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An analogue of Mertens’ theorem for
closed orbits of Axiom A flows

Richard Sharp®

Abstract. For an Axiom A flow restricted to a basic set we prove an analogue of Mertens’
theorem of prime number theory. The result is also established for the geodesic flow on a
non-compact, finite area surface of constant negative curvature. Applying this to the modular
surface yields some asymptotic formulae concerning quadratic forms.

0. Introduction

In recent years a number of papers have pointed to similarities between the distri-
butional properties of prime numbers and those of hyperbolic dynamical systems.
In particular Parry and Pollicott [12] have proved an analogue of the prime num-
ber theorem for Axiom A flows. Precisely, they proved that for a (topologically)
weak-mixing Axiom A flow, with closed orbits r of least period A(r) and entropy
h,

card{r: N(r) < z} ~

log z’
where N(7) = €"(7) with a modified asymptotic formula for flows which are
not weak-mixing.

This paper is motivated by Mertens’ theorem of prime number theory ([8],
pp. 349-353), which states that

H(1_1)~

e p log z

e~

where the product is taken over all primes p < z and « is Euler’s constant. We

(1) Supported by S.E.R.C. grant no. 88001623.
Received 20 November 1990.



206 RICHARD SHARP

prove that for an Axiom A flow ¢

H (1 - Ntr)) - Res(g,:,_:) log =

N(r)<z

where ¢, is the Ruelle zeta function for ¢. The proof, as one would expect,
relies heavily on the symbolic dynamics of Bowen [5] and the thermodynamic
formalism of Ruelle [15]. One should also note that the proof is elementary (just
as the proof of Mertens’ theorem is elementary) making no use of the deeper
results about the analytic properties of ¢, obtained in [12] nor the associated
Tauberian thcorems.

We also establish a similar result in the case of the geodesic flow on a non-
compact, finite area surface of constant negative curvature. To do this we make use
of the prime geodesic theorem of Sarnak and Woo (cf. [16]). A classical example
of such a surface is the modular surface and applying our theorem in this case, in
conjunction with the relationship between closed geodesics on the modular surface
and equivalence classes of quadratic forms, leads to some asymptotic formulae of
a number theoretic character.

The author would like to thank William Parry for originally suggesting the
problem and for his advice and encouragement during the course of this work and
also Mark Pollicott for some helpful comments.

1. Shifts of finite type and their suspensions
Let A be an aperiodic k X k zero-one matrix (i.e. for some n, A™(¢, ) > O for
all 1 < 1,5 < k) and define

Ta={ze{l,... ,k}": A(zp,zny1) =1, forall nez}.

Give {1, ..., k} the discrete topology and ¥ 4 the product topology. With respect
to this topology ¥ 4 is compact and zero-dimensional, with a basis for the topology
being given by finite unions of closed-open cylinders

[05-- yZn-1]" = {¥: Yism =i, 0<i<n-1}.

(We write [zg, ... ,Tp_1] for [2o,... ,2n_1]%) The shift of finite type o: X4 —
Y 4 is defined by (0z); = ;41 and is a homeomorphism with respect to the
given topology.
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For f € C(X4) and 0 < 8 < 1 we define
var, f = sup{|f(z) — f(y)|:z,y € Zp,zs = y; for || < n}

and | f|, = sup(var, f/67).

The space Fy = {f € C(24):|f|, < oo} is a Banach space with respect to
the norm

1£lle = 1fle + 1f1

where | . |, is the uniform norm.

Define the pressure P:C(X4) — R by
P(f) = sup{hm(o) + / fdm: m a o — invariant probability measure}

where A, (o) denotes measure theoretic entropy. If f € Fj, this supremum is
attained for a unique, ergodic probability measure u called the equilibrium state
of f and p has the following Gibbsian property. There exist positive constants
C1,Cy such that for any n € N and z € Fix,,: = {z:0"z = z},

Ciu([zo, ... ,Zn_1]) < exp (f*(z) — nP(f)) < Capn([zo,. .. ,2n-1]) (1.1)
where
M=) = f(z) + floz) + ...+ f(oe" 12).
(Bowen [6].)

