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Linear foliations of TM
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—To the memory of J. Martinet

Abstract. We present a definition of diophantine matrix and use this concept to distinguish
two classes of minimal linear foliations of T'™, the diophantine and the Liouville one. Let &p,
1 < p < n — 1, denote a minimal (all leaves are dense) linear p-dimensional foliation of T,
and H°™(T™, &), 1 < m < p, the cohomology group of type (0, m) of the foliated manifold
(T™, €p). Our main result is the computation of these groups. H™(T™, £p) is isomorphic to

R(;) if £p is diophantine and is an infinite dimensional non-Hausdorff vector space if &, is
Liouville. Some of these groups were computed before, see [4], [6] and [9].

0. Introduction

In this paper we present a definition of diophantine (g X p)-matrix; when p = 1
it coincides with the usual notion of diophantine vector. We use this definition
to distinguish two classes of minimal linear foliations of 7", the diophantine
and the Liouville one. Let £,,1 < p < n — 1, denote a minimal linear p-
dimensional foliation of T'", minimal in the sense that every leave is dense, and
H°™(T™, €,),1 < m < p, the cohomology group of type (o, m) of the foliated
manifold (T, £,) [10].

Our main result is the computation of H°™(T",&,),1 < m < p. Assume,
without loss of generality, that £, is transversal to the fibers of the projection
T9 — TPt — TP p+ q = n, then &, is defined by a linear ¢g-form w on T™
which induces the canonical volume element on each fiber 7'9. Consider the map

P: (A™(T™, €,), d.) — (A™(T™),d), 0<m<p

of differential complexes, given by #(u) = £ u A w, where £ denotes integration
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190 J. L. ARRAUT AND N. M. DOS SANTOS
along the fibers and write A°™(ker) for the kernel of . We first show that

2.1 H'™(T",€p,) = H™(T?) @ H°™(ker)

and after that

2.2 (i) If &, is diophantine, then H°™(ker) = 0

(i) If &, is Liouville, then H°™(ker) is infinite dimensional, and

CL(d A°™1) (ker))

Sk - ker)i= d,0°(m=D) (ker)

where CL denotes the closure in the C'*°-topology.

Some of these groups were computed before, H%} (T2, ;) by Heitsch [6] in
the diophantine case and by Roger [9] in the Liouville’s case. Later Alaoui and
Tihami [4] computed H°™(T™, £,) for some diophantine foliations, in our sense,
and HOY(T™, £;) for Liouville’s foliations. In [2] the study of locally free actions
of RP on T led us to compute H°™(T™, £,_;).

In section 3 we give as an application, a proof of the vanishing of the char-
acteristic mapping [1] for locally free actions of R? on 7™ whose underlying
foliation is linear and minimal.

1. Diophantine and Liouville foliations
For 1 <p<n-—1writeT"as TP x T? and let exp:R? x R? — TP x T'Y be

the universal covering map i.e.,

— [ 27z 27z 27t 27t
eXP(Z1y .50 3 Bps Yiys on s Ylg) = (€75 0 00 €50 WL W)

Let &, denote a p-dimensional linear foliation of 7™ and assume, without loss of
generality, that €, is transversal to the projection T9 — TP*¢ P, 79 Under
this assumption £, determines uniquely the linear 1-forms

w1 = apdzy + -+ - + apdzy, + dy;
wg = andzy +---+ a2pdzp + dy2

(1.1)

Wy = aq1dzy + -+ + agpdzy, + dyq

[\
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which in turn define &, i.e.
q
Té = ﬂ ker w;.
i=1

Therefore, there is a bijection between the set of these foliations and the vector
space of ¢ x p real matrices A = [a;;]. We recall that:

1.1 &, is a minimal foliation if and only if ryw;y + - - - + rgwg, with r;€Q,isa
rational form, implies r; = --- =1r; = 0.

Let
k=lki-- k] € M(1,q;Z),

e=[t - 4] € M(1,p;2),
z=[z1 - zp) € M(1,p;R)

and
A= [a‘lJ] € M(q,p, R)’
|k| = sup |ki],
%
|€] = sup |¢;],
J
|z| = sup |z;|
J

Izl = inf |z -

||z|| defines a metric on T®.

