfaces in S%+" c E**".
The later type is only classified locally, and we point out some of the difficulties
of trying to extend this to a global classification.

1. Austere Submanifolds of Euclidean Space

Let n and r be positive integers and let E**" denote Euclidean (n+r)-space where
the (positive definite) inner product is denoted by (, ). Let M™ be a smooth n-
manifold and let f: M™ — E™t" an immersion. The first fundamental form (also
called the induced metric) of f is given by I = (df, df) and is a positive definite
quadratic form on M. Let V denote the associated Levi-Civita connection and
let TM and N M denote the tangent and normal bundles respectively of M™ in
E™". Then M X EM" = TM @ N M and the differential df may be regarded as
a Entr-valued 1-form on M. The second fundamental form 1l of the immersion
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f is defined to be I = V(df). It is well-known that Il is a symmetric quadratic
form on M with values in NM, ie., I € C®(NM ® S*(T*M)).

Now, there exists a canonical map
&:C®(S(T*M)) — C=(S*(A™(T*M)))

which is homogeneous of degree n and which is given in any local coframe by
the formula

®(hijw' ow!) = det(hij) (W' AWl A=A w™)?.

For example, ®(I) = (*1)? where *1 € Q™(M) is a unit volume form (well-
defined up to a sign). If v € C°(NM) is a normal vector field, then v - I €
C>(S%(T * M)). Hence, for each v, the formula

d(I-tv-I) = (zn:(—t)kak(u)) o(1)
k=0

defines a sequence o () of smooth function on M. Clearly, oo(v) = 1 while
o1(v) = try(v - I). For k > 1 however, g;(v) is a non-linear function of » and
is simply the k-th symmetric function of the eigenvalues of v - II with respect to
L

The following definition is due to Harvey and Lawson and is to be found in
their paper Calibrated Geometries.

Definition. An immersion (or submanifold) f: M™ — E™*" is said to be austere
if, for every v € C®(NM) and every integer k satisfying 0 < k < n/2, we
have oax+1(v) = 0.

Every austere immersion is clearly minimal. Moreover, in the case where n
is equal to 1 or 2, the austere condition is simply oy (») = 0 for all normal vector
fields v. Thus, for curves and surfaces, “austere” and “minimal” are equivalent.

For larger values of n, however, the austere condition is considerably stronger
than minimality. In fact, it represents an overdetermined system of partial differ-
ential equations for the immersion f. The “generality” of the space of solutions of
this system for given values of n and r is very poorly understood at this time. In
fact, aside from the case n = 3 (treated in this paper) and a few scattered results
mentioned below for general values of n, all that is known is a list of examples
of austere submanifolds.



136 ROBERT L. BRYANT

These examples include
e complex submanifolds (of any dimension) of C™ ~ E?™,
e minimal surfaces M? c EZ*T,

e the cone M3 C E3*" on a minimal surface £2 ¢ S2*7, and a few others
constructed by Harvey and Lawson.

The orthogonal product of austere submanifolds is easily seen to be austere,
so one can generate further examples (of rather high codimension) by taking
orthogonal products of examples drawn from the above list.

We will close this section by briefly explaining the motivation behind the no-
tion of austerity. For more details and proofs, the reader is referred to Calibrated
Geometries.

Let T*E™t" ~ E2"2" denote the cotangent bundle of E™*". Harvey and
Lawson show that T*E™t" carries a canonical special Lagrangian calibration.
If f:M™ — E™ is any immersion, we define the co-normal bundle N; C
M x T*E™" by

N; = {(m,€) € M x T*E™*"[¢ € T} E™*" and §(f.(Tm M) = 0}.

Then Ny is a smooth bundle of rank r over M. The projection on the second
factor mg: Ny — T*E™*" is an immersion of N; as a Lagrangian submanifold
of T*E™*T. This immersion is special Lagrangian if and only if the immersion
f is austere. Thus, austere immersions allow us to construct special Lagrangian
submanifolds of T*E™*". Special Lagrangian submanifolds are of interest because
they are absolutely area minimizing (rather than just minimal).

2. Some Austere Algebra

As a first step in classifying the austere submanifolds, we will focus on the
algebra problem of describing the possible second fundamental forms of austere
submanifolds. For any submanifold f: M™ — E™'" and any z € M, we let
||, ¢ S(T; M) denote the linear subspace spanned by the quadratic form v - I
as v ranges over a basis of N;M. According to the definition, the immersion is
austere if, for any z € M and any ¢ € | 1|, the odd symmetric functions of the
eigenvalues of ¢ with respect to the quadratic form I, are all zero. This motivates
the following definition:
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Definition. Let V be a real vector space of dimension n endowed with a positive
definite inner product {,). A linear subspace Q C S%(V'*) of the quadratic func-
tions on V is said to be austere if the odd symmetric functions of the eigenvalues
of any element of Q with respect to (,) are all zero.

This raises the following algebra problem: Classify the austere subspaces of
S2%(V'*). Since any isometry of V' clearly carries an austere subspace of S3(V*)
to another austere subspace, it suffices to do this classification up to isometries
of V. Moreover, since any subspace of an austere subspace is clearly austere,
in order to find all of the austere subspaces it suffices to classify the maximal
austere subspaces. Unfortunately, this classification problem is, as yet, unsolved
in dimensions n > 4. We will present the solutions for n = 2, 3, or 4 below.