If f € Fp is real and strictly positive, define the f suspension space X 4 ¢ to
be

{(z,t):zeZ4 and 0<t< f(z)}

with (z, f(z)) and (oz,0) identified. Define a flow, o/, on this space by
of (z,8) = (z,s + t), remembering identifications, i.e., a vertical flow under
the graph of f. The entropy of o7 is the entropy of cr{e . Using a result of
Abramov [1], it is possible to show that this is the unique h = h(a/) such that
P(—hf) = 0 and that if p is the unique equilibrium state of —hf then the
Lebesgue extension of p is the unique measure of maximal entropy for /. The
flow o7 is said to be topologically weak-mixing if there does not exist a non-
trivial solution to Fof = ¢ F with @ > 0 and F € C(Sa ;). If o is not
weak-mixing such an a is called an eigenfrequency for o/,
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Let 7 denote a generic closed o7 orbit and let A(7) be its least period. Define
its norm N (r) to be ¢"*("). We define the zeta function for o/ by

10 =T[1- N ) =exp Y % N(r)~*.

T k=1

Each such r corresponds to n distinct elements of Fix,, (for some n € N),
{&,0€,... 0" 1€} say, and A(r) = f™(€). Also, if n|m (m = ni say), these
n clements are also in Fix,, and f™(&) = ¢f"(£). Hence

gaf(s):expz-:; Z exp — shf”(£).

n=1 ¢eFixn

¢,7(s) is analytic and non-zero for Re(s) > 1 and has a simple pole at s = 1
(Ruelle [15]). Furthermore, we have the following proposition.

Proposition 1. ( Ruelle [15], Parry [11].)
= o~ A n _ _nP(-shf)
Z(s)=exp ) B ( Z exp —shf" (&) — e
n=1 ¢€Fixn
converges uniformly to a non-zero analytic function in a neighbourhood U of
s =1 and ¢_y(s) can be analytically extended to U — {1} by defining

o1 (8) = Z(s)/(1 - PL-0)),

We note that

s—1
1 — eP(~shf)

[deP(— shf)] ~1

Res(s, 1) = lim

e A z(1) (1.2)

1 3
=wffaa’M

where p is the equilibrium state of —hf. This uses the fact that
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(Ruelle [15]).

2. Axiom A flows

Let M be a compact Riemannian manifold and let ¢ be a Cl-flow on M. A
compact -invariant set A containing no fixed points is said to be hyperbolic if
the tangent bundle restricted to A can be written as the Whitney sum of three
D p-invariant continuous sub-bundles

TaM =E+ E*+ E*

where E is the one-dimensional bundle tangent to the flow and there exist con-
stants C, A > 0 such that
@ D (v)]| < Ce¥|o]| for ve Bt >0
®) || Dp_,(v)| < CeX|lvl| for ve Bt > 0.

A hyperbolic set A is said to be basic if

(i) the periodic orbits of ¢ restricted to A are dense in A

(ii) ¢ restricted to A is topologically transitive (i.e., A contains a dense orbit)

(iii) there exists an open set U D A such that

A= 0 (V).

teR
The non-wandering sct 2 is defined by
Q={zeM: YopenV >z Ja sequence t; T oo with o, (V)NV # 2}

The flows satisfies Axiom A if Q is a disjoint union of a finite number of basic
sets and hyperbolic fixed points. In what follows we will consider ¢ restricted to
a basic set which is non-trivial (i.e., consists of more than one closed orbit).

Topological weak-mixing for ¢ is defined in the same way as for ¢/ in the
previous section. Bowen [3] has shown that either ¢ is not weak-mixing or ¢ is
mixing with respect to the measure of maximal entropy.

As in the suspended flow case we define the zeta function for ¢ by

[Ta-nN@E™

T
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where the product is taken over all closed g-orbits 7 of least period A(t) and

N(r) = eMPIA(T)

We can relate Axiom A flows to suspended flows by means of the following
result due to Bowen [5].

Proposition 2. If ¢ is an Axiom A flow restricted to a (non-trivial) basic set
V' then there exists a suspension of a shift of finite type T 4 y (where f € Fy
for some 0 < 0 < 1), and a Hélder continuous map mNap — A,7ratf =
@pim, where m is surjective, finite-one, measure-preserving with respect to the
measures of maximal entropy and one-one a.e. with respect to the measure
of maximal entropy for o”.