1.2 Definition. We say that a (¢ X p)-matrix A

(i) verifies a diophantine condition and write A € Dpg, if there exists § > 0
and ¢ > 0 such that for every k € 29,k # 0, we have

c
kAl > PE&
(ii) is diophantine if
AeD= ] Dg
=0

(iii) is Liouville, and write A € L, if A is not diophantine and the lines Ay, ...,
Ag of A are linearly independent as elements of the vector space RP(Q). If
A € L there exists a sequence {k® = [kf ... kj]} with |k*| — oo as s — oo
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such that 1

KA|| < —

kAl < o
Observe that definition 1.2 produces for p = 1 the usual concepts of diophan-
tine and Liouville numbers (¢ = 1) and vectors (¢ > 1) [7]. For ¢ = 1 and
p > 1 the concepts obtained are not the standard ones and we used them in [2] to
define diophantine and Liouville linear forms of 7™. For example, let A = [a b).
If a is a diophantine number then A € D. If a is a Liouville number and b = a?,

then A is a Liouville matrix.

1.3 Remarks. If a column of A, say A7, is diophantine, then A is diophantine.
In fact

kAl > ||ka?]| > I_IQIET”

If a line of A, say A, is Liouville, then A is Liouville. In fact, let {k{} be a
sequence of positive integers such that k{ — oo with s — oo and that

1
k4] < 7
t
Take k* = [0...k...0]. Then
1 1
k*A||l = k'?A,' L P o —,

A matrix made of Liouville cclumns may be a diophantine matrix.

We obtain examples of this situation by combining the following two state-
ments:

(i) Let a,b € R such that a+ b € Dpgj; then the matrix [a b] € Dg. By definition
||[ka kb]|| = inf sup{|ka — £1|, |kb — £5]}.
: 4 &
Assume that
ke kbl = Jka — &];

then
2|ka = le > |ka = £1| + |kb = £2|

> |ka — £ + kb — £y

= |k(a+b) — (&1 + £2)|
C
> "——'—|k|1+ﬂ .
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Therefore
C

1
ke k8l > 3 <73

(i) If c € R — Q, then ¢ = a + b where a and b are Liouville numbers, see [5].
¢ = [c].c1c2c3cacsc6c7C8C9C10C1 - - - €33C34C35 - . -
a = [c].c100c4c5¢6¢7¢8¢900 . . . Oczgcss - - -
b= 0.06263000000610611 aies 63300 e
2! 3! 4!
It is easy to check that a and b are Liouville numbers. It may also be the case

that a matrix made of diophantine lines is a Liouville matrix, but we do not
know of any example.

1.4 Definition. A linear foliation £, of T™ is said to be diophantine or Liouville
if the corresponding matrix A has such a property.

It follows directly from definitions 1.2 and 1.4 that linear diophantine and
Liouville foliations are minimal and that every linear minimal foliation is either
diophantine or Liouville.

We want to point out that the contents of definitions 1.2 and 1.4 are essentially
the same as the one of definition 2.1 in [8]. In fact we could say that a linear
foliation £, of T™ is diophantine or Liouville if the vector subspace of R™ given
by the rows of the matrix [AI,], A determined by &, is diophantine or Liouville
in the sense of J. Moser. We thank the referee for calling our attention to this
coincidence.

2. The Cohomology of Linear Foliations

Let £, be a minimal linear p-dimensional foliation of 77,1 < p < n — 1,
transversal to the fibration

L kY 2, e
where P is the projection
(T15-- s TpyY1y--- 5 Yqg) = (T1y-- ,Tp)

and wy, ... ,w, the linear 1-forms uniquely determined by £, as in (1.1). Denote
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by 7, the foliation by tori given by the fibers of P. The coframe
(g, oo o g B0y Wiy 7 s}

of T" is well adapted to the decomposition T™ = T'{, @ T 7,. Its dual frame is
d d

Ey,...,B),—,...,—
{ 1 Payl ayq}
here
wher . 3 . 8 s
f = — g—— e — (g ——,
¢ oz; 1’3y1 ‘”ayq

Denote by A°™(T™, £,) then C*® forms of type (o, m) of the foliated manifold
(T, &) I peAo™(T™, £,) then

B=) fir imdzi, A... Adz,,.
The foliated exterior derivative
&t KT ) o A1 E o 2
is given by

de(fdzi, A ... Adziy) = Eyi(f)dz; Adzi, A... Adzi,, (2.1)
J

(A°*(T", €,), d.) is a differential complex and the associated cohomology is
denoted by H°*(T™", £p).

