Steady motions of Lagrangian systems

by
W. M. OLIvA.-

Let V,, be a connected smooth manifold with a Riemannian
metric <, >. Consider also on V,, a Pfaffian.# — a smooth differential
form of degree one — and a real smooth function =, called the potential
energy.

By J5 (R, V,,) we denote the manifold of all r-jets (r > 1), at the
origin of the set of real numbers, of functions defined in a neighborhood
of the origin with values on V. The canonical projection p/* ! o o) =
=Jjo @(t) is a smooth fibration map and Jy (R, V,) is precisely the
tangenit bundle of the manifold ¥,,. A second order normal system of
ordinary differential equations on V,, is a map ¢ : J§ (R, V,) > J3(R,V,)
such that p? o ¢ = id JJ. A solution of ¢ is a smooth map ¢ :te(a,b) —»
— ¢(t)e V,, which verifies the following condition : for each te(a,b)
the 2-jet at © =0 of ¢(r + 1) belongs to o(J} (R, V).

Suppose it is given now a real-valued smooth function F defired
onanopenset W*of Ji (R, V,),s > 0(here one needs to define JY(R, V)=

=V, and p§ (J§ 9(t) = @(0)e ¥,). Tt is possible to define the total
derivative F = [lelt: which is a real smooth function on ikl Wl e
< J5" (R, V). Let X =j5*1¢ be an element of (3™~ W and o(t)

one representative of X. Consider the composite map F.j; where f

is the function ¢~ j_, o(t + 1) defined in the neighborhood of zero.
By definition

Fo0 =00 = L )
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It is also useful to see that in local admissible coordinates of (pS*™ 1)~ W*
one has:

dF_OF , OF . OF .,
at o, 1T o, Y @ b
In particular, when s =0,
dF_OF
dt — 0q; 4
On the manifold J} (R, V,,) it is defined the Lagrangian function
L:JS(R,V,)» R, L=Ly+ L, + T,, where

Lo(jo9) = —n. pslioe) = —n(@(0)),
L,(js ¢) = (¢(0)),
T,(j5 @) = 3 <¢(0), ¢(0) -

The Pfaffian locally given in admissible coordinates by

B I C S IR A
@1 = ar\aq;) " aq; |V

is globally defined on J3 (R, V,) (see [2] for a proof). We know that
the dynamical system defined by w; = 0 is given locally by the Lagran-
gian equations ([1], [2]):

d (oL ek : ‘
E<%>_5q_j_0, Ti=al 2

and the local representation of L =Ly, + L; + T, is:
Lo(js @) = Lo(q, 9) = —(¢(0)) = —n(q);
; : e
Ly(o @) =% (¢(0) =¢ (qj 55) ;
J

F =F(qy,...,q, then

and if # = b, dg; one has L,(js ¢) = b;qg; and finally ifa;(q) = <56q_ , gq—>

' e I ;

T,(js ¢) = <‘1i‘521? Qj%> =4;4; <6iq,’ 527> = %aijqiqj’(m the last
expressions we omit the summation sign). The function T, is called the
kinetic energy, L, is the friction energy and V = —x is the potential func-
tion. Since T, is positive definite in the velocities it is easy to see that
the dynamical system @, = 0 given locally by the Lagrangian equations
defines a second order normal system of ordinary differertial equa-
tions on V,,.

38

A non-holonomic constraint on V,, is a smooth non-involutive dis-
tribution M of contact elements M, at each point x e V,,. The contact
element M, is a subspace of the tangent space T,(V,,), aad the dimension
of M, does not depend on the point x. If the dimension is (m-p) we
know that each point x has a neighborhood U, and p smooth Pfaffian
forms @',...,w? linearly independent at each point of U,. The set
of all one-jets j} ¢ such that @(0)e M o(0) 18 a regularly embedded sub-
manifold S(M) = J§(R, V,,). In fact, if U, is a coordinate neighborhood,

‘the expressions of the Pfaffian forms o* are:

o' =A,;dq;; p=12,...,p;

and a jet j; @ of (p5)~! U, with admissible coordinates (g;, §;) belorgs
to S(M) if, and only if, A,;4; =0; p = 1,2,..., p. But the matrix (Ay))
has maximum rank p, then, it is possible, up to a permutation of the
coordinates ¢, ,...,q,,, to write

qv =F"(q1 sere9ms qP+1 5"‘5qm)’ P 1,25---;1’;

and this proves the following:

Proposition 1. The set S(M) is a regularly embedded submanifold
of the marifold Ji(R,V,) with dimension m + (m—p). S(M) is called
the manifold of constraints and is a vector bundle over V,,.