We call o/ the principal suspension. As a consequence of the above, ¢ is
topologically weak-mixing if and only if o7 is topologically weak-mixing. Clearly

if o/ is topologically weak-mixing then ¢ is topologically weak-mixing. On the _

other hand, if ¢ is topologically mixing then, by the comment above, it is mixing
with respect to its measure of maximal entropy, hence o is mixing with respect
to its measure of maximal entropy, so it must be topologically weak-mixing. It
also follows that h(y) = h(a), since = is finite-one.

We wish to count the number of closed @-orbits. We shall do this by means
of the following proposition of Bowen [5] which is a refinement of the work of
Manning for the diffeomorphism case [10].

Proposition 3. (Bowen-Manning.) In addition to the principal suspension,
there exist suspensions of shifts of finite type X Afp fi € Fg, v = 1,...,p,

. , ¢, Holder continuous maps =;: 2 AL A, mio;t = ey, where
(i) m; is finite-one
(ii) =; is not surjective

(iii) if v(., ) denotes the number of closed orbits of least period z then
p q
v(p,x) = (o), 5) + 3 v(oh,a) - Y v(ok,a).
i=1 1

By (i) and (i) we have that h(0/i) < h(p),i =1,...,p,... ,q and from
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(iii) we obtain

[ ¢ 1. (hs/h(o%:))

to(s) = ¢, (s) =1 (2.1)
1 ¢ 5, (hs/h(%))
1=p+1
and
11 ¢ 1, (h/h(c%))
Res(¢p, 1) = Res(¢,7,1) -2 (2.2)
L s, (4/h%))

Finally we remark that Parry and Pollicott [12] have shown that for a weak-
mixing Axiom A flow

7(z) = card{r: N(r) < z} ~ =

log z
and for an Axiom A flow that is not weak-mixing with least positive eigenfre-
quency a

2rh/a Z g2mnh/a

m(g) ~ log z

e2mnhfacy
In either case there exist positive constants A, B such that

A x

<m(z) < Bl

Tog 2 Py for all large =z (2.3)

(Bowen [4]).

3. The main theorem

We will prove our result first for suspended flows and then use the results first for
suspended flows and then use the results of the previous section to carry it over
to Axiom A flows.

Let 4 7,07 be as in section 1 and set
a=inf{f(£): € € T4},
b=sup{f(£): £ € B4}

and

log z
h




212 RICHARD SHARP

We begin by considering
[y/A(f)] w4
K@= 3 Y NO™F =Y & 3 ep-hfn(e).
N(r)gz k=1 n=1 " ¢eFix},

where Fix;, denotes the set of ¢ € Fix,, with f*(£) < y.

First note that if f(§) < y for some £ € Fix,, then na < y,son < [y/a]+1
(here [ ] denotes integral part). Thus we have in fact

[v/a]+1 1
K(z)= ) Y exp—hf™(¢).
n=1 fGlen

We split the range of summation into
t<n<ly [ fdu and [y [ fdul+1<n s y/al+1

and note that if f*(€) > y for some £ € Fix,, then nb > y, so n > [y/b] + 1.
Thus

v/ [ fdu] 1
K@= 3 = > exp—hf"()
n=1 £e€Fixn
[y/a]+1 1

+ X o X ep-hf(§)

n=[y/ [ fau+1 T geFixy
lv/ [ fdu]

- Y 1T exp-hfn(e)

n
n=[y/b]+1 ¢eFixy,

(where Fix;, denotes the set of £ € Fix,, with f*(€) > y)

v/ [ fdu] 1
= Z - Z exp — hf"(€) + A(z) — B(z),
n=1 ¢eFixn
say.
Now
v/ [ fdu] .
> e log[y//fdu] +9+o(l)
n=1

1
= logloga:-l—logm + v+ 0o(1)
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where + is the Euler’s constant and Proposition 1 gives

lv/ [ fdu] 3

n

n=1 fGFan

Combining this and (1.2) yields

K (z) = loglog z + « + log Res(s_¢,1) + A(z) —

b3 —{ D ezxp—hf"(€) -1

} =log Z(1) + o(1).

Biz).