By choosing an orthonormal basis of V' ~ E*, we may regard the quadratic
forms on V as the vector space S, of symmetric n-by-n matrices. The action
of the isometries of V' on S%(V'*) then translates into the action of O(n) on S,
given by the formula g - m = gm‘g for g € O(n) and m € §,,. Our problem is
then seen to be the problem of classifying the (maximal) linear subspaces QocC S,
on which the all of the functions o4 vanish identically. It is useful to note that
the condition for a subspace Q to be austere is equivalent to the condition that all
of the functions 74547 vanish identically on Q where 7; (@) is defined for a € S,
by the formula 7;(a) = tr(a’).

Example 1. Let g € O(n) be any orthogonal matrix and let

Q,={mEe S,;|gm+ mg =0}.

Then Q, is an austere subspace of S,. To see this, first note that, forme Qg
we have g - m = —m. Since the function ¢; is O(n)-invariant and homogeneous
of degree [, we then have

o2k+1(m) = o3k41(—m) = —o2k41(m),
$0 ok+1(m) = 0.

This allows us to construct some maximal austere subspaces of S, explicitly.

Proposition 2.1. Suppose that n = 2p and that J € O(n) satisfies J I=—1,.
Then the space Q j is a maximal austere subspace of Sy, of dimension p(p+1).

Proof. We only need to show that Q 7 is maximal. Conjugating by the appropriate
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matrix, we may assume that
o g
=[5 &

It is then easy to see that Q  consists of the matrices of the form

M:[ml " ]

mgy —mg
where m; and mg are p-by-p symmetric matrices.

Now suppose that P were a symmetric n-by-n matrix with the property that
P and O together spanned an austere subspace of S,. We will show that P
must already belong to Q 7, thereby establishing our claim.

By subtracting an element of Qj from P, we may assume that P is of the
form

P [tm Pz],
P2

where p; is a p-by-p symmetric matrix and p is a p-by-p skew-symmetric matrix.
The vector space of such matrices is, in fact, the orthogonal complement O of
Q. under the natural O(n)-invariant inner product on §, given by the formula
(a,b) = tr(ab). Now the stabilizer of J in O(n) = O(2p) is a group isomorphic
to U(p) and we will use U(p) to normalize P. In fact, the U(p)-representation

+ is isomorphic to the representation of U(p) on Hermitian symmetric p-by-p
matrices, so it follows that we may diagonalize P by such an action, i.e., we may
assume that p, = 0 and that py is diagonal, with its 1’th diagonal entry equal to

/\,'.

Now let m be a p-by-p diagonal matrix with its ¢’th diagonal entry equal to
pi, and let M € Q be given by the formula above with m; = 0 and mg = m.
Then the eigenvalues of P + M constitute the set A = {A; £ p;[1 <4 < p}. If
any of the \; were non-zero, this latter set would not be symmetric about 0 € R
for all choices of p; and hence it would be possible to choose m so that P+M
is not austere, contradicting our assumption that the space spanned by P and Q7
is austere. Thus, all of the )\; must be zero, so P = 0, as we wished to show. [

The maximal austere subspace constructed in Proposition 2.1 is clearly asso-
ciated to the “complex structure” J which we constructed on R?® = CP. Itis
easy to see that at each point of a complex p-dimensional submanifold of C™,
the linear snan of the anadratic forms in the second fundamental form yields an
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austere subspace of the space of quadratic forms on the tangent space at that point
which is O(2p)-conjugate to a subspace of the space Q.

By methods similar to those used in the proof of Proposition 2.1, we can
prove the following analogous results for the case of odd n. We omit the proof.

Proposition 2.2. Suppose that n = 2p + 1. Then the space Q. G 8ynof

matrices of the form
0 O 0
M=]10 m mp |,

0 mg —My
where my and my are p-by-p symmetric matrices is a maximal austere sub-
space of Sy, whose dimension is p(p+1). O

Clearly, this maximal austere subspace is closely related to the “complex”
austere subspace given by the previous proposition.

Another family of maximal austere subspaces is furnished by the following
result.

Proposition 2.3. Suppose that R € O(n) satisfies RE=1, but R#£ £,
Then the space Qp is a maximal austere subspace of S, except in the case
where tr(R) = 0, in which case the space QF which is spanned by R and
Qg is a maximal austere subspace of Sp.

Proof. After conjugation by an orthogonal matrix, we may assume that R has
the form
| 0
r-[8 5]
where p and ¢ are positive integers satisfying p + ¢ = n. It follows immediately
that Qg is the space of matrices of the form

0
A= [ta 8]:

where a is an arbitrary p-by-q matrix.

Now suppose that M is any n-by-n symmetric matrix so that M and ORr
span an austere subspace of S,,. By subtracting an appropriate element of Op
from M, we may assume that M takes the form

_|m 0
M_[O mz]’
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where m; and mg are symmetric matrices of dimensions p-by-p and ¢-by-q
respectively. Using the fact that the stabilizer of R in O(n) is clearly O(p) xO(q).
we see that we may assume that m; and m; are diagonal. Let Ay, ... ,Ap and
B1y-- 5 Mg denotexthe diagonal entries of m; and my respectively. Now, for any
real number s, and any integers 1 and j with 1 <i<pand1<j<gleta be
the p-by-q matrix with an s in the #’th row and j’th column and zeros elsewhere
and let A € Qg be the corresponding matrix given by the above formula. Now
it is easy to compute that

tr((M + A)®) = tr((M)?) + 3s(Xi + uj).

