On isometric immersions of riemannian manifolds

by
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1. It has been long known that given two quadratic forms in an
open set U = R? which satisfy the Gauss and Codazzi-Mainard equa-
tions, there exists 4 unique local immersion f : V< U — R3, with the
prescribed forms as induced metric and second fundamental form,
The first proof of this fact was given by Ossian Bonnet [2] as early
as 1867.

With the advent of multi-dimensional geometry, in the beginning
of this century, it became natural to observe that a similar fact holds
for immersions with arbitrary codimension, The only new fact is that,
besides the induced metric and the second fundamental forms, another
assumption should be added, which has to do with the induced connec-
tion in the normal bundle. This however introduces some technicalities
in the statement and proof of the general result and accounts for dif-
ferent presentations (see [1], [3], [5], [6]) of a theorem, which is otherwi-
se simple and should find its way in courses on Riemannian Geometry.

In this note we present a detailed and elementary proof of this
theorem, which uses essentially the theorem of Frobenius, It requires
only elementary notions of Riemannian Geometry (§8 and §9 of [4],
for example) and a certain knowledge of differential forms. The idea
of the proof is essentially due to E. Cartan.

In section 2 we obtain necessary conditions to the existence of
an isometric immersion of a Riemannian n-manifold M in Euclidean
space R"*k
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In section 3 we prove that the necessary conditions are also suf-
ficient for the existence of a local isometricimmersion f : Uc M — R"*¥
which is unique up to a rigid motion. The proof depends on two lemmas
proved in the same section. Finally we remark that if M is a simply
connected Riemannian manifold, the local immersion can be extended
to M.

I am grateful to Prof. Manfredo Perdigdo do Carmo for helpful
conversations and comments on this paper, and to Rubens Ledo for
his critical reading and suggestions.

2. Let M be a Riemannian n-manifold and f: M — R"**k an
isometric immersion of M into euclidean space R"** If E is the normal
bundle of the immersion, then E has a bundle metric induced from the
usual metric in R"** Moreover if T is the tangent bundle of M, we
can define a connection D : T® E — E and a second fundamental
form S: T® E — T by projecting the usual connection D in ‘R"*¥
onto the normal and tangent spaces of M respectively, i.e.

(1) DyN = (DxN)"
and
(2) SxN o (BXN)T

where Xe T and NeE.

The connection D is compatible with the bundle metric and S
is self adjoint. In fact
(DxN, N') + (N, DxN') = (DxN)", N') + (N, (DxN'\") =
= (DxN,N') + (N, DyN') =
3) = X(N,N),

and
(SxN, Y)— (X, SyN) = (DyN, Y)— (X, DyN) =
= X(N, Y)~(N: DyY)< Y(X,N) + (N, DyX) =
4 =-(N,[X,Y]) =0,
where we used the symmetry of D.
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We define the second fundamental tensor associated with S to
be the homomorphism B:T® T — E given by

©) (B(X, Y), N) = (SxkN, Y).
From (5) we can see that

(©6) B(X,Y) =~ (DxY)".

In fact

(B(X9 Y)s N) = (SXN’ Y) = (BXNa Y) -
=—(N,DyY) + X(N, Y) = —(N, Dy Y)").
If we denote the Riemannian curvature tensor by R, we know that
(7 R(X,Y)Z =VyVyZ -V \VyZ -V iy /2,

where X, Y, Ze Tand V is the symmetric connection, compatible with
the Riemannian metric on M. We define R, the curvature of E re-
lative to D, by the equation

®) R(X, Y)N = DyDyN - DyDyN - Dx yN,

where X, Ye Tand N € E. With this notation, we get the Gauss equations
) R(X,Y)Z = SyB(Y, Z)- SyB(X, Z)

and

(10) R(X, Y)N = B(X, SyN)- B(SxN, Y)

and the Codazzi-Mainard equation
(11) VxSyN —VySyN - Sx ;N = SyDyN —SyDyN.
In fact, we know that