213

Our aim is now to show that A(z) = o(1), B(z) = o(1). We do this by
means of the next two lemmas. Choose 0 < & < min(f fdu — a,b — [ fdu),

and write

where

and

A(z) = Ay(=) + Ax(3),
B(x) = By() + Ba(3),

[v/a]+1

A1 (:c) = Z

n=[y/([ fdu—e)]+1
/([ fdu—e)]

Ax(z) = Z % > exp—hf"(¢),

n=[y/(f fdu)l+1

[v/([ fdu+te)] "
Bi(z)= ). = > exp—hf™(¢),
n=[y/b]+1 ¢eFix),
lv/ [ fdu]

Bz} = Z

n=[y/([ fdu+e)]+1

% Z €Xp _hfn(§)7

éeFixy,

£€Fix),

~ Y exp-hf(6).

¢eFix),

By the ergodic theorem f™(n)/n — [ fdu as n — oo for u — a.e. 1, so we
can choose N so large that for every n > N

and put

s (fresel

N' = max (N, {

2|fl,

e(1-6)

£"(n) /fd ‘>—e})<e
J+1).

(3.1)
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Lemma 1. For z > V'™ ie. for y > N'b, Ehgs
[ fdu 2/ fdu [v/a]+1
Al(:z:) < < = -1+ _]va—") Cy e, Al(z) < Z % Cs €
b 2 n=[y/([ fdu—e)]+1
B < (2 1v D) are
(= <\Frau W ls/el - /U fdn—e) 1,
= 2 €
where Cy is defined by (1.1). ly/(f fdp —€)] +1
[ fdp—c« (J fdp —«)
Proof. Suppose [y/(f fdp—¢€)]+1 < n < [y/a]+1and f*(£) < y, for some < {—a— — 1 —y———}Cz e
¢ € Fix,. Then : [ fdu 2f fdu}
< -1 C
§)</fdp—e —{ B T DL
For n in this range we have -
N'b , 2|fl,
anfdu—ezN ~ e(1-196)’ [w/(f fdu+e))
By(z) < Y. =1Cee
so for every 1 € [€o, €1, , En-1); o
n n 1
L) _ L&) Moy g 0m) < (‘Ifﬁa) 4 Y IED S
" " - [y/b)] +1
and so N - { i 2
f(’?) ’5 —s</fd/.t——e = d,u—i—e_ +y}
Thus € € Fixp e where Fix,, . denotes the set of those £ € Fix,, such that for < { -1+ _.} C; e.
every n € [§0a El) RS 7€n—1],
n) —/fdu‘ S 1
Lemma 2. Forall x > 1
Hence for
/([ fdu- o) +1<n<ly/al+1, o) € (i + LI
- du — 1 ’
> exp-hfH(E) < Y exphf(€) [fdu=c ' log=
= . £ 2h [ fdu
¢eFixy, §€Fixn,e B, ( )S ( )CZ
1 [ fdu log =
SCZII' ( U [60)61:"' )En——l}) by (11) |
fEFan’e
< Cqe by (3.1). ‘ Proof. By (1.1), for every n > 1
A similar argument gives that for [y/b] +1 < n < [y/([ fdu + ¢€)],
> exp—hf™(€) < Cse. Eg;{ exp —hf"(£) < Cy.

¢eFixy,
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Hence

[v/([ fau—e)] 1
Az('x) S Z _f; C2
n=[y/ [ fdu]+1
< /U fdu—e)] - [y/ffdu]
- ly/ [ fdu] +1
[ fdp 2/ fdu
{ffdu—e Ty }02
{ 2hffdlt}c2

ffdp—e log z

IA

Il

and

v/ [ fdu] .
Bz(.’l:) S Z ;’: Cz
n=[y/([ fdu+e)l+1
< /S fdu - ly/( fdu+¢€)]
/([ fap+e)l+1
Jfdute  2[fdu
= { Tiae Ty }02

{75+ s 1

Since we may choose € > 0 as small as we please, the two lemmas combine
to give A(z) = o(1), B(z) = o(1), and so

K(z) = loglog z + v + log Res(¢, 7, 1) + o(1).