Thus, in order that M + A be austere for all choices of s,¢ and j, we must have
Xi + pj = 0 for all 4 and 5. Of course, this implies that M is a multiple of
R. If p # q, then tr(R) # 0, so M must be the zero multiple. Thus, M = 0
and we have shown that Qp is maximal. On the other hand, if p = g, then it
is easily seen that any matrix of the form AR + @ where Q € Qg is austere.
Moreover, our analysis has shown that the space Qj’z spanned by R and Qg is
indeed maximal. O

There is an analogue of Proposition 2.2 in this case. Although it is clear that
Q g is never maximal austere in Sy under the obvious inclusion of S, C Sp+1,
it turns out that, when tr(R) = 0, the space Q7 remains maximal austere in Sp1.
The proof is similar to the ones we have already done, so we omit it.

Proposition 2.4. Suppose that n = 2p + 1. Then the space Q Cc S, of
matrices of the form

0 O 0

M=|0 )\Ip a ;
0 ‘ta =Xl

where a is any p-by-p matrix and X is any real number is a maximal austere

subspace of Syp+1 whose dimension is p* + 1. O

We can now give a classification result for maximal austere subspaces of Sy,
for n < 4.

Theorem 2.5. For n = 2 or n = 3, any maximal austere subspace of Sy, is
conjugate under O(n) to one of the subspaces constructed in Propositions 2.1,
2.2,2.3, or 24. For n = 4, any maximal austere subspace of Sy is conjugate
under O(4) to either the “complex” subspace of dimension 6 (described by
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Proposition 2.1), the space QF of dimension 5 associated to reflection R in
a 2-plane (described by Proposition 2.3), or else precisely one of the spaces
Q» of dimension 3 given by the formula
0 1 Iy T3
0 T 0 A3T3  A2T2
AT )] )\31:3 0 /\1:1:1
T3 A2x2 Alxl 0

z; €ER

where the constants )\; satisfy the inequalities Ay > Az > 0 > A3 and the
relation

A1A2A3 + A1+ A2 + A3 =0.

Proof. For the cases n = 2 or n = 3, the theorem is straightforward algebra and
is left to the reader. The case n = 4 is difficult to do directly, but the following
approach makes it manageable.

First, let $§ C S4 denote the nine-dimensional subspace which consists of the
trace-free symmetric 4-by-4 matrices. This is well-known to be an irreducible
representation of O(4). Moreover, the element —I4 € SO(4) C O(4) acts
trivially on S}. Now, the quotient group SO(4)/{ L4} is isomorphic to SO(3) x
SO(3). It follows that S} is, in particular, an irreducible representation of SO(3) x
SO(3). Hence, it must be the tensor product of an irreducible representation of
the first copy of SO(3) with an irrcducible representation of the second copy
of SO(3). Since conjugation by an element of O(4) \ SO(4) exchanges the
two copies of SO(3), it follows that the two representations are isomorphic and
hence must each be of dimension three. Thus, there must be an isomorphism of
S with the space of 3-by-3 matrices M3 3 which identifies the given action of
SO(3) x SO(3) on §; with the action of SO(3) x SO(3) on M3,z which, for
(g1,92) € SO(3) x SO(3) acts on m € M3z 3 as (g1,92) - m = g1mtgs. This
latter action preserves the cubic form §(m) = det(m) on M3 s. Since the action
of SO(4) on §; preserves only one non-trivial cubic form, namely o3, it follows
that these two cubic forms must correspond under the isomorphism S ~ Mgz 3.

The problem of classifying the austere subspaces of §4 under the action of
SO(4) is now seen to be equivalent to classifying the linear subspaces of singular
matrices in M3, 3 under the action of SO(3) x SO(3). Note also that the action
on S} of an element of O(4) \ SO(4) translates over into the action on Mg,z of
a transposition followed by an element of SO(3) x SO(3).
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Now, § = det on M3 g is invariant under the action of the larger group G
generated by SL(3,R) x SL(3,R) and transposition, so we may use G to reduce
the singular subspaces of M3 3 to a normal form. After a little algebra, it turns
out that every maximal singular subspace of Mg 3 is conjugate under the action
of G to one of the following three subspaces Sy (of dimension k) in Mg 3:

e S, the space of skew-symmetric matrices,

e Ss, the subspace of matrices with zeros in the upper left-hand 2-by-2 block,
and

e Sg, the subspace of matrices which have zeros in the last column.

The space Ss is characterized geometrically as the space of linear maps from
one copy of R to another which carry a fixed 2-plane in the first copy into a
fixed line in the second copy. Since the group SO(3) acts transitively on the
space of linear subspaces of a fixed dimension in R3, it follows that the group
SO(3) x SO(3) acts transitively on the G-orbit of Ss and hence there is only one
SO(3) x SO(3)-conjugacy class of five dimensional maximal singular subspaces
in M3 3. Of course, this implies that there is only one O(4) conjugacy class of
five dimensional maximal austere subspaces of §4. Since we have already found
one, namely Q7F, in Proposition 2.3, we have found them all.

Similarly, Se is easily characterized geometrically as the space of linear maps
from one copy of R3 to another which contain a fixed line in their kernels. Again,
it follows that there is only one O(4) conjugacy class of six dimensional maxi-
mal austere subspaces of S4. Since we have already found one, namely Q;, in
Proposition 2.1, we have found them all.