0 = DyDyZ - DyDyZ - Dx v,Z,
hence
0 = Dx((Dy2)" + (DyZ)")- Dy(DxZ)" +

& (EXZ)N) e (l—)[x, Y]Z)T % (ﬁ[x, Y]Z)N =

= Dy(DyZ)" + Dx(DyZ)" - Dy(DxZ)" -

P EY(BXZ)T o I_)[x, Y]Z)T R (D[x, nZ)N o

= Dx(Dy2)")" + (Dx(DyZ)")* + (Dx(DyZ)")" +

+ (Dx(DyZ)*)" - (Dy (DxZ)")" - (Dy (DX Z)")" -
(12) —(Dy(DxZ)*)" - (Dy(DxZ)"Y" - (D, 12" - (Dix v, 2)".
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If X,Y,ZeT, we use (2), (6) and the fact that
(13) VY = (DyY)"
in the tangencial component of (12) and we get
0 =VyVyZ-SyB(Y,Z)-VyVxZ + SyB(X, Z)-Vix v,Z,
which is the Gauss equation (9).
If X,YeTand Z = NeE, using (1), (2) and (13) in the

tangencial component of (12) we get the Codazzi-Mainard equation;
and using (1), (2) and (6) in the normal component of (12) we get

0 =-B(X, SyN) + DyDyN + B(Y,SxN)—DyDyN — Dx y\N,

which is the Gauss equation (10).

Therefore, we proved that if the Riemannian manifold M is iso-

metrically immersed in R"**, then there is a k-plane bundle E over M
with an induced structure for which the Gauss and Codazzi-Mainard
equations hold. We will prove that this condition is also sufficient for
the existence of such immersion locally.

3. Let E be a k-plane bundle over M equipped with a bundle metric
and a compatible connection D. We define a second fundamental form S
in E to be a homomorphism S : T® E — T satisfying (4), and the
second fundamental tensor B associated with S to be the homomorphism
B:T® T— E defined by (5). (We will use the same notation () for
the bundle metric, the Riemannian metric on M and the usual metric
in Rn+k).

Theorem: Let M be a Riemannian n-manifold and E a k-plane
bundle over M equipped with a bundle metric and a compatible con-
nection D. Let S be a second fundamental form in E and B the associated
second fundamental tensor. Then if the Gauss and Codazzi-Mainard
equations (9), (10), (11) are satisfied, there is a local isometric immersion
f:VeM—R"  in a such way that we may identify the normal
bundle of the immersion with the bundle E. Then the metric induced
on the normal bundle coincides with the given bundle metric on E,
and the second fundamental form and the connection of the immersion
coincide with S and D respectively. Moreover the immersion is unique
up to a rigid motion.

In order to prove this theorem we need the following lemmas.
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Lemma 1. Let M be a Riemannian n-manifold and E a k-plane
bundle over M equipped with a bundle metric and a compatible con-
nection.D. Let S be a second fundamental form in E and B its associated
second fundamental tensor. Assume that the Gauss and Codazzi-Mai-
nard equations (9), (10), (11) are satisfied. Then there exist differential
I-forms w; and wj,i=1,...,n; a,b =1,... n + k, defined locally in
M, satisfying the following conditions:

(14) wh =—w,
15) dw; =ij MWL pl=13. ¥ n,
J
(16) Wi =Y wAwy, ‘c=1..,n+k

Proof. We will make use of the following convention on the ranges
of indices:

1<ab,c,d<n+k,
1Si7j’l’s’tsn’
n+1<opBy<n+k,

and we shall agree that repeated indices are summed over the respective
ranges.

Let U be a coordinate neighborhood in M. Choose a frame field
d,...,0" in U such that (9',8’) = 6". Let {w;} be the dual coframe of
&', ie., wy(?) =6/ and define w, (') = 0.

In order to get the other differential forms we choose an ortho-

normal frame Y"*! . . Y"** in U x R*< E, and we define
17) Wi(@Y) = (Vad, &)
(18) W, (%) = (S Y*, 0Y)
(19) w;(@i) =D, Y% ¥F)
wi=—wl

where V is the Riemannian connection of M.