Given a smooth vector field 8 on V,, it is possible to extend it to
the manifolds JY(R, V,) and J3(R,V,). If the local expression of 6 is

0= M,-%, the corresponding local expressions of the extentions 6!
and 6* in admissible coordinates are
0 =%yl 0 .0 =5 1 6)
| o — g wm— 2 = o — g — a. i ®
0t =M; 2, + M; 7, and 6% = M; 7, + M; 7, + M; 3

It is a simple matter to define 6! and 62 globally or to verify that those
local formulae are coerent by changing of admissible coordinates.
The Lagrangian multipliers. We reach, locally, for functions:

Aiseiishy:Qc IR, V,) > R
such that the system of ordinary and Pfaffian equations given by:

) o, — A" =0

o*(90) =0, p=12,...,p

has existence and uniqueness of solutions. We will prove the following:
Theorem 1. There exists a urique sequence of functions 4, ,.%.,4,

such that for each point of the manifold S(M) we have a unique solu-

tion of system (1) and this solution remains on S(M) for all time.
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Proof: The mixed system (1) is locally a system of m + p equations
in the m + p unknown quantities g;jand 4,,j = 1,2,...,m,p = 1,2,...,p
d oL 0L

@) ookt ot i 1. A

N e e

(3) A‘”'quo,' ﬂ=1,2,...,p.
and the initial condition must satisfy (3)
The holonomic prolongation of S(M) is the submanifold P(S(M)) of
J3(R,V,) with dimension 3m—2p defined locally by the equations:

3) A,;4;=0;, pn=12,...,p
dsjpony irfigardelys 1
@ FAu) =0=Aud+ 4 w=12...p

P(S(M)) is precisely the manifold P(S(M)) = J§(R, S(M)) n J3(R, V,). If
a solution satisfies (3) then it satisfies (4); but, conversely, if it satisfies
(4) and for t = ¢, satisfies (3) then it satisfies (3) for all time. On the
other hand the equation (2) can be written in the form

0L oL
1 e Lol o S A #: il
(2) ajqu+aqkaqj 9k aqj }-‘;A,q: J 132,-'-am-
If (B,)) is the inverse of the matrix (aj) one obtains
AR Ly N
(5) = B A‘” /1” + Br] [a—%—mqk]

and if we put g, in (4) we get:

AL el J dAv;
+

it o _
dq; aqkaqjqk ;T 0,y =1,2,..,p

(6) (Avr Brj Auj)/lu o Avr Brj|:

Since (B,;) is positive definite it can be proved that the pxp matrix
(A,, B, A, is non singular. Then the above system (6) with p equations
leaves the unknown quantities 4, , ..., 4, uniquely determined. But (6)
shows that the 4, depend only on L and on the Pfaffians 0?, ..., w?.
The uriqueness of the functions 4,, ..., 4, is proved. On the other
hand, the expression (6) proves the existence of the 1,, locally. The
geometrical meaning of Theorem 1 is the existence of a global cross
section

7 :S(M) —» P(S(M))
with respect to p? ; to each X, € S(M) one can associate the jet 1(X,) =
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= j§ ¢ (1) where 9(¢) is the solution considered in the theorem. It is obvious
that ©(X,) c P(S(M)), pi ©1(X,) = X, and 7 is smooth, Since the equality
oy, = 4, @" holds on 7(S(M)) = P(S(M)), one obtains t* o, = 4, 0" on
S(M) and then, the Pfaffian 4, w* can be globally defined on the mani-
fold S(M); moreover, the functlons 4, have the same domain on S(M)
as the forms w*. If the Pfaffian forms " are globally defined on V,,
the functions A, are globally defined on S(M).

The mixed system (1) is called a non-holonomic system if the distri-
bution M is a non-holonomic constraint. If M is involutive, that is,
if for it holds the theorem of Frobenius, the system (1) is called semi-
holonomic. Finally, if the Pfaffian forms " are identically zero (dimen-
sion of M = m) the system (1) is called a holonomic system.