Now

Z log<m1—(r)—> Z Z N(r

N(r)<z N(r)gz k=1
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SO

e 1
b DI A
N(r)<zk—[y/A(r)]
log N(r
ZN(r)"
N(%:Q log z k}:2

ok log N(r)
~ logz Z N(r)(N(r) - 1)

N(r)<=z
and this last term tends to 0 as z — oo, since

log N(7)
z‘r: N(r)(N(r) - 1)

converges. (To see this, write the sum as a Stieltjes integral with respect to x(z),
partially integrate and apply (2.3).) Hence

Z log ( ) = loglog z + ~ + log Res(¢_s, 1) + o(1).
N(r)<z N( )

Now, let ¢ be an Axiom A flow and let f, f1,..., fp,...,fg be as in
Propositions 2 and 3. By (2.1) and (2.2)
1 1 Res(¢,, 1)
log ( ) - log (———_——)——» log "t
N(Z):< — N(r)-1 %(:r)gz 1-N(r)-1 Res(g 7,1)
r a p-orbit r a of_orbit

as z — oo and so for closed ¢-orbits we also have

Z log< N() ) loglog z + v + log Res(¢y, 1) + 0(1).  (3.2)

N(r)<z

Now note

0< Z log( A}(T) ) Z %

N(r)<z N(r)<z

= N ()™

N(r)<z k=2
1

< 2 WO -1

N(7)<z
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It is easy to see, by the same argument as above, that this last sum converges as

2 {l°g (1 = J\;(r)—1> B Ntr)}

N(r)<z

z — oo and, since

is increasing, this ensures the convergence of

Z {log (1 - 1\}(7)“1) B Ntr)} (3:3)

T

As an immediate consequence of (3.2) and (3.3) we have the following theo-
rem.

Theorem 1. For an Axiom A flow @ (restricted to a non-trivial basic set)

I1 <1 N Ntr)) - Res(gi,_Z) log

N(r)<z

and

1
Z —— =loglogz + B + o(1)
N(r)<=z N(T)

where the constant B is given by

B =y +logRes(5,,1) — > {k’g (1 . ;(7)4) - Ntf)}

T

Remarks. (i) Since this paper was first written, Mark Pollicott has pointed out to
the author that, in the weak-mixing case, a considerably shorter but non-elementary
proof of Theorem 1 is possible using a complex Tauberian theorem due to Agmon
[2]. To apply this result one needs the additional information that if ¢ is weak-
mixing then, apart from the simple pole at s = 1, ¢,(s) is analytic and non-zero
in a neighbourhood of Re(s) > 1 [12]. An advantage of this approach is that
it sharpens the error term in the expression for Xy (r)<z1/N(r) from o(1) to
o(1/log z). This comment also applies to the results in the next two sections.

(ii) As we noted in section 2, for a weak-mixing Axiom A flow,
m(z) ~z/logz ~liz
where

. = 1
hx_HEdt
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It is interesting to have information about the error term in this theorem, i.e.
U(z) = n(z) — liz. It is known that for the geodesic flow on a manifold of
constant negative curvature, ¥(z) = O(z*) for some 0 < o < 1 [9]. On
the other hand, for a suspended flow with the suspending function depending on
only finitely many coordinates this can never be the case [14]. Our result has
some bearing on the average behaviour of ¥(z). We have, using the fact that
liz = z/log z + O(z/(log )?),

Z_ﬁ:/z Lan(t) = +/ ) 4

z zo( t) 1
= ——=dt+ O
2 tlogt +/ T (logm)

loglogn:Jr-/ +O<——1—>
log =

(modulo a constant) and comparing this with our result reveals that
/ ()
2 2

(iii) The asymptotic formulae of Theorem 1 also hold for an Axiom A diffeomor-

converges.

phism . To see this consider the time-1 suspension flow. Then N (r) has the
same value whether 7 is regarded as a closed orbit of the diffeomorphism or of
the flow. The function ¢,(s) is defined by ¢,(s) = ¢(e=**) where ¢(2) is the
usual Artin-Mazur zeta function for ¢:

¢(2) = exp Z -zr—l— card{z:¢"z =z}

n=1

We now turn our attention to the situation considered by Parry and Pollicott
in [13]. Let ¢: M — M be an Axiom A flow and let G be a finite group of
diffeomorphisms which acts freely on M and commutes with @. This gives rise
to a flow ¢ on the quotient manifold M = M /G, defined by ;(Gz) = G (p:z).
It can be shown that ¢ is also an Axiom A flow. We shall suppose that Aisa
(non-trivial) basic set for o, then A = K/G is a basic set for . As usual, we
shall consider @, ¢ restricted to A A respectively.

