Composition of contractions
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A map f : X — X of a metric space is a contraction if for some
A, 0<A<1, d(fx,fy) < Ad(x,y) for all x,yeX. The least such A
is the Lipschitz constant, L(f). If X is complete, a contraction f has a
unique fixed point which we call F(f).

Now suppose m contractions f ,...,f, : X —» X are given, where X
is complete. Then each composite “word” w = i, 0-..of; has a unique
fixed point F(w). Here we are concerned with the closure F of the set
F=F(fy,....fw of all such fixed points, F(w). This paper can be
regarded as a step toward studying generic properties of the action
of free (aon-abelian) groups on manifolds. See S. Smale [2]. Conversations
with R. Thom and S. Smale were very helpful in writing this paper.

We would also like to thank P. Fernandez who pointed out that
we had overlooked compactness and, in particular, our most general
result:

Theorem A'. For any finite set of contractions, F is compact.
Note, however, that this is included in theorem D, below.

Theorem A.If the Lipschitz constants satisfy L(f) + ... + L(f,,) < 1,
then F(f,,...,f,) is zero dimensional.

In general F can have dimension > 0. Our most general result
in this conection is

Theorem B. If f,g : R - R are two 1-1 contractions with distinct
fixed points and if

(Bt A 2
then F (f,9) is a closed line interval.

*We would like to thank the Instituto de Matematica Pura e Aplicada and The National Science Foundation (Grant
5591) for support.
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Note that (*) reduces to L(f) + L(g) = 1 in case f and g are affine.

We know of no counterpart to theorem B for R",n > 2 except consequen-

ces of theorem B in case fand g (and possibly other maps) have something
like an “eigen line” in common. The proof of theorem B uses the
elementary:

Principle C. If A = X is compact, invariant under each f; and
if fllA)u...uU f,(A) D> A, then A =F(fy,...,fn)

The difficulty with analogues to theorem B for R", n > 2, seems
to be that this principle does not apply.

Question: What is the structure of F(f, g) for f, g : R?> - R?, affine
contractions satisfiyng (*).

We close with the remark that the space W ofallwordsw = f; o...0f;,
has a natural topology with Cantor set W as compatification. In forming
W we identify u and v if 4" = v" for some n,r. In this case, of course,
F(u) = F(v).

Theorem D.A If f,:X—-X, i=1,...,m are contractions, then
the function ® : W — F induced by w — F(w) is continuous. If in addition

a) the f; are all 1-1;
b) the fixed points F(f,),..., F(f,) are distinct;
and

O Lf)+...+LW<L,

then ® is a homeomorphism.

Proof of Theorem A: Lef L(f) = A;,i=1,..., m.

Step 1. There is a closed and bounded set A = X such that f{(A4) = A
fori=1,..., m Hence F c A.

Proof : We may take A to be the closed e-neighborhood of F(f,)
for ¢ > 0 and so large that
li(ﬁ +dl)+ di<8, i= 1,..., m,

where d; = d[F(f,), F(f)]. For then f,(4) = A, for each i so that
in particular w(4) = A for each word w. Thus w| A_has a fixed point
which must be F(w) so that F — A. As A is closed, F < A.

Next, let W, consist of all words w of length n.

Step 2. For each ¢ > 0, there is an integer n such that
Y. diam w(A4) <e.

weW,
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Proof. For w = f; o...of; , diam w(4) <
Ai,*Aiy. .. A, . (diam A) so that
Y diam w(4) < (4, + ... + 4,)" diam A

weW,

Step 3. Fc U, .wmw(A4) = A, for each n.

Proof. For if w' is a word of length > n, then w' = w o w'"* where w
has length n. Hence
Fw)ew (A) c w(4) = A,. For w any word F(w) =F(Wo...ow)
(n-times) = A, .

Theorem A now follows, as no component of F could have positive
diameter.

_ Note also that step 3 plus all but the last line of step 2 shows that
F is"totally bounded and hence compact. This gives a more direct proof
of Theorem A’ than is provided by Theorem D.

_Remark. We have shown that the Hausdorf p-measure [1; p. 102]
of Fis O for p=1.

Proof of principle C. Note that the inclusion F c A is proved
just as above. Next, it follows by induction on n that U,y w(4) = A.
But diam w(A4) < "4 for we W, where , <A<1fori=1,...,m
Therefore, as F(w) = w(A), F(f;,...,f.) is dense in A so that
Fllfcoad) =4

Proof of Theorem B. We find an interval I for which f(I) u g(I) =1
and apply principle C.