Now, let w=w; A...Awyand foreach0 < m < p

A™(T™,E,) 5 A™(T?) (2.2)

be given by #(u) = f u A w, where £ denotes integration along the fibers of P.
# is an epimorphism of differential complexes and

—(_l)m o PH =)
(27r)mp P d.

Denote by A°™(ker) the kernel of # and let dy be the exterior foliated derivative
of the foliated manifold (T, 7;). Direct computation gives:

pEker’™ & pAw is ds-exact. (2-3)

Associated to # we have a long exact sequence of cohomology groups

-eo — H™(ker) — H°™(T™,£,) i - i ¥ i = H™ (ker) — ---
(2.4)
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and, since the connecting morphisms § are zero maps, the sequence (2.4) breaks
into short exact sequences

0 — H°™(ker) — H°™(T",£,) L H™(T") -0 (2.5)
It follows from (2.5) that
21 H™(T",&,) = H™(ker) @ H™(T™) = H°™(ker) ® R(m)
therefore to know H°™(T™, £,) it remains to compute H°™ (ker).
2.2 Theorem. Let £, be a minimal linear p-dimensional foliation of T™,
1<p<n-—1 Then H®(ker) = 0 and for every 1 <m < p
(i) H°™(ker) = 0 if &, is diophantine
(ii)) H°™(ker) is infinite dimensional if €, is Liouville.

For the sake of clarity we give the proof in the particular case n = 4 and
p = q¢ = 2. Associated to the decomposition TT* = T, @ T one has the
frame and dual coframe of T'%:

d 7] d

Ei=——-a11— —a21— dz

1 3;1 11 3(!9/1 21 3gz 1

=5 —apz— —anz— d

E, 32, ars n azz E T2
— and wp = ay1dzry + ajadzy + dyy
agl
Boo wy = az1dz; + azedz; + dy,

Y2

Let f be a O-cycle i.e.,
def = E1fdz1 + Exfdz; = 0;

then E4f = Eof = 0 and, since 3 is minimal, f is a constant. Furthermore,
since f € A%(ker) then we have necessarily f = 0. Therefore H*(ker) = 0.
We will denote the liftings of objects from T to R* with the same letters. The
lifting of a function f € C*°(T*) has a Fourier expansion

f= Z flkehi(t.z+k.y)

(¢k)
with £ = [5122],16 = [klkzl,z == [271:1:2] and Y= [y1y2]. If

= fldr. + f2dr.
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and
v = fdz A dz,,
it follows from (2.1) that:
p€A(ker) & fx=fE=0 forevery £ (2.6)
p€1%(ker) < Eifi=Eyf! (2.7)

or
(61 — k1a11 — kaa21)f2 = (€2 — kra1z — kaazs) fh
for every k # [0 0].

p € B (ker) < there exists h € A%(ker) such that
Elh = fl 27N'(£1 - klau - kzazl)hgk = fllk (2.8.1)

or
Exh = f? 271 (g — k1a1z — kaags)her = f2, (2.8.2)

veEA%(ker) & fo=0 forall Land Z%%(ker) = A®%(ker) (2.9)
v € B®(ker) < thereexists hldz; + h%dz; € A% (ker) such that
E\h?* — Eshl = f
or

27ri[(£1 — kiann — kzazl)hgk] — (22 — kia12 — kzazz)h}k = fa (2.10)

Proof of (i). Since £, is diophantine, A € \Dp for some 8 > 0. Let
Ky = {k #0: | k4’| = ||kA]}
and
= (k€ M(1,%Z) - Ky, k # 0: k42| = [lkA]}
Then M(1,2;Z) = {0} =KiUK; and KiNK;=¢.