The case of three dimensional maximal austere subspaces is, perhaps, the
most interesting. Since, for h € SL(3,R), we have S = hSsth, it follows that
the diagonal subgroup A C SL(3,R) x SL(3, R) is a subgroup of the stabilizer of
S3. Moreover, S is clearly invariant under the transposition mapping. It follows
that the spaces S3(h) = hS; for h € SL(3,R) run through the entire set of three
dimensional maximal singular subspaces of M3 3. We must now determine the
orbits of SO(3) x SO(3) in this space. Since, for (g1,92) € SO(3) x SO(3) and
h € SL(3,R), we have

91(hS3)tg2 = g1h'g2(9255'92) = g1h'92Ss,
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it follows that the space of SO(3) x SO(3)-conjugacy classes of three dimensional
maximal singular subspaces of Mg s is parameterized by the space of orbits of
SO(3) x SO(3) acting on SL(3,R) via pre- and post-multiplication. As is well-
known, this space of orbits is parameterized by the space D:;F of diagonal 3-by-3
matrices with all of the diagonal entries positive and in (say) decreasing order.
However, for § € D:;" , the subspace S is clearly G-equivalent to § 1 S3. Taking
this into account and writing out explicitly the isomorphism of representations
S4 ~ M3 3, we arrive at the normal form stated in the theorem. We leave further

. details to the interested reader. O

Note that the space Q g where R is reflection in a hyperplane in R* is one of
the Q, namely A = 0. That this conjugacy class is not an isolated point in the
moduli space is something of a surprise.

For n > 4 the problem of classifying the maximal austere subspaces of S,
seems to be less tractable and deserves further investigation.

3. Simple Austere Submanifolds

In this section, we will classify the austere submanifolds associated to one of
the types of austere subspaces found in the last section, namely the subspace
Qg where R is reflection in a hyperplane. This subspace can be described in
terms of quadratic forms on the inner product space V' ~ E™ as follows: Let
zl,z%,... 2™ be any orthonormal set of linear coordinates on V. Then the
space O C S2(V'*) spanned by the quadratic forms {z*z"|1 < 1 < n} is clearly
austere and corresponds to the space Qr where R is reflection in a hyperplane.
Note that all of the elements of @ have a common linear factor.

We shall say that an austere subspace S C S%(V'*) is simple if it has dimen-
sion at least two and lies inside Q C S?(V*) for some choice of orthonormal
linear coordinates z!,z?,... ,z". Analogously, we shall say that a (connected,
smooth) austere submanifold M™ C E™*" is simple if, on some open subset
U c M, the subspace |I|, C S?(T*M) is simple for all z € U. Of course,
since an austere submanifold is minimal and hence real analytic, the simplicity
hypothesis implies that ||, ¢ S?(T*M) is a simple subspace for all z in M
outside of a closed set with no interior, namely, the set on which the dimension
of ||, drops below 2.
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We have the following classification theorem for simple austere submanifolds:

Theorem 3.1. Suppose that M™ C E™'" is a connected, simple, austere
manifold. Then there exists an integer s with 2 < s < n and constants Ao > 0
and Ay > -+ > Ay > 0 so that M™ is congruent to an open subset of the
austere n-manifold M(s,\) C E*t® given by the parameterization

( Aon )
z! cos(A12°)
z! sin();2°)

M(s, ) = z* cos(A,2°) | | 2,z 2" 1eR
z° sin(A,2°)
xa+1

\ g1
Moreover, the two n-manifolds M(s,)\) and M(s', ') are congruent if and
only if s = s' and [Ao: A1+ : As] = [Ag: AL - -2 M)

The manifolds M(s, ) may be thought of as “generalized helicoids”. Note
that M (s, A) is smooth if Ao > O but is singular along the locus z! = z? =
... = z* = 0 (and is a cone to boot) if A\g = 0. Note also that, in order that | I |,
have dimension at least 2 generically on M (s, A), we must have either Ao > 0
or else s > 2.

Proof. We will use the method of the moving frame, with which we assume
familiarity. We restrict our attention to an open set U C M on which the rank of
||, is maximal and use the index ranges 1 < 4,5 <nandn < a,b<n+r.
Since M is simple by assumption, it is possible to choose an orthonormal frame
field e1,... ,€n,... ,€ntr locally on U so that ey, ... ,e, are tangent to M and
so that, for the dual coframe field, w,, is a linear divisor of the quadratic forms
in |I[|. This implies that the second fundamental form takes the form (summing
on repeated indices)

I=2hlw' ow" e,

for some functions h¢. We will regard the matrix h = (h{) as an r-by-(n — 1)
matrix of functions whose rank, by hypothesis, is strictly greater than one.

We introduce the following matrix notation:
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w represents the column of height (n — 1) of 1-forms (w;).

@ represents the column of height r of 1-form (w,). In our framing, § = 0.

p represents the (n — 1)—by—(n — 1) skew-symmetric matrix (w;;).

K represents the r-by-r skew-symmetric matrix (wgs)-

¢ represents the row of length (n — 1) of 1-forms (wp;).

n represents the r-by-(n — 1) matrix (wg;). In our framing, n = hwy,.

nn represents the column of height r of 1-forms (wan). In our framing,

Ny = hw.

The structure equations may then be written in block form as
w p —t¢ ' w
dlwp|=-1¢ 0 =in,|A|wn
0 n Tn K 0
and

p -t —in p —t¢ —in p —t¢ -in
d ¢ 0 _tnn =i d’ 0 _tnn A ¢ 0 _tnn .
n Mn K n  Mn K n Nn K

Using these structure equations, we may take the exterior derivatives of the
equations 1 — hw,, = 0 and 1, — hw = 0 and collect terms to give the equations

0=h(pAw)— (hw) A ¢ — (dh+ kh — hp) Awy
0= —(dh + kh — hp) Aw — 2(h'¢) A w.
In particular, note that we have
h(¢ A w) — (hw) A ¢ = 0mod wp,.