For any closed -orbit, 7, let 71,... ,7, be the closed @-orbits which lie
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above 7. Then n||G| and

A = 8

n

A(r), 1=1,.. %

For each #; there exists a unique Frobenius element [7;] € G such that [f;]z =
Pa(r)z for every z € 7. If g7; = 7;,9 € G then [7j] = g[F;]g~! so that the
Frobenius class, the conjugacy class of [7;] depends only on 7.

Choose ¢ € G and let C = C(g) be its conjugacy class. Let R, be an
irreducible representation of G with irreducible character y, and define

L(s,x) = ITIdet (I— ff—’zg—b_l

where Ry (7) = Ry([7]) for any 7 lying above r. This product converges for
Re(s) > 1. Clearly, if xo denotes the trivial character, L(s, x0) = ¢,(s). On the

other hand, if x # xo, then L(s, x) is analytic in a neighbourhood of Re(s) =1
[13].

By the orthogonality relation for characters and (3.2)

) 1og<1_N( )= = % ine

N(r)<z N(r)<z k=1
[7leC [71eC
[d
:lal Z Z N(
N(r)<z k=1
L el ) x([F
+3 T 3 3 Mgy
XF#Xo N(r)<:r,k 1
_lel . . |
g o g gy e Reslsen )

lCI Z x(97 ") log L(1, x) + o(1).
X#Xo

Hence we have:

Corollary 1.

H (1 1 ) e (ICI/IG)y
N(r)<z N(r)) ~ A(logz)ICI/IG]
[71eC
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where

c1/16]
A = Res(g,, 1)/€1/161 { II e”X(g_l)L(l,x)}

XFXo
and
1 _[C]
— loglog z + constant + o(1
o, ¥ el )
[7leC

(This last formula is deduced in the same way as in Theorem 1.)

4. Non-compact quotients

Let Ht denote the upper half plane {z + iy € C:y > 0} equipped with
the Poincaré metric ds?> = (dz? + dy?)/y®. Let T be a discrete subgroup
of PSL(2,R), then T acts on H* as linear fractional transformations, z —
(az + b)/(cz + d), and these transformations are isometries of H* with respect
to the Poincaré metric. The surface S is the quotient space H /T'. With respect
to the induced metric, this surface has curvature —1.

Let T1S be the unit tangent bundle of S and let ¢ be the geodesic flow on
T1S, i.e. for (z,v) € T1S, pt(z,v) is the point reached by starting at (z; v) and
flowing for time ¢ along the unique unit-speed geodesic through z in the direction
v. Such flows have h(y) = 1. There is an exact correspondence between closed
geodesics on S and closed ¢-orbits. We define the norm of a closed geodesic 7
of length A(r) to be N(7) = €*") and define

se(s) = [I(t - N(r)=)~™.

T

If S is compact then ¢ satisfies Axiom A and the analysis of the previous section
applies (with ¢r(s) = ¢,(s)). We now consider the case where S is not compact
but has finite area (with respect to the Riemann measure). It remains true in this
situation that ¢r(s) is analytic and non-zero for Re(s) > 1 with a simple pole at
s=1.

Let A be the Laplace-Beltrami operator on S, and let

3
0<A1§A2§. AS—‘R
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be the discrete eigenvalues of —A in [0,3/16]. Write

1 1 .
=3 +\G-N) =1k,

so that 1 < a; < 1. We have the following result.

Proposition 4. (Sarnak and Woo, cf. [16].) Let 7(z) denote the number of
closed geodesics 7 on S with N(r) < z, then

n(z) =liz+1liz* + ...+ liz% + O(z*/*(log z)?).
Since li z = z/log z 4+ O(z/(log z)?%), we have
7(z) = z/log z + O(z/(log z)?). (4.1)

Theorem 2. For a non-compact, finite area surface of constant negative
curvature S = H* /T, we have

1 1
> 'N—(T)-—10g108x+B+O< >

N(r)<z log z

B constant, and

H <1 - Ntr)) - Res(g:,—:)log:z:'

N(r)<z

Proof. Let Np be the norm of the shortest geodesic on M. Then

Z N}r) :/x %dﬂ-(t)

N(r)<z Ny

= x(t), | 7(z)
=y, B
0

2 xw(t)—t/logt
12

= log log z — log log Ny +

By (4.1),

/’ w(t)—t/logtdt:/w r(t)—t/logth_O( 1 )

No 12 No 12 log z
and 7(z)/z = O(1/ log ), so we have

1 1
——:loglogz+B+O( >
N(Zr):gz N(r) log z
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where

B [~ 7(t) —t/logt
t2

No

dt —

loglog Ny.

