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It is well known that C(z), the field of rational functions over C,
coincides with the field M(S,) of meromorphic functions on the Riemann
sphere S, , when any a(z) € C(z) is identified with the mapping a : S,— S,
defined by { — a({) (with the usual convention with respect to o).

Let X be a field of algebraic functions, i.e. a finite field extension
of C(z). Then K = C(z, w), where w is a root of some irreducible poly-
nomial F(W) = W"+ a,(z2)- W" ! +... + a,(z2)eC(z) [W]. The ele-
ments of K cannot be interpreted as functions on S, , but as functions
on the Riemann surface Sg associated with the field K. Sg can be defined
in an analytical way (see for example [5] or [8]) or by means of valuation
theory (cf. [1]). In fact, let S be the set of all normalized discrete valua-
tions of K over C, i.e. surjective mappings v : K —» Z U {c0} such that
v0 = o0, Wf -g) =vf + vg, (f + g) = min {vf, vg} for all f, geKk,
and v{ =0 for all non-zero (eC. Any f eK is identified with the
mapping Sy — S, which assigns to each veSg the unique (,, €S,
such that v(f -{,,) > 0 (where v(f — ) > 0 means vf < 0), and Sy
is endowed with the weakest topology with respect to which all map-
pings f e K are continuous; it is compact. Any ¢, € K such that vt, = 1
is a local chart for the point v € S; (i.e. induces a homeomorphism from
some neighborhood of v onto a neighborhood of 0); thus the notion
of “meromorphic function” can be carried over to Sy. The field K
coincides with the field M(Sk) of meromorphic functions on S, and
the containment C(z) < K implies the imbedding of M(S,) in M(Sy)
by a(z) s> aoz

'During the preparation of this paper, the author was partially supported by a “bolsa de Pesquisador-Conferencista”
of the CNPq.
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Considering the projection z:Sgx — S,, we say that the point
v e Sk lies over { €S, if z(v) = {, and the positive integer e(v) = v(z—{)?
is called the ramification index of v (with respect to z). For any { €S,
there exist only finitely many points v, , ..., v, € S which lie over (,
and we have e(v,) + ... + e(v,) = n. In particular, r = n if and only
if e(v;) =... =e(v,) = 1. These equations hold for almost all (€S, ;
in fact, any branch point (i.e. v € Sg such that e(v) > 1) lies over a pole
of a; (z) or a, (z) or ... or a,(z), or over a root of the discriminant
d(z) ¢ D(z) of F(W), or over . Therefore the sum ), (e(v) — 1) is fi-

veSk
nite; it equals 2- (g + n— 1), where g is the genus of Sy (see [5] or
[8)).

It is natural to ask whether there exists a field K of algebraic func-
tions such that Sy has prescribed ramifications. Using results due
to HASS [6] and KRULL [7]*, one can prove the following theorem.

Theorem 1. Let H be a finite subset of S, and, for any ne H, let
e, em, 1), ..., en, r,) be positive integers such that e(n, 1) + ...+
+ e(n, r,) = n. Then there is a field extension K of C(z) of degree n such
that, for any neH, there are exactly r, points v,; lying over n, and
e(v,)) =em, Hi=1,...,r,)

Note that Sy may have (finitely many) branch points outside the
set He = {v,;|i =1,...,r,; neH}; hence for the genus of Sy we get
only the inequality gg > 1-n + % Y Y, (e(n, i)—1). For example,

eH i=1
setting r, = 1 and e(y, 1) =2 for an”y neH, we obtain a quadratic
field extension K of C(z) such that Sy has at least # H branch points
and gy >+ # H-1.

Under certain hypotheses, it is possible to restrict the ramification
indices of all points outside Hyg, as will be shown in the following
corollaries. We say that a finite r-tuple E = (e(1), ..., e(r)) of positive
integers such that e(1) + ... + e(r) = n factors according to the facto-
rization n =n'-n” if there exist positive integers r', ry, €'(i), e (i, j)
such that r{ + ... + 7, =r, Q)+ ... + &) = n, €, 1)+
.+ e, rf) =n",and €@G)-e"(i,j) = e(r] + ... + ri_; + j) for all
j=1...,r andi =1,...,r . Factorization of E according to a facto-
rization n = ny *...-n, with m > 2 is defined similarly.