We show first that every (0,1)-cocycle u = fldz; + f2dz, is d,-exact.
Define complex numbers hg by (2.8.j) if k € K;,7 = 1,2 and hg = 0. Since
by hypothesis f}, and f2, satisfy the relations (2.6) and (2.7) it follows that every
hg, just defined, satisfies both (2.8.1) and (2.8.2). Thus, for k € K one has

g e s )
|hek| = 27 1 — Faar; — kaagi] - 2 RAT] - 27 |RA|
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and by 1.2 there exists ¢ > 0 such that
L 248 45
hii| < x50k { J ]
bl < kI 1,

Therefore the hgy’s are the Fourier coefficients of a C'°°-function k such that
dch = p. Now, take a (0, 2)-cocycle v = fdz;dz; and define complex numbers
h}, and h2, by:

0, if ke Ky

Ry = { —fex .
, ifke K
(€2 — k1a1z — k2a32) ’
0, if k€ K,

i3y = { fex ;
, fke K
(&1 — kia1; — kaaz1) g

From the diophantine character of A it follows that the h},’s and h2,’s are
the Fourier coefficients of C*°-functions h! and h%. Besides, since they satisfy
relations (2.10),

v = fdzidzy = d.(h'dz, + h%dz;)

and the proof of (i) is complete.

Proof of (ii). Since £ is Liouville there exists a sequence k* = [k{ kj] with
|k®| — oo such that

1
KAl < —
4] < 7
For every s let ny > s be the greatest integer such that
k’A’“ < i Ik’l’“’ Fa1p

Since €3 is minimal one obtains from 1.1 that ||kA|| # O for every k # 0, thus
for each s there exists j(s) € {1,2} such that

1
ke[ ™

o < |lk* 47| <

Therefore, by taking a subsequence one can assume, for example, that for

every s
v 1

Al e e
4 < e

W (2.11)

k*a? < (2.12)

lk"I”’
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Let £° = [€°1£°3] be such that

]

Now, we are going to construct a sequence of d.-closed forms
{pn = f"dz1 + g"dzs}

such that the subset {[un|} € HO°!(ker) is linearly independent. We construct
the sequence {u,} inductively.

& —kjay; —kjay| =12,  (213)

o —k’Af‘ -

Define
1
=1 |egme R g e B e e

if (€,k) = +(€°,k°)
0, otherwise.

The f }k’s are clearly the Fourier coefficients of a C real function f1. Define
the g},’s through relations 2.6 and 2.7. Then g}, = 0 if (¢,k) # (£°,k*) and

L 8 —kla — kSaz
3 3 fl’k’
1211 — Kqa21

Gesks = 5 —
1
By taking absolute values on both sides and by using (2.13), (2.11) and (2.12)
one obtains

_leay,

e A1
Therefore the g}k ’s are the coefficients of a C* real function g! and p; =
fldz; + g'dz, belongs to Z°!(ker). Now we show that y; is not d,-exact. In
fact, assume p; = d.h with h € C*°. Then the Fourier coefficients of A must
satisfy relations (2.8.1) and in particular

1
f[ske

9isks < [k

fl
23k )
(€ — k{a11 — kia21)

27l'1'hlo k8 =

From (2.13) and (2.11) one obtains

k’l EYES |k3| "s/s
2m|hesis| > |k°|™% | fA =[| ] [—]
erne BT e = Ly 2l
But 1
8;- —k’a’| < W
implies ,
Iiﬂ< 4|+ —5 < ]Af|+1
Ika’ lk,|ns+1
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which in turn yields

L bl 11

2m ||ks Al T 2, |A7|+1
By the Riemann-Lebesgue theorem h could not be a L!-function. We conclude
that 0 # [u1] € H!(ker). To construct u; take a proper sequence of {(£°,k*)}
which contains infinitely many terms and disregard infinitely many of them. Start-

|hesks| = (2.14)

ing with the new sequence, the same construction made for pu; gives
- 2d 2d
p2 = f*dz1 + g°dzs.