In the sequel we will suppose that the w* are globally defined on
the manifold V,,.

The manifold Z of the zero velocities is the submanifold of Jo(R,V,)
of the one-jets of constant functions; the projection p} is a diffeomor-
phism betweenn Z and V,,. Let us call a, the restriction of 4, to the
manifold Z; the a, can be given, locally, by

on

(7 (A, B,; A, ) o, — A, B”a =0; v=12,...,p

It is a simple matter to show that the «, can be considered functions
onV,.
Consider now the functions f, locally given by

aLl 62 Ll
®) (A, B,;Ay) By + A"B”[ 6a;  dav0d;"

':|—0; v =112 D,

where L; = b;q; is the friction energy. The B, is precisely the part of
the A, which is linear in the velocities:

ob, 0b; | .
(A\'r Brj Auj) Bu S Avr Brj I:Tq:_a_qi] qr = 0.

In a coordinate neighborhood of V,, one has the local Pfaffian forms
B, given by
ob, 0b

(AinBrgAg) B, 4 Ay B, (a—q;‘—a—q;) dq..=0.
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If B, =E,;dq; and B, = E,;dg;, to prove that the B, are globally

defined we need to show that

i aq
E,;= Euka—qf'
0 ob;
But (A,,B,; A, ) E,; dq, + A,, B,; <%_55i> dg, = 0.
.
-or
L ob, 0b;
(9) (Avr Brj Auj) Euk ik Avr Brj (a—qk_a—qi> =0.
J

In the intersection of two coordinate neigborhoods one has:

Avj i /I aqk = e aqm aqn

6Qk aqs
vk A > Ay = == = Oie = .
* 9q; 0,0,

dq, 0q;

and B,

the last one because

Then the equalities (9) give:

Ut giggr. (4 O ; 0% o (b 8b)\ _
Aviaqr BrjAus aqj Euk+Aviaqr Brj aqj a—qk =0.

and then

%1 e 7 9% .09, 0q; 5 (0b, 0b;\ _
A A BE,+ A, B 55, B 0q; 0qy T

2 aqs abk %3 aBs aZIS l—) 62 c_ls

=b ’ - T s
sl i * 0qy a‘Ij aqj 0q; 0qy a‘Ij
and (%_@L> il 61_73 . aqs ol al;s i aqs .
0q; 0q) 0Oq; Oqy 0q, 0q;
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an aq - aq}c aQS aqm 6qn
paildsep, ey ; 3 Buolb g =6
[aq, dq; Bri |8 =| 3, dq; || oa, g, * "'

rjs

: b tiad. - 0q; = (0b, dg, 0b, 0q 1A N
g . k) (R ENILLS )i () S O
Finally AWA‘,SB,SE,,,C+AVIa B <6qj 6q,f s A,; A B E+

i Dg,fob, -8g; . 8B, 8
+Ale"|—_L LA S_ B . S
0q,, <6q,~ 0q,  Oq; 0q;

oqy.
aq,
1.4 B.E. %% 7 5 % %(%, 04, 0b, 03, _
AviAusBisEuk aqr +AviBin aqn aqr aqj aqk aqk aqj —0

or  AyA, B,E,% s (1% . 04 0 B i g
q, 0q; 04, O0q, 0q,

and multiplying by one obtains

o1+ Aoy e g vg a—’f'-a’f") 5
q 0q, 0q,

so E""g_gk =E, and the Pfaffian forms B, are globally defined on
V. also rthe functions f, defined by the forms B, : B, (jg¢) = B,(¢(0)
and given locally by equations (8) are globally defined on the mani-
fold J3 (R, V,).