Case 1. f and g preserve orientation. Then let I = [F(f), F(g)].
Then f(I) < I as f preserves orientation; similarly for g. Now f(I) u g(I)
contains I’s end points and as the sum the lengths of f(I) and g(I) >

(LU + Lg™ )] length I, f(Dng() # B.
Hence fHugld =1

Case. 2. f reverses orientation, g preserves orientation and
F(f) =a < b = F(g). Then let ¢ = f(b) and note ¢ > a. Let I = [¢,b].
Again f(I) u g(I) < I, ce f(I), b e g(I) and as the lengths of f(I) and g(I)
together exceed that of I, f(I) u g(I) = L. '

Case 3. Both f and g reverse orientation.

Let a = F(f), b = F(g) and assume a < b. Now let ¢ = F(f.g) and
d = F(g o f).
Step . c<a and b<d.
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Proof. First assume ce[a,b]. Then g(c) > b > a as g reverses
orientation, so that ¢ = fg(c) < a < ¢ which is absurd. Next assume
c¢>b. Then gc < a as otherwise fgc < a. Hence

d(gc,a) = a—gc < b—gc = d(b, gc) < d(b, ¢)

so that d(fgc, fa) < d(b,c) < d(c,a). This last is absurd as the first
and third terms are identical. Thus ¢ < a. But ¢ = F(fg) = aisimpossible
as g(a) # a and f is 1-1. Therefore ¢ < a. Similarly, b < d. (Note: we
have not yet used the special assumption (*)).

Step 2. Let I =[c,d]. Then f(I)ug() > 1.

Proof. First, as gf(d) = d, fgf(d) = f(d) so that f(d) = c. Similarly
g(c) =d. Thus f(I)u g(I) contains I's end points and as above,

JHug =1

The space W and proof of theorem D. Let W= UZX, W, be the
set of all (finite) words and for w =fio...ofi, €W, le} W be the infinite,
PEHOBIC  WOIA 1 5. B s B copibes bieses - Leb W Consist of.  all
infinite “words” or sequences i,,i,,... of the integers {1,..., m}.
Then w - W sends W into W, identifying W and 4 if and only if w" = u"
for some n and r. A metric for W is

A, 4) = Y (W, , 627
i=1

2 1VF ey
Where a(i,)) = {

0 gify wile=14
Wis the “one-sided symbol space on m symbols” and is a Cantor set.

For we W, define ¢(W) = F(w). This is well defined by our remark
above. As the periodic words are dense in W, we need only to see that ¢
is uniformly continuous to know that it extends uniquely to ¢ : W — F.

To this end, suppose, w, v € W, where w has length n. Then F (w) and
F(w o v) lie together in w(A), a set of diameter < A" diam A, where A, A
are as in the proof of theorem A. Hence d(F(w), F(w o v)) < A" diam A,
which shows ¢ is uniformly contiruous. This proves the first assertion
of Theorem D.

Now, assume the additional hypothesis the second part of Theorem
D and let w and u be distinct words.

Case 1.w and u are of the same finite length n. We claim F (w) # F(u).
For n = 1, this is part of hypothesis. For the inductive step, consider
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case la. w =vow, u =v.u where by induction, F(u') # F(w'). Then
for sufficiently large n, w'o (vow')(4) and u - (vou')'(A) are disjoint
as they contain F(w') and F(u') respectively. Composing with v, we
know (v ou)"t1(4) n(vow)'*1(A) = & as v is 1-1. Thus as these sets
contain F(u), and F(w) respectively, F(u) # F(w).

Case 1b. w =w'ov, u = u' ov where by induction, F(w') # Fu).
As above, (W ov)""1(A) N (W ov)"* ! (4) = & for these sets contain
the distinct points F(w') and F(u'). Hence F(w) # F(u).

Case 2. w and u are distinct infinite words. Let w; and u; denote
the finite words consisting of the first i terms of w and u respectively.
Then for some n, ¢(W,) # ¢(i1,), but for i sufficiently large, w,,; (4) N
Nu,.;(A) = & as above. As there sets contain ¢(w) and ¢(u) respectively,

d(w) # Pu).
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