Since D is compatible with the bundle metric, we have w§ = —w# ;
similarly from the fact that V is compatible with the Riemannian metric
we get wi = —w/; and by definition w? = —w’. Hence w§ = —w? and
wi =0.
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It remains to prove equations (15) and (16). In order to prove
equation (15) we remark that equation (17) is equivalent to

(20) V,:0' = wj(0")d".
Moreover we can see that
(21) 0" = widHdl. .
Since V is symmetric, i.e.,
V0 = Vo' = [0, 07],
we obtain from (21)
Vo w090~ Vo wi@)0" = w,[ &, 07"
Using the fact that a connection is a derivation and (20) we get
(0 w(&) = 0w ((0") — w[&', 07])0" + (w(@’)wi(0') — w (0 WH(@P))o* = O,
which is equivalent to
dw (0", 07)0" = (w(0)Wy(0”) — w{(&')wi(0)",

or
dw, =Y w, AW,
s

Next we will prove that equation (16) holds, This will follow from
the Gauss and Codazzi-Mainard equations. But first we remark that
(18) and (19) are respectively equivalent to

(22) SuY® =) wi(d))o!
J

and

23) Dy Y* = wi(@)Y?,

Moreover using (4) and (5) we get

(24) w(07) = wi(d")
and
(25) B(@', 0%) = wi(d")Y*,
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Now consider Gauss equation (9)
R(0', 0)0" = S;B(0’, 0" — Sy B(&', "),
and use (25) to obtain
R(0', 09)0" = Su(Wi(0)Y?) - Sy(W- (D) Y*).
From the fact that S satisfies (22), it follows
R(@, 00" = Y. () wh(@Wi(@°) - Y, wh(@)wi(6°))o*

which, according to (24), is equivalent to

R(@, 090" =) (), wi(@)wy(d') - . wh(@)ws(@))o° =
==Y O wh Aw(@, 090",

Hence

(26) R(@, 30" = (W', AW, 09))0".

On the other hand, R satisfies equation (7), i.e.,
R(&, 00" = VuiV;;0' - V,V5:0' — Vigi 550"

Using (20) and the fact that V is a derivation, we have that

R(&', 070" = (0'(wi(07)) — D(wy(0Y) — wi([ ', &']))o° +
+ (W(O)Wd) — wi(@)wy(@)o' =
= (dw' (', 0) 0° + (WS A W (', 0) 0" =
(@w! (0', ) &* + (W' A Wi (0", 09) 0°.

Hence,

27 R(9, 090" = (@w{(@', ) - w; wy(@', )"

Comparing expressions (26) and (27) we obtain

WA W2 =dwt—w An
a S s t s

or
(28) awl = wh A we,

Similarly, if we take Gauss equation (10) and expression (8) we get
(29) dwy = w; Awj.
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This follows from (4), (5), (23), (24) and from the fact that
B(@, Sy Y?) = ¥, wi(@wi(@)Y".
1

If we take the Codazzi-Mainard equation (11) we obtain
(30) dw, = wy A w,
which follows from (20), (22),...,(25) and the fact that
S[ai, & Yk — \Vi([ai, aj])al

Equation (16) follows from (28), (29) and (30). This concludes the
proof of lemma 1.

‘ Lemma 2. Let w; and w{ be differential 1-forms defined on a manifold

M of dimension n satisfying (14), (15) and (16). Then there exist an
orthogonal matrix A = (A7) of functions defined on a neighborhood
V of a point ge M, and a map f: V— R"** such that

(31) W=dA-'A,
(32) df =w- A,
where W represents the matrix (w§), w = (w;,...,w,,0,...,0) and ‘4

. ; k
is the transpose matrix of A.

Proof. We have to solve the differential equation W= dA-'A,
for a given initial condition A(q,), where A(q,) is an orthogonal matrix.
Let U be a coordinate neighborhood in M, such that q,€U, and y,,
.+ Yy local coordinates in , with g, = (0,...,0). Let z¢ be the standard
coordinate system on R *%*, We may identify the set of n + k byn + k
real matrices with R"*° and hence the set of orthogonal matrices
O(R"*M with a subset of R“*¥’ Let Z be the matrix of functions Z =
= (z3) defined on this subset.