Since the rank of h is strictly greater than 1, and since all of the w; are linearly
independent modulo wy,, it easily follows that ¢ = 0mod wy,. Thus, there exists
atow A = (A;) of functions so that ¢ = Awy,. Substituting this relation into our
2-form identities, we see that, if we set

B = dh + kh — hp + h(Aw) + (hw) A,

then our 2-form identities reduce to A w = B Awy, = 0. Of course, this implies
that we must have 8 = 0, or, equivalently,

dh = —kh + hp — h(Aw) — (hw)A.
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Now set

a=dA— Ap — 'w'hh + A(Aw).
Differentiating the relation ¢ = Awn, We get the formula a A w, = 0. Thus,
a = Cw, for some row function C. Moreover, if we now take the exterior
derivative of our formula for dh and use the structure equations and the formulas

derived so far, we get the formula
hCw A wy, + hwCwy, = 0.

Using the linear independence of the w; and w,, and the assumption that h has
rank greater than 1, we conclude that C = 0. In other words,

dA = Ap +'w'hh — A(Aw).

We now have formulas for the exterior derivatives of both of the functions
h and A in terms of these quantities and the tautological forms. Moreover,
computing the exterior derivative of our formula for dA only yields an identity,
so there are no more identities to be found by exterior differentiation. We now

proceed to integrate these equations.

First, note that our structure equations now imply that
dp+p/\p=t¢/\¢+tn/\n =10.

By passing to a simply connected cover of U if necessary, we see that there must
exist a smooth mapping R:U — SO(n — 1), unique up to left multiplication by a
constant matrix in SO(n — 1), so that p = R™'dR. Rotating the frame € = (&)
by this matrix R then yields a new framing which still satisfies all our hypotheses,
but which has p = 0. Thus, we shall assume that p = 0 from now on. Appealing
to the structure equations again, we see that dw = —p Aw + th Awp =0,50 it
follows that there exists a row of functions z = (z;) (unique up to an additive

vector constant) on U so that w = dz.

We now compute that d(Aw) = 0, so it follows that there exists a positive
function ¢ on U (unique up to a positive constant multiplicative factor) so that
Aw = dq/(2q). (This form of the first integral helps in the calculations below.)
Thus, dg = (2¢A)w = (2¢A)dz.

Set B = thh. Then B is a positive semidefinite, symmetric (n— 1)-by-(n—1)
matrix of rank at least 2 at every point of U. We compute, as a consequence of
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our identities, that
d(2gA) = ‘w(2q(B +AA)) = *(dz)(2¢(B + *AA))
and finally that
d(2¢(B +tAA)) =0.

Thus, ¢(B + *AA) is a constant positive semidefinite, symmetric (n — 1)-by-
(n — 1) matrix of rank at least 2. Let s be the rank of this matrix and let
A2 > ... > A2 > 0 be its positive eigenvalues arranged in descending order
(the constants ); are chosen to be positive). By rotating the tangent frame e by a
constant orthogonal matrix, we may diagonalize ¢(B + *AA) in such a way that
its eigenvalues are arranged in decreasing order down the diagonal.

By construction, 2¢(B + *AA) is the Hessian matrix of ¢ in the “coordinate
system” z so it follows that, after translating the coordinate system z if necessary,
we may assume that g is expressed in the form

— 2
g =qo+ (M1z1)? + (Aaz2)? +- -+ (Neza)? + 28a41T0t1+ -+ + 2pn_1Zn-1,
where go and the p; are constants.
It then follows that the row of functions gA is given by
— 2
qA = [/\lxl,z\gzz, D L TIE FUUU T

However, we now see that the constants u; for ¢+ > s must all be zero since, for
i > s, the ¢’th diagonal entry of the positive semidefinite symmetric matrix ¢%B
is seen to be —;4?. Thus, the formula for ¢ simplifies to

q=qo+ (Mz1)? + (Qazg)® +--- + (Aezs)2.

We will now show that gg > 0. For any vectors y,z € R™!, define the
positive semidefinite symmetric bilinear form

Qly,2) = )‘11,!/121 + '\gyzzz Rl Azyszs-
Thus, ¢ = go+ Q(z, z). It is then easy to compute that for any vector y € R™~1,

¢* 'yBy = 90Q(v,v) + Q(z,2)Q(y,y) — (Q(=,v))*.

It now follows from the triangle inequality that, if go were negative, then B would
not be positive semi-definite. Thus, go > 0. Set go = A% where Ao > 0.
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Note that the rank of B (and hence of h) is equal to s if go > 0 but is equal
tos—1if go=0.

Next, we note that the structure equations imply that d(g~?w,) = 0 so it
follows that there exists a function z,, on U so that w, = al/2dz,, and that this
function is uniquely defined up to an additive constant.

The functions, (i, . . , Tn—1, Zn) clearly have linearly independent differen-
tials on U so it follows that U is covered by open sets V' for which the mapping

(z1,-.. ,2n):V — R"isa diffeomorphism onto an open coordinate rectangle in
R™. To avoid minor technical difficulties, we restrict our attention to such a V'

for the rest of the argument.
The structure equations for the original immersion f: M — E™" now read
df = eqw1 + -+ + enwn
=edry + -+ ep_1dTp_1 + eng'/2dz,,
Thus,
e =0df/dz; and e, =q Y?3f/0z,.
Moreover, we also have
de; = €jwij + enWnj + €aWaj
= (Asen + h?ea)ql/zd:nn
(this uses the fact that p = (w;;) = 0). In particular, it follows that e; is a
function of z,, alone. Thus, f is a linear function of the z; so we may write f in
the form
f=ziea+z2e2+ -+ Tn-16n-114
where g is a function of z,, alone.
For any function ¢ of z,, alone, we will denote its derivative with respect to
z,, by a prime ¢'. Thus, for example, d(e;) = edz,. It follows that

ql/zen =zyey + -+ L AL g.