Following this procedure one constructs inductively the sequence {u,}. Now
assume

c1{u1] + ea{pz] + -+ + cnlpn] =0,
with ¢; € R. Then, there exists a C*-real function h such that
deh = c1p1 + copz + - + Cnpin.
The Fourier coefficients of A must satisfy relations (2.8.1) and in particular
2mi(£] — kjain — k3ag1)heske = c1fpogs + cafpgs + o+ cnfitps  (2.15)

From the construction of {yu,} it follows that there are infinite subsequences of
(€2, k*) for which the following relations are satisfied:

fgaks :---=f¢'§ks =0 (2.16.1)
f}sks = fl23k3 and fl35k3 = fggks =0 (2162)
ftlsks — Zg;: and fgsks =0 (216n)

Considering (2.15) together with (2.16.j) 7 = 1,... ,n and (2.14) one obtains
€1 =c¢g = --- = ¢y = 0 and this completes the proof of (ii).

Now, we take care of H%%(ker). Let v = fdz; Adzq with f = f1 previously
defined. Assume v is d.-exact i.c., there exists hldz; + h¥dzs € A% (ker) such
that E1h? — E,h! = f. From (2.10), (2.11) and (2.12) one gets

1 fesks _ B =Ko — kjas
2mi 8] — kiayy —k3az1 4] — kfay1 — kjax

h}aks + h%aks

and
1 |feske]

SEe hls 8
27 ||k AY| L

< |k®|

+ |hzsks
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Since h' and h? are C-functions this last inequality implies

1 | fesks|
27 ||k AL|

which contradicts (2.14).

— 00 a8 8§ — o0

We conclude that 0 # [v] € H% (ker). The proof continue as in the case of
HO(ker).

To prove (1) for arbitrary n and p we first define
K1 ={ke€ M(1,4;Z),k # 0: |[kA"|| = ||kA||}
Ky ={k € M(1,¢;Z) - Ky, k # 0:||kA?|| = ||kA||}

Ko = {k € M(1,6;2) — (K1 U---U K,),k # 0: [ kA7) = ||k Al[}
Then
M(1,4;2) - {0} = K ;U K, U---U K,
and K; N K; = & for 1 # 3. Next, imitate the/steps given above.
To prove (ii) for arbitrary n and p we can aSsume, by a permutation of indices

if necessary, that there exists a sequence k* = [k§ - - k3] with |k®*| — oo such
that

k*Al “ P

: e

lk,,'ns+1

Next, define
1
fllk o nale bl 1
1|/ ...|1;|"s/q+ Ikslns/ﬁl

if (1,k) = £(I°, k°) and 0 otherwise. Next imitate the steps given above.

2.3 Remark. In the proof of 2.2 part (i) we constructed C*-functions f! and
f? such that By f* = E, f1 and the pair of equations

Erh=f', E3h=f? (2.17)
had no L!-solutions. However, let

p= fldz + fldzs € 7% (ker)
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and

fi= 2 fyem=E) =12

I(lrk) | <n

Then for each n the form p, = fldz; + fidz; is d.closed and equations
(2.17) with f2 in place of f7 have analytic solutions h,,. In other words, given
any p € 2% (ker) there exists a sequence {u,} C B°!(ker) which converges
in A% (ker) with the C*-topology to p. An analogous consideration applies to
2-forms v. We have proved

2.4 Proposition. Let &, be a minimal linear p-dimensional Liouville foliation
of T",1<p<n-—1 Then

CL(d,A°(™=1)(ker)) EviEy

Om =
- ifler) = d.Ao(m=1)(ker) -7

Here C'L means the closure in the C* topology.

3. Applications to Actions of R?

Let M be a closed orientable connected m-dimensional manifold and F:RP x
M — M be a non-singular C"-action, r > 2. To study the space A"(R?, M)
of all non-singular CT"-actions, r > 2, of RP on M we introduced in [1] a
characteristic mapping which associates to each action F in A"(RP, M) a (¢+1)-
linear mapping ap of RP on the de Rham cohomology group H%t1(M),q =
m — p being the codimension of the underlying foliation ¥ of F. We proved in
[1]:

2.2 The characteristic mapping ar vanishes if F' is a non-singular action of T?

withl<p<m-1.