Consider the matrix of 1-forms in U x O(R"*¥)
(33) A g W

We define an n-dimensional distribution in U x O(R"*¥) as follows:
for each (¢,Z)e U x O(R"*¥) we associate

D(g,Z) =ker A , ;,
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We will prove that D actually defines an n-dimensional distribution.
First we remark that for each (g, Z)

Ag 2 ;U x T,OR"™) — T0R"*¥);
in fact if (v, X)e T,U x T,OR"*¥), then

A 420, X)'Z + Z'A, 50, X) =
= ([dZ(X)- W(v)- ZYZ + Z(d'Z(X)-'Z'W(v)) =
= dZ(XYZ + Z d'Z(X)- W(v)-'W(v) = 0,

Last equality follows from (14) and the fact that Z e O(R"**). Now the

linear map A, 7 is onto T,0(R"**), since for each X = X¢ % € T,0R"*%),
b

Ay 20, X) = X. Hence, dim ker Ay z =n

The distribution D is involutive. In fact, if (v; , X;)and (v, , X,) € D(q,
Z), then for each a,b, Aj(v;,X;) =0 and A¥(v,,X,) = 0. From (33),
we have

dA =—dW-Z + WA dZ,
from (16) and (33) we get
AN =-(WAW)Z+WAA+W-2Z)=
=WAaA A
Hence, for each a, b .
Apl(vy, Xy), (v, X,)] = (v, X)A5 (02, X3)— (02, X,)Aj(v, X,)-
—dAG (v, X1), (v2, X,)) = - W2 A Ap(vy, Xy), (02, X5)) = 0.
So [(vy, X)), (v2, X,)] € D(q, Z), and the distribution is integrable.
Given a point (0, Z)e U x O(R"*¥), we claim that D(0,Z) (0 x
x T,0(R"*%) = {0}. In fact, if (0, X) belongs to this intersection, then
A0, X) =dZ(X) = X =0,
By the implicit function theorem, the integral manifold through a
point (0, Z) is locally the graph of a function g — A(g) € O(R"**) with

A(g,) = A(0) = Z. Since Z = A along the graph and D =0 on this
graph, equation (33) gives

dA =W- A
and hence
W=dA-'A.
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From this we get an orthogonal matrix defined on a neighborhood
V, = U of the point g, .

We now solve the differential equation (32), with a given initial
condition f(g, ). The proof is similar to the one above. Let y,,...y,
be the local coordinates in U, with g, = (0,...,0). Let z, be the usual
coordinate system in R"*¥ Z the matrix (z,) and consider the matrix

of 1-forms in V; x R"**
(34) A=dZ-w-A
We define an n-dimensional distribution in ¥, x R"** as follows: for
each pe V; x R"** we associate
D(p) = ker Ap
This distribution is involutive. In fact, from (34) we have
dA = —dwA +w A dA
from (15) and (31) we get
dA =-wA WA+wnA WA=0.

Hence if X, Y € D(p), then [ X, Y] € D(p), and the distribution is integrable.

Given a point g = (0,...,0,z,), D(g) n (0 x R"*¥) = {0}. By the
implicit function theorem the integral manifold through any point

q is locally the graph of a function p — f(p)e R"™* with f(q, ) = f(0) =
=z,. Since Z =fand D =0 on this graph, equation (34) gives

df =w-A.
Hence there exist a map [ :V— R"** where V<V, < U, and an

orthogonal matrix 4 of functions defined on V satisfying (31) and (32).
This concludes the proof of lemma 2.

We now prove our theorem.

Proof. Using lemma 1 we obtain differential forms w; and wj,
defined on a coordinate neighborhood U of M, satisfying equations
(14), (15), (16). From lemma 2, for a given initial condition, we have a
map f : V— R"** and an orthogonal matrix 4 defined on V, such that

W=dA-'A
and
df =w-A
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S1nc1:§: A is a non-singular matrix and, from the proof of lemma 1. w.
are linearly 1ndep§ndent, df'is a one-to-one map, and hence fis an imn’ler-l
sion. Moreover, finduces on V the initial metric, and thus is an isometric

immersion. In fact, if 0',..., 0" is the frame field i
(32) we have that ¢ field in U of lemma 1, from

