## Compact riemann surfaces with prescribed ramifications and Puiseux series

OTTO ENDLER

It is well known that  $\mathbb{C}(z)$ , the field of rational functions over  $\mathbb{C}$ , coincides with the field  $M(S_0)$  of meromorphic functions on the Riemann sphere  $S_0$ , when any  $a(z) \in \mathbb{C}(z)$  is identified with the mapping  $a: S_0 \to S_0$  defined by  $\zeta \to a(\zeta)$  (with the usual convention with respect to  $\infty$ ).

Let K be a field of algebraic functions, i.e. a finite field extension of  $\mathbb{C}(z)$ . Then  $K = \mathbb{C}(z, w)$ , where w is a root of some irreducible polynomial  $F(W) = W^n + a_1(z) \cdot W^{n-1} + \ldots + a_n(z) \in \mathbb{C}(z) [W]$ . The elements of K cannot be interpreted as functions on  $S_0$ , but as functions on the Riemann surface  $S_K$  associated with the field K.  $S_K$  can be defined in an analytical way (see for example [5] or [8]) or by means of valuation theory (cf. [1]). In fact, let  $S_K$  be the set of all normalized discrete valuations of K over C, i.e. surjective mappings  $v: K \to \mathbb{Z} \cup \{\infty\}$  such that  $v0 = \infty$ ,  $v(f \cdot g) = vf + vg$ ,  $v(f + g) \ge \min\{vf, vg\}$  for all  $f, g \in K$ , and  $v\zeta = 0$  for all non-zero  $\zeta \in \mathbb{C}$ . Any  $f \in K$  is identified with the mapping  $S_K \to S_0$  which assigns to each  $v \in S_K$  the unique  $\zeta_{f,v} \in S_0$ such that  $v(f-\zeta_{f,\nu})>0$  (where  $v(f-\infty)>0$  means vf<0), and  $S_{\kappa}$ is endowed with the weakest topology with respect to which all mappings  $f \in K$  are continuous; it is compact. Any  $t_y \in K$  such that  $vt_y = 1$ is a local chart for the point  $v \in S_k$  (i.e. induces a homeomorphism from some neighborhood of v onto a neighborhood of 0); thus the notion of "meromorphic function" can be carried over to  $S_K$ . The field K coincides with the field  $M(S_K)$  of meromorphic functions on  $S_K$ , and the containment  $\mathbb{C}(z) \subseteq K$  implies the imbedding of  $M(S_0)$  in  $M(S_K)$ by  $a(z) \rightarrow a \circ z$ .

<sup>&</sup>lt;sup>1</sup>During the preparation of this paper, the author was partially supported by a "bolsa de Pesquisador-Conferencista" of the CNPq.

Considering the projection  $z:S_K \to S_0$ , we say that the point  $v \in S_K$  lies over  $\zeta \in S_0$  if  $z(v) = \zeta$ , and the positive integer  $e(v) = v(z-\zeta)^2$  is called the *ramification index* of v (with respect to z). For any  $\zeta \in S_0$  there exist only finitely many points  $v_1, \ldots, v_r \in S_K$  which lie over  $\zeta$ , and we have  $e(v_1) + \ldots + e(v_r) = n$ . In particular, r = n if and only if  $e(v_1) = \ldots = e(v_r) = 1$ . These equations hold for almost all  $\zeta \in S_0$ ; in fact, any branch point (i.e.  $v \in S_K$  such that e(v) > 1) lies over a pole of  $a_1(z)$  or  $a_2(z)$  or  $a_1(z)$ , or over a root of the discriminant  $e(z) \in \mathbb{D}(z)$  of  $e(z) \in \mathbb{C}(z)$  of  $e(z) \in \mathbb{C}(z)$ . Therefore the sum  $e(z) \in \mathbb{C}(z)$ 

nite; it equals  $2 \cdot (g_K + n - 1)$ , where  $g_K$  is the genus of  $S_K$  (see [5] or [8]).