2.8 ap is degenerate if F is a non-singular action of T™~2 x R on M.

4.2 Let F be a C",r > 2 non-singular action of R? on a closed orientable
connected 3-manifold M # T3. If ap is non-degenerate, then F has a
compact orbit and so does any action G in A"(R?, M) which is sufficiently
C! close to F.

See [3] for further results.

In this section we prove the vanishing of the characteristic mapping of a
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C",r > 2 non-singular action whose underlying foliation is a minimal linear
foliation of 7. This generalizes Theorem 4.6 in [1]. We now recall the definition
of the characteristic mapping ap as given in [1]. The orbit of £ € M under the
non-singular action F:RP x M — M is the mapping F,:RP — M defined by
F;(v) = F(v,z). Consider the vector fields on M given by

Xj(z) = DF;(0)-¢;, 1<j<p

where ey, . .. , e, is the natural basis of R™. X = {X,... , Xp} is a commuting
p-frame of the underlying foliation # of F. Any ordered set of 1-forms E =
{&,...,&} such that &(X;) = 6;; is called a p-coframe adapted to F. Let
A(M) be the graded algebra of smooth forms on M and I (¥) be the annihilating
ideal of ¥ ie., a j-form belongs to I(F) if W,(vy,... ,v;) = O whenever
vL,...,v; are all tangent to 7 at z. Thus dI(7) c I(F) and I(F)?+! =
0, ¢ = m— p. The characteristic mapping of F is the (g + 1)-linear symmetric
mapping

ap:RP X --- X RP — H2+1(pf) (3.1)
defined by

ap(e,-l,. o ’e"q+1) = [&1 A df,'z A we N df,'q_H]

where € = {1,..., &} is any C” p-coframe adapted to F and [w] denotes the
de Rham cohomology class of a closed form w in A(M). Tt is shown in [1] that
af does not depend on the choice of ¢ and is (g + 1)-linear and symmetric.
For example: if m = 3 and p = 2 then ap:R? x R? — H3(M) = R is the
symmetric bilinear form given by

ar(e;,e) = /M &ndg, 1<i4,j5<2

Let A"(RP,T",£,),n = p+ ¢ be the space of all non-singular Cryr > 2
actions of RP whose underlying foliation is a linear foliation &p of T™. Here we
prove

3.1 Theorem. If &, is a minimal linear foliation of T",n = p+ q, then
ap = 0 for every action F in A"(RP,T™ €,).

Proof. Let 7°(T™, €,) denote the linear subspace of all d,-closed 1-forms in
APY(T™, &,). In ([1], 1.11) it is shown that the (g + 1)-linear mapping

BN T™, &) x ... x I°N(T™, £,) — HEFY(T™)
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given by
B, sMg+1) = [mAdnz Ao A dngy] (3.2)
is continuous in the C-topology.
To prove 3.1 we show that 4 is the zero mapping.
It follows from (2.1) and proposition 2.4 that
ni = P*n) +n; + d.h’ (3.3)
where 77 is closed in A'(T?),n} € 7°!(ker) and
n} = Jim 4K,
in the C* topology, 1 < j < ¢+ 1. Actually by Theorem 2.2 i) nj = 0 if &, is
diophantine. Thus, by the continuity of 3, it suffices to consider

nj=Pnf+dhi, 1<j<q+1 (3.4)
In this case we have
B, yMg+1) = [deh* Add.hEA ... A dd AT (3.5)
Since dd.h? € 1(£p),1 < j < ¢+ 1, and I(£,)?+! = 0, it follows that
deh! A ddoh? A -+ A ddhTTY = d(h1dd.h2 A - - A dd.RTTY) (3.6)

From (3.5) and (3.6) we see that B(n;1,... ,n+1) = O when the n;’s are as in
(3.4). This proves the theorem.
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