Call y, : S(M) —» R the functions

Yo Fhsr e Bes B =120, P

Equations (6), (7), (8) ard equalities 4, = a, + f, + 7, give the local
representation (10) of the functions y, :

Vj-.= .
dt 450

i b AT, T, dd
(10) Avr Brj Auj yu + Avr Brj I:a_qj aqk aqj qk:] T

It is easy to see that the functions y, are quadratic ir the velocities with
coeficients depending only on ¢, ..., qp-

Theorem 2 — The Lagrangian multipliers Ay(u=1,2,..., p) have
a canonical decomposition 4, = a, + B, + y, where the o, are defined
on V,, the B, come from Pfaffian forms B, on ¥, and the 7, give rise
to tensor fields G,, of degree two, defined also on Vs .
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Proof — We need only to define the tensor fields Gy, 1=1,2, 5.
Let c,, the inverse of the matrix A4,, B,; A,; then,

~ oT, oT, . A, .
- yu - cuv AvrBrjligqj_mqk] R cuv qu =

1 day, . . Oay. . g s
- cuv Avr Brj |i7 —azqm qn— 6qk q; qk] it Cuv dt di=

. . 1 day Oayl. . Gy, o]
_cﬂv{AvrBrj[?qu aqk:lqiqk+ 34, diqr; =

_ 1 day Oay; 04, . .
—C#V{AvrBrj[? aqj aqk:|+ aqk}qiqk-

Cousider the derivatives:

0y, 0A,; 0A,; Oay 0Oa; Oday,
B L Mt [ Y WY (e Bt S
0q;0q, " {( 0q, ~ 0g; '\ 0q; ~ 0q, Oq;

The vector fields 6, , orthogonal of w” with respect to the scalar pro-
duct {, ) are given locally by

0

6‘, = Avr B,.ja—qj-,

D01 R SR, 1

: . . . 0
Now, as we will see with more details, the derivatives —Eg"—q are
i k
the components of the tensor field c,, £, T, where £, T, means the
Lie derivative of the symetric metric tensor T, with respect to the

vector field 6,. The matrix (c,,) is also globally defined on V,. since

WH0,) = Ay qu<Aw B, %) = A, B, A,. Finally
J

Go=c. ., T,

0,
A first integral of the mixed system (1) is a smooth function

F:J{(R,V,) - R such that LfTI; is zero on the manifold (S(M)).

This means that F is constant throught each solution of (1). One clas-
sical result is the followirg:
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Proposition 2 (Conservation of energy). The real function
F =T, + n'p; = T, L, (kinetic plus potential energy) is a first integral
of system (1).

Proof : Consider first of all, the local function

Py > oL

dfl ;| 0L, eflsicn BB Le Sondb(al
dt T " og; 1 ag T o, Ut g\ By, )
. dH d dL oL\ ., . )
then " <E 6_%_6_%) q;. Using system (1) one obtains
dH

—— = (4, 4,)q; say Lt is equal to zero throught the solutions
dt et dt

of (1). On the other hand
L =%arSqus oy biqi i LO’

then STL = a;;q; + b; and g—quj =a;q,q; + b;q; =2T, + L, that is

_ Jj i

H=-(T, + L, + Ly) + 2T, + L, ard finally
H=T,-Ly=T,+np}

First integrals linear in the velocities.

A “linear in the velocities” function f is a smooth real function
on J; (R, V,,) induced by a smooth Pfaffian form Q on V,, : /(i ¢) =
= Q¢(0)).

The unique vector field 6, on V,,, orthogonal of Q with respect
to {, >:Qx) =<0, x), is called the orthogonal of f. If locally

0 : '
Remarks: 1. If 6, is “normal” to the distribution M, 0,=c,0,,
where the 0, are the same considered in the proof of Theorem 2,
0= AL B,j%- This way the function f, linear in the velocities,
j

orthogonal of 0, is then f = a; M, q; where M; =c, A, B,;, or f =
=a;;B,; ¢, A, q; = c, A,;q; which proves that f is identically zero
on S(M) then f is a first integral of system (1).

2. If 0 is “tangent” to the distribution M, the local flow @, of
leaves M invariant and it is easy to see that 6! is tangent to the vector
bundle S(M) and 6 is tangent to P(S(M)).
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If f is linear in the velocities_and 6, is its orthogonal, since
+ 0,0, “tangent” to M and 0 ;i “normal” to M, one obtaius

0, = 0
f = f + f where by remark 1., f is a first integral identically zero
on S(M).

Theorem 3. Let f be linear in the velocities and 6, be the ortho-
gonal of f with respect to the scalar product ¢, ». Then f is a first
integral of system (1) if, and only if, the equality

daf

(@p-A 0163 =5

holds on the manifold P(S(M)).