By the same argument as in the previous section, the series

Z{log (1 = ﬁ) +

T

is convergent, with sum F' say. Hence

log H (1 - N—t1—_—)-> = —loglogz — B+ F + o(1)

N(r)<z

el

and so to deduce the result we only need to show that

F — B = —~ —log Res(¢r, 1).

We shall use the fact that

of = —/ e “log udu.
0

If § > 0 it is easy to see that

0 < —log(L - N(r)""*) = N(r)~~* < %N(r)‘l(N(r) —1)L

Hence the series
F(6) =3 {log (1= M) 77) + M) )

converges uniformly for all § > 0 and so F(§) — F(0) = F as § — 0.

Now suppose § > 0. Then
F(6) = G(6) — log¢r(1+6)

where

Write

L(z)= )

Then

G(8) =) N(r)*7%.

N(n)<z (7)

Y Ny P =2fL(z) +6
N(r)<z

—— =loglogz + B+ E(z), E(z):O<

z
/ t~ 10 L(t)dt
No

1
log z

223
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If we let £ — oo,z ° L(z) — 0, so
G(6) = 5/ t~ 10 L(t)dt
No
-5 / t-1%(log log t + B)dt + 6 / 18 B(t)dt.
No NO

Put t = €%/®, Then

5/ t™ 1% loglogtdt = / e !log(u/8)du = — — log §
1 0

and -
5/ 10 = 1.
1

Hence
o Ny

G(5) 4+ Jog5— B+ ry= 5/N t=1-0 B(t)dt 5f t-1(log log ¢ + b)dt.
; 1

Now if T' = exp(1//5),

! / ¢1- "E(t)dt' < const. & [ 1dt 4 S8 [ 1y,
No No logT Jr
-5
< const. §logT + const.
log T
< const.\/g+ const. e_\/E\/'g —0 as 6 —0.
Also,
No
6/ t~1"%(loglogt + B)dt| <
1
No
< 5/ t~!(|loglogt| + |B|)dt — 0 as & — 0.
1
Hence
G(6)+1logé > B—v as 6§ — 0,
but
log¢r(1+ 6) +logé — log Res(¢r,1) as 6§ — 0,
)

F(8) » B~ —logRes(sr,1), ie. F =B —~v—logRes(sr,1)

and the proof is complete.

Remark. The above proof was inspired by [8], pp. 349-353.
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Now suppose that W = H* /T'(W) and S = Ht /T'(S), where T'(W), T'(S)
are discrete co-finite area subgroups of PSL(2, R), with I'(W) a normal subgroup
of I'(S) such that G = T'(S)/T(W) is finite. Then S is the quotient of W by
the group G and a result analogous to Corollary 1 holds. As in the Axiom A
case, lying above each closed geodesic 7 in S there are a finite number of closed
geodesics 7q,... ,7, in W. As before, each 7; gives rise to a unique Frobenius
element [7;] € G, the conjugacy class of which depends only on 7. If n = |G|
then we say that 7 splits completely. This is the case if and only if [7;] is the
identity, 1 <1 < n.

Once again let R, be an irreducible representation of G with irreducible
character y and define

L(s,x) = H det < ]\;’(((SL)>

where 7 lies over 7. If xo denotes the trivial character, then L(s, x) = ¢p(s)(s)
and for x # xo, L(s, x) is analytic in a neighbourhood of s = 1. Applying the
analysis of Section 3, we obtain the following.