On the other hand, the structure equations imply that
3(g"%en) _
0Zy
Comparing this with the derivative with respect 0 zp, of the previous equation
yields that

—(z\ixlel SR ke /\zzaes)-

el = -\l

SOME REMARKS ON THE GEOMETRY OF AUSTERE MANIFOLDS 149

forall1 <1 < sande =0 forall s < ¢ < n. Moreover, we must have g"” = 0.
Of course, these equations imply that, for 1 < ¢ < g, there is a fixed 2-plane
E; c E™ which contains e; while, for s < ¢ < n, the unit vector e; must be
constant. Moreover, the fact that

(6,’, e;)dxn = (C,’, de]) = wi = 0

for all ¢ and 5 implies that any two of the planes E; are mutually orthogonal. Of
course, the equation g” = O implies that g is a linear function of z,,. From this,
it easily follows that ¢' is perpendicular to each of the e; and has length .

Combining all of this information, we see that, after a rigid motion in E™*T,
we can identify f(V') with an open subset of M(s, ). By the connectedness of
M and the real analyticity of minimal submanifolds, it follows that f(M) itself
must lie entirely in this M(s, ). O

4. Austere Three-Folds

In this section, we give a complete “pseudo-local” classification of the three di-
mensional austere submanifolds of E3*". In rough outline, this classification can
be described as follows: By Theorem 2.5, we know that, up to orthogonal equiv-
alence, there are only four isomorphism classes of austere subspaces of Ss. Each
of these isomorphism classes corresponds to a type of austere three-fold. For two
of these four types, we determinc the entire set of the corresponding austere three-
folds. For the remaining two types, we show how locally to describe each such
austere three-fold on a dense open set in terms of a minimal surface ¥ in either
E2*T or ST together with the additional data of a solution of a certain deter-
mined, linear second-order equation (to be described explicitly below) determined
by the minimal surface . The upshot of this “classification” is that the austere
three-folds (originally defined in terms of an overdetermined system of partial
differential equations) are described in terms of well-understood submanifolds in
minimal surface theory. '

We begin by explicitly recalling the four possible types of second fundamental
form |1 |, available to austere three-folds. Let !, 2% and z® denote an orthonor-
mal coordinate system on V' ~ E3. It then follows from Theorem 2.5 that every
austere subspace of S2(V'*) ~ §3 is conjugate under O(3) to one of the following
subspaces
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1. Ao = (0),

2. Ay = ((=1)? - (z?)%),

3. A= ((:r:l)2 — (:1:2)2,21:1:1:2),
4. Ay = (z'z?,z'2%).

Now, if M3 c E3*" is any connected smooth austere submanifold, then
M can be divided into four subsets according to the O(3)-conjugacy class of
|| at the various points of M. Since M is real analytic (as are all minimal
submanifolds of Euclidean space), it easily follows that only one of these subsets
can have a non-empty interior and that one is then open and dense in M. We
may thus classify M as belonging to one of four types according to which of the
four subsets has non-empty interior.

The first type, where |1|; = O for all z in a densc open set in M, clearly
consists only of (open subsets of) affine subspaces V c E3*" and merits no

further comment.

Similarly, the fourth type is just the class of simple austere three-folds as
defined in §3 and hence a connected smooth austere three-fold of this type is
congruent to (an open subsct of) a generalized helicoid M (2,/\) c E® with
Xo > 0 as described in Theorem 3.1.

It remains to describe the austere three-folds of the second and third types.
These two types have an alternate characterization as the austere three-folds with
degencrate Gauss mapping. Recall that the Gauss mapping 7: M — Grg(E3+')
is defined by the rule y(z) = T M for all z € M. 1t is easily seen that the
rank of the Jacobian mapping +'(z) is less than three if and only if | X5 is
equivalent to one of the subspaces Ao, A1, or Az. Thus, the austere three-folds
of the second and third types are simply the non-planar austere three-folds with
degencrate Gauss map.

One class of examples of such austere three-folds consists of those of the
form M = R x £2 C E3*" where ©2 c E**" is a (non-planar) minimal surface.
A second class of examples of such austere three-folds consists of the “cones”
M3? = Rt x 32 c E3*" where £2 c S%* is a minimal surface which is
not totally geodesic. However, this latter type can be generalized to yield the
following “twisted cone” construction:
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Example 2. Let % be a simply connected Riemann surface and let u: 3 —
S2*+r < E3*" be a conformal minimal immersion. If * denotes the Hodge star
operator on X, then u satisfies the vector equation

d+du= —2¢u
where ¢ is the induced area 2-form of the immersion u.

Now let b be a scalar-valued function on ¥ which satisfies the second order
linear equation
d* db= —2¢b.

Then the vector-valued 1-form 8 = u*db— b du clearly satisfies d@ = 0. Thus,
there exists a vector-valued function v on ¥ (unique up to an additive constant)
so that dv = 8. The mapping f: £ x R — E3*7 given by the formula f = v+tu
is then easily seen to be an austere immersion with degenerate Gauss map away
from the locus in ¥ x R defined by the equations b = ¢t = 0 (on which it fails
to be an immersion). We call these austere three-folds “twisted cones” because
taking b = 0 in the construction simply yields the cone on .