Proof : If (w,—4, w") 6% = % holds on P(S(M)) it is quite obvious
that f is a first integral of system (1) since %{ vanishes on the cross-

section (S(M)) = P(S(M)). Conversely, the local condition to be proved

is
d (0L oL 0 4.0 0
[oaay o <M,.a_qi+M,a viicd)-

_df dﬂ_%_

¥ 5
i aqj 2
integral of system (1). But the functions

M-(d b ok lA) and @

provided that 6, = M A,;q; =0 and the function f be a first

i\dt é6q; dq; dt

J

af

vanish on the manifold t(S(M)). On the other hand f = a,q;, ¢

=a;§; + a;q; and
d dl.. oL o2 L oL
: S S JAda. —{; j, A
M1<dt an 6(1] i A ) Mj<auql + aqlaq] qi— aq} )
Since f and 6, are orthogonal one has the equality between the coefi-
cients of g; in the local expressions of a% and (w,— 4, ®") 0}. But g, g;
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‘and M[

d*L i oL
0q; 04; o 0q;

g;, that is both are constant throught each fiber of P(S(M)) over S(M).
Sirce they coincide on 7(S(M)) they must be equal and the equality
(- A, @) 0% = % holds on the manifold P(S(M)).

Corollary 1. Let the system (1) be holonomic (w* = 0) and f be
linear in the velocities. Then f is a first integral of the Lagrangian
system w; = 0 if, and only if, the equality

d
w0 =4
holds on the manifold J3 (R, V).

Theorem 4. Let f be linear in the velocities and 6  be the orthogonal
of f with respect to the scalar product ¢, ). Then f is a first integral
of system (1) if, and only if, one has:

i) 0f(7t)—a 0" (@) on V,

i) o =B,0 (Bf) on S(M) where ¢ is induced by 0,1 d<Z.

i) Zo T, =’ (0,):c,," L, T? restricted to the vector bundle
S(M).

Proof : By theorem 3 f'is a first integral of system (1) if, and only if

4f

the equality (o, -4, ®") 9} il holds on P(S(M)), or locally, the

&1 oL da; . .
M| —X—¢ ___AvAv’ =ai.i=_-l i
J[aqk an qk aqj ":] q aqk q qk
must hold on S(M), say, provided that

0
0f=Mja_qj’ f=aiqi, ai=Mjaij and Avjqj=0-

-A, A } do not depend on the coordinates

equality

Recall the expressions of the functious 1, = a, + g, + 7, :

‘xu i cuv Avr Brj g—n
» b, b,
ﬂ cuv Avr Brj (aqk aq1>

s da; 1 Oay 04, . .
y“—cuv{AvrBrj<a—qk 7 aqj> aqk}qiqk,
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Ope can obtain one first conclusion (doing ¢; =0, j = 1,2,...m):

on
M'[a—n_AvjcuvAurBrk ]

—|=0,
\ 5511' 0q;

or 0;(m) =M;A,;a, =" 0 a which gives rise to the condition
i) 0,(n) = a, " (0,). This condition i) implies thaF
M (T, + L), AT, +Ly
y 09, 094 j > oq i

6ai L
—-(B, + 7y Avj] = 5‘;% qr

for all (g;, ¢;) such that A,;¢;=0. Suppose that (q},+1 seros Qms Q15 oo aw)
are coordinates of S(M) and g, = f} g, are given by the equations
Ay;q;=0,+ =1,2,...,p. By derivative with respect. toq,(p=p+1, o m)
and doing after g, =0 (then ¢, =¢, =... =qn = 0) one obtains:

d { 62 Ll 'y aLl _ﬂ‘v Av]} = 0 'then
‘jp=0

d_qp jaqkaéIjqk_ q;
d b, . OBy, ob; 6bk>.} oy
RS Vo i B ks SRRV TR L W e B i -
dq, M]{aqqu 0q; § R T 94; a ip=0

The expression H, g, , to be derivated, is linear and homo.geneous.in

the coordinates ¢;(j =1,2,...,m). We put H,q,=H,q,+ H,q,,

vi=, 1,20, p3then,

d(Hy 4x)
i

p

(11) =H,+H,f,=0; p=p+1....m

‘ip=0

Those equalities (11) show that H,q, + H, f,4,=H,q, + H,q, =

: b P e
=Hkq-k =0 and then Mj[mqk_a—q] yvAvj = 6qkq1

_ db; b ob; 0bi\| _

q; and

The Pfaffian form 6, Jd.% (& is the Pfaffian form defined by the friction
energy L,) is locally given by

db; b
B A= M,.[aqk—a—q:] day
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and the function (linear in the velocities) induced by 6,1 d¥% on

BB K)o is ¢=M,-[@i—@]qk.