Corollary 2. Let g € G and C = C(g) be its conjugacy class, then

1 e~ (CI/1G)Y
I1 (1 N (r)) ™ "A(log z)ICI/IC]

N(7)<z
[F1eC
where
IC1/IG|
A = Res(r(s),1) 'C'/'G'{ II e ~x(e7) ,X)}
X#Xo
and

Z = I 1] loglogz + constant +o(1).
2. N0 el

[71eC

5. The modular surface and quadratic forms

A classical example of a non-compact, finite area surface of constant negative
curvature is the modular surface, H* /T' where T' = PSL(2,Z). (In fact its area
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is 272 /3.) We shall now describe the elegant relationship between geodesics on
the modular surface and quadratic forms (cf. Sarnak [16]).

We consider quadratic forms that are primitive and indefinite, for example
Q(z,y) = az? + bzy + cy?

where (a, b,c) = 1 and the discriminant d = b% — 4ac satisfies d > 0,d = 0,1
(mod 4) and is not a perfect square. Denote the set of such d by D. Two
such forms @, Q" are called equivalent if we can transform one to the other by a

substitution
' =az+ Py

y =z + by
where o, 8,v,6 € Z and ad — S~ = 1. This relation partitions forms into classes
and it is clear that two forms from the same class have the same discriminant.
Gauss showed that the number of classes with a given discriminant d > 0 is finite,
this number is denoted by h(d) [7].

The substitutions which preserve @Q are called the automorphs of Q. All the
automorphs of @ may be written in terms of solutions of Pell’s equation

t?—du’=4, tuei, (t,u) # (0,0)

by choosing i
a:E(t—bu) B=—cu

~¥=au 5:%(t+bu).

Let (to,uo0) be the solution for which g4 = %(to + uO\/E) is least, then all
solutions (¢, u) are generated by

1
§(t+u\/c§):€3, nelz.

In [7] Gauss noticed that

> x253/2
h(d)logeg = + O(zlog z)
icD 18¢(3)

<z

(here ¢(s) is the Riemann zeta function) and this was later proved by Siegel [18].
One would like to be able to separate the quantities h(d) and log e4 to obtain an
asymptotic formula for X 4ep 4<h(d), but this appears to be difficult and remains
an unsolved problem. However, using the next proposition, Sarnak obtained an
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asymptotic expression for h(d) summed over the sets D, = {d € D:eq < z}
[16].

Proposition S. There is a bijection between closed geodesics on the modular
surface and equivalence classes of quadratic forms. Furthermore a closed
geodesic corresponding to an equivalent class with discriminant d has length
2logey.

Applying this correspondence to Proposition 4 and using the fact that the
Laplace-Beltrami operator on the modular surface has no eigenvalues in [0, 3/ 16],
Sarnak obtained

Z h(d) =li(z*) + O (x3/2(log z)z) !

deDg

Remark. The function d — &4 seems fairly irregular and nothing much better
than V/d < e, < €? is known.

We now combine Proposition 5 with the results described in Theorem 2 to
give two new asymptotic formulae involving h(d) and eg4.

Proposition 6.
e~

h(d)
1-¢;2 ~
dg, ( €d ) 2Res(¢r,1) log

and

1
>~ h(d)e;* =loglogz + constant +O (l ) .
deDy g

Let p > 3 be a prime and let I'(p) be the principal congruence subgroup of
T of level p, i.e.

ro={(2 erfz Y =[¢ omen)

The surface H* /T ?Lis a finite regular covering of H* /T and the covering group
G = T/T(p) ~ PSL(2,Z/pz). In this situation a geodesic on H* /T splits
completely if and only if d € D, = {d € D:p |up} (where g4 = %(to, uO\/E)).
Applying Corollary 2 and noting that
2
IG l - (P : l)p’
we have:
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Corollary 3.
e—27/p(p*-1)

h(d)
H (1“552) ~ Aal/p(p2-1 2/p(p2-1
4EDp 2 A41/p(p%- )(log:c) /p(p2-1)

where Dy, = {d € Dp:eq < z},

2/p(p*-1)
A = Res(gr, 1)Y/P@ -0 [ e 4™xL(1,x)
X#Xo
(the product being taken over all non-trivial irreducible characters of
PSL(2,2/pZ) and

2
Z h(d)s:‘;2 = ———— loglog z + constant o(1).
dEDp,:t p(p N 2)

Remark. Similar results may be obtained for quadratic forms over the ring of
integers in Q(v/—D) where D € Z is positive and square free by means of
the correspondence between equivalence classes of such forms and geodesic on
certain arithmetic three manifolds (Sarnak [17]).
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