Our main result in this section is that the twisted cones essentially comprise
all of the austere three-folds whose Gauss map has rank 2 and which are not
orthogonal products of a line with a minimal surface. More precisely, we have
the following theorem.

Theorem 4.1. Suppose that f: M3 — E3t" is an austere minimal immersion
with degenerate Gauss map which is not a local orthogonal product. Then,
at every point of a dense open subset M* C M (to be described more fully
in the proof), the immersion f can be locally expressed as a twisted cone for
some minimal immersion u:% — ST with induced area 2-form ¢ and some
solution b on ¥ to the equation d * db = —2¢b. Moreover, the pair (u,b) is
unique up to replacement by (—u, —b).

Before beginning the proof, we should remark on the similarity of this result
with that of Dajczer and Gromoll in their paper Gauss Parameterizations and
Rigidity Aspects of Submanifolds. In this paper, they consider the case of hy-
persurfaces M™ C E™*! for which the Gauss map is degenerate of constant rank
and derive a (local) “Gauss parameterization” of M by the normal bundle A of
the image V¥ C S™ = Gr,(E™*!). They then use this parameterization to study
the minimal hypersurfaces in E™*! with degenerate Gauss map. The overlap of
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their theory and ours concerns the case of an austere hypersurface M3 c E*. As
will be seen, our parameterization turns out to be slightly different from theirs
even in this case.

Proof. Let M' C M be the dense open set consisting of those z € M where
the rank of +'(z) reaches its maximal value d < 2. If d = 0, then ~ is a constant
mapping, so M is an open subset of a 3-plane. Of course, this falls into the
“orthogonal product” case, so we need not discuss it further. In addition, it is
well-known that the differential of the Gauss map of a minimal submanifold in
Euclidean space cannot have d = 1. Thus, we may assume (as we do in the rest
of the proof) that d = 2.

Lete;:U - E3*" for0< I < 2+4-r denote an orthonormal frame field on an
open subset U C M" which satisfies the conditions that (ep, e1, e2) is a tangential
frame field for the immersion and that eo(z) spans the kernel of 4'(z) for every
z € U. Clearly M’ can be covered by open sets U on which such a frame field
exists. As usual, we define the structure 1-form by the formulas wr = er-df and
wry = ey - dey. These forms are subject to the usual structure equations

df = ejwy

der = ejwyy

dwr = —wrg Awg

dwry = —wrx Awgs

In what follows, we will use lower case Roman letters for the “normal” index
range 3 < a,b,c < 2+ r. Note that because the eq are normal vector fields we
have

we =0
for all a. Moreover, the forms wg,w;,ws form a coframing of U, so all of the
other w’s are linear combinations of these forms. It will be convenient in what
follows to use complex notation and set

W= wy + twsy.
The Gauss map 7 is represented (up to an orientation sign) by v = epAej Aey.

Our assumption that e is tangent to the fibers of the Gauss map implies that the
all of the forms w,0,wa1,wa2 are linear combinations of w1 and wg. This, coupled
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with the structure equation
0 =dwg = —wao A wWg — Wa1 A W1 — Wea A W2

implies that we must have wqo = 0. It follows that, if we set 75 = wqy1 — 1Wg2o
and use the assumption of minimality, then we have 7, = z,w for some complex
functions z, on U. Morcover, the structure equations for dwg; and dw,s can now
be combined into
drmg = two1 A T — Wap A Tp.

Note that not all of the z, can vanish simultaneously on U since the pull-back
under ~ of the natural invariant metric on Grs(E3*") (i.e., the so-called third
fundamental form of f) is

2 2 2
Y (wa0)® + (wa1)? + (wa2)? = (lezall ) ((w1)® + (w2)*).-
a a
Now, we have

0 = dwgo = —wa1 A w10 — Wa2 A W20
which implies that, on the open set U, C U where z, # 0, the forms wig, w20
must be linear combinations of wgy,w,2 and hence are linear combinations of

w1, wz. Since U is covered by the open sets Uy, it follows that wjo, wzo must be
linear combinations of wy,ws on all of U. If we set mp = wpy — twoz, we then

have that

Ty = Zow + hw

for some complex functions zo and h on U. Moreover, the structure equations
for the exterior derivatives of wjg,wso can be combined into

dmg = 1wsy A 7.

On the other hand, the structure equation for the exterior derivatives of w;
and w2 can be written in the form
dw = —tw91 A w + Tg A wp.

Using the equations so far, we see that 0 = dmg A w and this yields

0=dr, Aw = (24dw) Aw = —24(Z0W A wo) A w.
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It follows that z,Z5 = O for all a. Thus, 2o = 0. Our formulae for 7o and dw
now simplify to

mo = hw

dw = —(hwy + twg1) Aw

At this point, we can already seen that dey = 0 mod w1, w2 SO it follows that
eo is constant along the fibers of : U — Grs(E3+"). Since e is tangent to these
fibers, the connected components of the v-fibers are open subsets of straight lines
in E3,

There are two cases:

If h=0o0n U, then deg = 0 on U and hence U is locally ruled by a family
of parallel straight lines. Of course, this implies that U is locally an orthogonal
product of a minimal surface in a hyperplane in E3*" with a normal line to the
hypersurface. We will not consider this case any further.