By theorem 2 the functions B, are globally defined on J} (R, V,) and
H, ¢, = 0 means @B, @"(0;) =0, provided that A,;q; = 0. Then
one can obtain the second conclusion:

ii) ¢ = B, 0" (6,) on the manifold S(M).

The last conclusion comes from (12):

da; 1 da; 0Oa; 5
g A < —lk -——— la. — . g
(12) [MJ (—’—aqk 3 aqj> aqk]q, 4= M;y, A,
da;; 1 Oa; 0A,;
=M. . o sl e Wl B la. g
JAVJC"V[AvrB"'(aqk 2 aq") aqk]qlqk

that must hold on S(M), say H, 4,4, =0 provided that 4,;q; = 0.
The symmetric tensor field on V,, with components (Hy + H,;) must
be zero when computed on pairs of vectors which are “tangent” to
the distribution M. Let us show that, in fact, (Hy + Hy) are the com-
ponents of a covariant symmetric tensor field of degree two on the
manifold V,,. The sum (H, + H,) is equal to

6a,~ aak 5a~- aak aa'k
—-— 4 ~M. P4 —H R
(6‘11; a‘Ii) : <a‘h 0q; a‘Ij)

" 0A,; 0A, i da,; Oa,, Oa;
Mf""fc"v[(aqk i aq.-) A (Gt + Tt

Now we will show that the Lie derivative &, T, of the metric tensor
T, with respect to the vector field 6§, has components A4, giver by

Oa;  Oay Oa;;  Oay; Oday
A =52+ 2 )-M, (U 4 T _Tik)
k (a‘h aqi) 4 (a‘h dq; dq;

then the tensor
%, T,-C,, Ly, T, . wH0,)
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must vanish on the vectors which are “tangent” to the distribution M.
Since

da; da;;"" oM,
a; =M;a;, %, = jaq: + a—qr’aij then
= Oay. . OM; oM;
Aik = Mj a—qj + aqk aij + Bq, akj

and it is easy to see that
Lo, Ty, = Ay dq; ® dgy.

The last conclusion is then

i) £y T, = 0" (0,)c,, Ly, T, when both tensor fields are res-
tricted to the fiber bundle S(M) over V,,.

Corollary 2. Let the system (1) be holonomic (w* = 0) and f be
linear in the velocities. Then f is a first integral of the Lagrangian
system w; =0 if, and only fif,

) 0,(m) = 0.
ii) 0, 1d% =0.
iii) L, T, = 0.

Condition 0, (n) = 0 means that = is a first integral for 0, say,
m is constant throught the integral curves of the flow 0,. Condition ii)
means that 0, is a characteristic vector field for the Pfaffian system
spanned by #; and condition ¥, T, =0 means that 6, is an infini-
tesimal isometry of the Riemannian metric {, > (0, is a symmetry of
the Riemannian manifold V).

Remark. Given the distribution M, say, the bundle S(M), it induces
a normal bundle M+ by orthogonality with respect to the scalar product
{, ». It is easy to see that if w’ are the Pfaffian forms which define M
(at least locally), the vector-fields 6, form a local basis for M*. Further-
more, any vector-field 6 has a canonical decomposition 6 = § + 0 where
6 is “tangent” to M and 6 is “normal” to M, say, is “tangent” to the
normal bundle M*.
Steady Motions

We will call a motion, any solution of the system (1). In this paper
we reach for a kind of motion which is also an integral curve of a vector-
field 0, , orthogonal of a first integral, of (1) “linear in the velocities™.
If such a motion there exists it will be called a steady motion. As we
will see the steady motions come from special vector-fields 6, which
are symmetries of the manifold, in some sense.
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The research of steady motions is then equivalent to the research
of first integrals, linear in the velocities. But in most of physical exam-
ples one can see some steady motions and, using them, one can find
the corresponding first integrals.