(@f (@), df (@) = (W@)A, w@)A) = Y Ai 4} = 5V = (&, %),

Next we will identify E with the normal bundle of the immersjon
apd we will show that the metric induced on the normal bundle ccl)' :
cides with the given bundle metric on E. Moreover, we will prove that Illr:-
se'cond fundamental form and the connection of the immersjon coincid:
with § and D respectively. We will define a diffeomorphism, as a linear

extension of f, which will identify locall i
psin b ) y locally E with the normal bundle of

We identify V = U with f(V), and consider th
¥ 5 e ort
¥ Y"F defined e orthonormal system

- .0
Y :ZA“@x“

a

where x',... x"** are the usual coordinates in R"**- ¥* is a normal
vector to f(V). In fact, for each i, df(9') is tangent to f(V) and

Ya d i :/ 2 4 i 0 a fi i
( s f(a)) \Aaaxa’AxW,):ZAaA;:(sal:O_

o If #:E — M is the projection map, and Y"*! Y"*k is the
orthonormal frame in il coardi i
A S b L : f(ﬁf lemmua 1‘,} we choose lsca;l coordinates in

> = .19"'5 ns Vot 1,00, Vygy) Where (u s U
are the -local cpordmates in U and y =y, Y% L'et Y be the( éxtensio’rll
of the immersion f defined as follows:

l//.'VX Rk__)Rn+k

0 (s
49) = 21*W) gga + Lo Fo(w),

1€

)

(35) Vi, ) = fu) + 3 vAG.

Y is a diffeomor.phism onto Y(V x R*¥), since f is a diffeomorphism
onto f(V) and y is a linear extension of f Moreover dy(Y*) = Y*
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The map  induces on T(V x R¥) (tangent space of V x R¥) a
metric which restricted to V coincides with the initial metric. Moreover
the metric induced on the bundle also coincides with the given bundle
metric since dy(Y*) = Y* Hence we identify V x R* with the normal
bundle of the immersion and the metric induced on the normal bundle
coincides with the given bundle metric on E.

Now we will prove that the second fundamental form and the -

connection of the immersion coincide with S and D respectively. We
choose a frame e, ,...,e, ., in a neighborhood of R"** which contains
f(V) as follows:

i el o il Mgl 2 aa.
g =diid).  e.=T ‘%A"axa

We denote the coframe associated to this frame by 6, and the corres-
ponding connection forms by 6 , defined by the equation de, = ) 6 e,.

b
These forms restricted to f(V) are such that 6, =0, and since e, =

= ZA;‘;% we have that
b
(36) 05 = dA: A7

Using f, the forms 6, and 6% will induce forms f*6, and f*6; on V. We
claim that f*, = w, and f*07 = w;. In fact,

f*0,0) = 9,df (&%) = ei(ej) = 5ij = wy(0’)
£%30.,=0.=w,

and
*65(0%) = 03(df (') = B5(e)) = ) dAXe )AL = wi(d)).

In these equalities we used (36) and the identification of A(u) with A(f(u)).

Since the induced forms f*6; and f*@ coincide with w} and wj,
they define the same connection D and the second fundamental form
S in the normal bundle of the immersion by the equations (23) and (22).
This proves the first part of the theorem.

If remains to prove that the local immersion is unique up to a
rigid motion of R"** Let f:V — R"** be another map satisfying
the theorem, and let {e,} be the corresponding frame. If ge V, using
a rigid motion, we can take f(q) onto f(q) and e, onto e, on f(q).
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From the uniqueness of the solutions of the equations (31) and (32),
the frame {e,} coincides with {e,} and the map f coincides with f
in a neighborhood of g. Since V is connected, f=f on ¥V,

Remark: If we make the additional assumption that M is a simply
connected Riemannian manifold, then the local immersion obtained
in the theorem above can be extended to M, and this extension is unique
up to a rigid motion. We consider pe M, p # q.. and a simple curve
o :[0,1] — M joining g, to p-Let {¥;}’_, be a collection of neigh-
borhoods which cover «[0, 1], such that ¥, = V. We can extend f to

C) V;, and hence we get f(p). Since M is simply connected, f(p) is inde-

i~

pendent of the curve a. Thus we have an isometric imersion f : M —»
o . [ 3 :

R*** and we can see from this construction that f is unique up to a

rigid motion.
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