If h does not vanish identically, then, again due to the real analytic structure
of minimal submanifolds on Euclidean space, it follows that A is non-zero on an
open dense subset of U, say U* C U. It is easy to see that whether or not A is
zero at a point of U is independent of which adapted orthonormal frame field we
choose, so there is a well-defined open dense subset M* C M which intersects
each U C M in the set U*. For the remainder of the proof, we restrict our
attention to M*.

Now consider the mapping ey: U* — $%t7, We have
deg - deg = (w10)2 -+ (w20)2 = |h|2w ow.

Since h never vanishes on U*, it follows that the differential of €o has rank 2 at
every point of U*. In particular, every point z € U* has an open neighborhood
V' with the property that ep: V' — S2** is a submersion with connected fibers
onto an analytic embedded disk £? ¢ S%*". We thus may regard V analytically
as R X ¥ and think of eg as actually being well defined on X. It is then easy to
sce that there exists a complex 1-form n on ¥ which satisfies

non=|h|’wow and %n AT = —;—|h|2w/\6.

This implies that hw = €'’y for some function 8 on V. Rotating the pair ey, e,
by an angle of @ then yields a new adapted framing which satisfies hw = 5, in
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particular, hw is now well-defined on . Henceforth, we regard ¥ as a Riemann
surface endowed with conformal metric o7 and associated area form ¢ = $nA7.

The sccond fundamental form Iy of the surface ¥ C S?* is now easily
computed from the structure equations and we get that

Iz = ) ea ® (wa1 © w10 + Waz © w20)
a
= _Zea ® Re(7ra. °7r_0)
= - Za: ea ® Re(z,hw?)
=— Z e ® Re(z,h~192).
a

Of course, this implies that ¥ is a minimal surface in S2*.
We can now rewrite the structure equations for drg and dw in the form
dn =1wy; An and d(h_ln) = —(hwo + twa1) A (h71n).
In particular, these two equations imply that
d(h™1) = —wo + 2g7
for some complex function g on V. Now let us write h~! = — (A + Bt) where

A and B are real functions on V. The above equation then separates into the two

real equations .
dA=wo+gn+9gn

dB = —i(gn —g7)
In particular, it follows that B is locally constant on the fibers of the projection
eo:V — %. Since the fibers of this map are connected, it follows that B is
actually well defined on X. Thus, *d B makes sense and is equal to —(gn +97).
In particular, we have

dA = wg — *dB.

Note that this implies that the function A restricted to each fiber of eg to be “arc
length” along that line. Now the structure equation for dwq yields

dwo = —wo1 Awy — woz Awg = —Re(7ro/\w)
_ ; .
= —%(hw/\w+hw/\w)=§(h—h)w/\w

1., =—1 = SRR s
:a(h -h )77/\17—?( 21B)n A7
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Thus, we get d * dB = d(wo — dA) = —2¢B. Moreover, the structure equations
give

deo = e1w1o + e2w30 = —e1wo1 — €awo2

= - Re((el = 1.62)70-) = — Re((el - ieg)n)
and, finally,
df = eqwo + e1w1 + ezw;y = eowo + Re((e; — teg)w)
= eo(dA + *dB) — Re((e; — iez)(A + Bi)n)
= d(Aeo) + eg *dB — B * deg.

Thus, f = v+ Aep where v:V — E3*" satisfies dv = eg * dB — B * dey. Of
course, this is what we were trying to prove. [J

It is natural to ask whether there is a global version of Theorem 4.1 which
does not need to restrict to a dense open set in order to achieve the “twisted cone”
normal form. It is possible that such a global result is derivable, but there are two
sources of complication which require further analysis.

The first source, which also seems the more difficult to deal with, is the
problem of showing that the one-dimensional distribution defined by the kernel
of 4" on M’ extends smoothly across the locus Z on which the rank of ~' drops
to zero. It is not difficult to show that the kernel distribution can be extended
over the complement of a real analytic locus W of codimension at least two, but
removing the locus W seems to be a problem.

The second source of difficulty arises from considering the part of M’ which
does not lic in M* (as defined in the proof). In the notation of the proof above,
this is the locus in U where h vanishes. In fact, it is not difficult to show that
these points can also be locally parameterized by the twisted cone construction,
but one has to allow branched minimal surfaces ¥ and auxiliary functions b
which have singularities at the branch points of X. Specifically, here is how
one can generalize the twisted cone construction to the case of branched minimal
surfaces in S2+7:If u: ¥ — $2*" is a conformal minimal branched immersion
of a Riemann surface ¥, then near any branch point p € X, there is a local
holomorphic coordinate z centered on p and an integer k > 0 so that the induced
metric on ¥ is given by |z|2* Fdz o dZ where the function F does not vanish at p
(ie., at z = 0). Thus, the induced area form ¢ is given by ¢ = %[z]z"Fdz Adz.
We then require that b (the auxiliary function) be a solution of d * db = —2¢b
which is smooth on a deleted neighborhood of each branch point and which, at
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the branch point p, can be written in the form b = Re(f(2)/2¥) + s where f
is a non-vanishing holomorphic function of z and s is a smooth function on a
neighborhood of p. We then proceed with the twisted cone construction as before,
except that the vector valued function v is constructed so that it satisfies

dv = uxdb—b*du — d(Im(f(2)/2*)u)

(this correction term is essential to ensure that the right hand side is smooth on
a ncighborhood of p). It is not difficult to verify that every point of M’ has a
neighborhood which can be parameterized by a gencralized twisted cone in this
sense. Details will be left to the reader.
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