Steady motions in the holonomic case.

By Corollary 2, f is a first integral linear in the velocities, if, and

only if,

0;(m)=06,1d% =%, T, =0.
Then, in the case that there is r.o friction energy (¥ = 0) the orthogonal
vector-field 6, must be an infinitesimal isometry and 0, (m) must be

zero. This way if ¢(t) is a steady motion it follows that n(¢(t)) does not
depead on t and by Proposition 2 the same happens with T,(¢(t)),

o(1)).

Example 1. The spherical pendulum.

This is the situation of a material point which moves on the
manifold V,, = $%. Let 6,0 < 0 < /2, the latitude and ¢ the longitude
of a point on S*. The kinetic energy is

T, = $[6* + (cos? 6) 9],

there is no friction and the potential energy is n = —sinf.g
The Lagrangian equations in that local chart are:

(9'+s_i;10-c050-gb2_—gcos0 =0
cosfp—2sinf-¢p-0 =0

The linear in the velocities function f = (cos® 0)- ¢ is a first integral
for the considered Lagrangian system since

f = (cos? 6) ¢ —2 cos Osin 009 = 0.

The vector-field 6, orthogonal of f with respect to T, is

0
0f=2 %

The steady motions, integral curves of 0 =2 %, are, then, horizontal
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circles on S?. More precisely, with the initial conditions 6 = 6, ;

A O Al g : .
@ =@¢; 6 =0; @ \/ oy the motion of equations

0=0,; @ =@o+1t:/g/sinb,

is a steady motion of the given holonomic Lagrangian system.
Steady motions in the non-holonomic case.

If a motion ¢(t) must come from a vector-field 6, prthogonal
of a first integral f, linear in the velocities, it is clear that ¢(t) is “tan-
gent” to M, that is, @’ (¢(t)) = O for all ¢. This shows that the decom-
position 6, =8 + 6 (with 6 “tangent” to M and 6 “normal” to M)
induces a decomposition f = f + f where f is identically zero on
tha bundle S(M); f is also a first integral of system (1) and coincides
with f on S(M). The motion ¢(t) is then a solution of = 6. By Theorem
4 appied to f one can say that:

a) 07(n) =

b) the function @ induced by 07 1dZ is zero on S(M);

¢) Lo, T, is zero when restricted to the bundle S(M).

These considerations show that if ¢(t) is a motion, the following

conditions are equivalent:

I) ¢(t) is a steady motion;

II) o(t) is an integral curve of a “horizontal” (tangent to M)
vector-field 0, orthogonal of a first integral f of system (1), linear
in the velocities;

III) ¢(t) is an integral curve of a “horizontal” (tangent to M)
vector-field 6 satisfying conditions a), b) and c).

Example 2. A homogeneous vertical material disc which rolls without
sliping on a horizontal plane.

The manifold is, in this case, the product R?> x T?2. Let x, y, @, 0
be local coordinates where (x, y) are Cartesian retangular coordinates,
¢ is the rotation of the disc and 0 is the angle between the vertical plane
of the disc with another vertical plane. The non-holonomic Lagrangian
system is:

=4

V=1

@ =-2A4;. cosf + A,. sinb)
6=0

x—cosf-¢ =0
y-sinf-@ =0
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The kinetic energy is T, = §(x2 + y?) + £ (2¢? + 6?), there is no fric-
tion and the potential energy is zero.

It is easy to see that f, = ¢ and f, =0 are linear in the velo-
cities first integrals of the system. A simple computation shows that

0 ;
0, =4— 0 and 0, = 8 %’ 0, is “tangent” to the distribution M,
in this case given by the Pfaffian forms
=dx—-cosf-dp and > =dy-sinf-de.

The vector field 6, is not “tangent” to M. The steady motioas defined
by 6,, are also solutions of the projection on M of it:

- 0 0 0
=4
0, g(coso o +sinf- 3y a(p)

Ore can prove that in this example all motions are steady motions.
0 0

: 0
Th al e C— —-
e normal bundle is spanned by (2 pm 4 cos 6 6(p) and (2 3

J 0 0 0
—4sin 0§ — 2 gl
sin 6 ), and the bundle S(M) has generators 20 and cos 6 F

il 0
+sm0a 6(p
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