Corollary 1. With the same hypotheses as in theorem 1, assume
that the r,-tuple E, = (e(n, 1), ..., e(n, ,)) factors according to the fac-
torization n =ny ... n,, for any ne H. Then there exists a field K

2Here and in the following, substitute z ! for z — 0.

3For a résumé without proofs see [3].
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with the properties indicated in theorem 1 such that e(v)<max s, n,}
for all veSx\ Hyg.

In fact, we can construct a chain of fields Cl) =K, =K e
c...< K, =K in which K; is obtained from K j—1 in the following
manner (using a slight generalization of theorem 1, with K j—1 instead
of C(z)): For any ueSKJ__ lying over some n e H one prescribes an
ry-tuple E, = (e(y, 1), ..., e(,u, r,)) of positive integers such that e(y, 1) +
+ ...+ elu, r,)) =n;, according to the factorization of E,, and for
any branch point 1’ € Sg;_, lying over some 5’ € S\H one prescribes
the ni-tuple {1,...,1),

In the case n =ny any r-tuple E = (1), ..., e(r)) such that
el)>...>e(r), e1) + ... + e(r) =n, and all e(i) are non-negative
powers of n,, factors according to the factorization n = iy TR
(m times), as is checked easily. Therefore corollary 1 yields:

Corollary 2. With the same hypotheses as in theorem 1, assume
that n and all e, )(i =1, ..., ry; 1 € H) are non-negative powers of
some positive integer n, . Then there exists a field K with the properties
indicated in theorem 1 such that e(v) < n, for all veSg\ Hg.

For example, there exists a field extension K of C(z) of degree
16 with the following properties: There are exactly 2 (resp. 1, resp. 11)
points of S lying over the point 0 (resp. 1, resp. ) of So, with rami-
fication indices 8, 8 (resp. 16, resp. 4,2,2,1,1,1,1, 1, 1, 1, 1), whereas
all other branch points of S; have ramification index 2.

We are going to show that we may prescribe, in addition to the
ramification ingices em, 1), ..., e, r,), the initial parts of the Puiseux

series P,; = ) ;. (z—m¥® (G =1,...,r) for a generator w of
[ B ing’ |

K over C(z). To make this statement more precise, we recall that for
any (€S, the field M, (S,) of germs of meromorphic functions at
contains M(S,) and is contained in the quotient field C((z-{)) of the
rirg C[[z—(]] of formal power series in z—{, with coefficients in C.
Similarly, for any finite extension K of C(z) and any ve Sy, the field
M, (Sk) of germs of meromorphic functions at v contains M(Sy) and
is contained in C((t{v})), where t{v} is an e(v)-th root of z—z(v). The
containmert C((z - z(v))) = C((¢t{v})) implies the imbeddirg of M, ,)(So)
in M,(Sg) by f— foz and we have [M, (Sg) : M, (So)] = e(v). In
particular, any element c € K = M(Sg) may be represented by a Laurent
series in t{v}, say ¢ = Yy, (¢{v})%, which is sometimes written
q=-—s
as a Puiseux series ) 'y, (z—z(v)7™,

q9=-s
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Using a theorem on valuations ([2], Satz 7, or [4], theorem (25.7)),
which strengthens the above mentioned results obtained by HASSE
and KRULL, we get:

Theorem 2. With the same hypotheses as in theorem 1, let Q, ; =
=(Wy ; Jgez € C* such that {qe Z \N|w,; ,#0} is finite (i=1,..,r,; ne H).
Then for any qo€Z there exists an algebraic function w such that
K = C(z,w) has the properties indicated in theorem 1 and

W= Z wn,i,q % rn.?’ € tq,‘i‘o+ b C[[t’l.i]]
qeZ

for any neH and ie{l, ..., r,}, where t,; = t{v,;}.
In other words, the coefficients of the Laurent series in t{v,;} of
some generator w of K over C(z) coincide with those of the prescribed

series ) ®,;,*X? up to the go-th coefficient, for any ne H and
qelZ

Bl i

In the "special case n = 1, theorem 2 is well known. It affirms the
existence of a rational function w € C(z) which has prescribed Laurent
series at any n € H, up to the g,-th coefficient.

Most part of the results preseirted in this paper can be easily gene-
ralized to algebraic functions over an arbitrary field K, (instead of C).
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