It is natural to ask whether there exists a field K of algebraic functions such that  $S_K$  has prescribed ramifications. Using results due to HASS [6] and KRULL [7]<sup>3</sup>, one can prove the following theorem.

Theorem 1. Let H be a finite subset of  $S_0$  and, for any  $\eta \in H$ , let  $r_{\eta}$ ,  $e(\eta, 1), \ldots, e(\eta, r_{\eta})$  be positive integers such that  $e(\eta, 1) + \ldots + e(\eta, r_{\eta}) = n$ . Then there is a field extension K of  $\mathbb{C}(z)$  of degree n such that, for any  $\eta \in H$ , there are exactly  $r_{\eta}$  points  $v_{\eta,i}$  lying over  $\eta$ , and  $e(v_{\eta,i}) = e(\eta, i)$   $(i = 1, \ldots, r_{\eta})$ .

Note that  $S_K$  may have (finitely many) branch points outside the set  $H_K = \{v_{\eta,i} | i = 1, \dots, r_\eta : \eta \in H\}$ ; hence for the genus of  $S_K$  we get only the inequality  $g_K \ge 1 - n + \frac{1}{2} \cdot \sum_{\eta \in H} \sum_{i=1}^{r_\eta} (e(\eta, i) - 1)$ . For example, setting  $r_\eta = 1$  and  $e(\eta, 1) = 2$  for any  $\eta \in H$ , we obtain a quadratic field extension K of  $\mathbb{C}(z)$  such that  $S_K$  has at least # H branch points and  $g_K \ge \frac{1}{2} \# H - 1$ .

Under certain hypotheses, it is possible to restrict the ramification indices of all points outside  $H_K$ , as will be shown in the following corollaries. We say that a finite r-tuple  $E = (e(1), \ldots, e(r))$  of positive integers such that  $e(1) + \ldots + e(r) = n$  factors according to the factorization  $n = n' \cdot n''$  if there exist positive integers r',  $r''_i$ , e'(i), e''(i, j) such that  $r''_1 + \ldots + r''_{r'} = r$ ,  $e'(1) + \ldots + e'(r') = n'$ ,  $e''(i, 1) + \ldots + e''(i, r''_{i'}) = n''$ , and  $e'(i) \cdot e''(i, j) = e(r''_1 + \ldots + r''_{i-1} + j)$  for all  $j = 1, \ldots, r'_i$  and  $i = 1, \ldots, r'$ . Factorization of E according to a factorization  $n = n_1 \cdot \ldots \cdot n_m$  with m > 2 is defined similarly.

Corollary 1. With the same hypotheses as in theorem 1, assume that the  $r_{\eta}$ -tuple  $E_{\eta} = (e(\eta, 1), \ldots, e(\eta, r_{\eta}))$  factors according to the factorization  $n = n_1 \cdot \ldots \cdot n_m$ , for any  $\eta \in H$ . Then there exists a field K

<sup>2</sup>Here and in the following, substitute  $z^{-1}$  for  $z - \infty$ .

with the properties indicated in theorem 1 such that  $e(v) \le \max\{n_1, ..., n_m\}$  for all  $v \in S_K \setminus H_K$ .

In fact, we can construct a chain of fields  $\mathbb{C}(z) = K_0 \subset K_1 \subset \ldots \subset K_m = K$  in which  $K_j$  is obtained from  $K_{j-1}$  in the following manner (using a slight generalization of theorem 1, with  $K_{j-1}$  instead of  $\mathbb{C}(z)$ ): For any  $\mu \in S_{K_{j-1}}$  lying over some  $\eta \in H$  one prescribes an  $r_{\mu}$ -tuple  $E_{\mu} = (e(\mu, 1), \ldots, e(\mu, r_{\mu}))$  of positive integers such that  $e(\mu, 1) + \ldots + e(\mu, r_{\mu}) = n_j$ , according to the factorization of  $E_{\eta}$ , and for any branch point  $\mu' \in S_{K_{j-1}}$  lying over some  $\eta' \in S_0 \setminus H$  one prescribes the  $n_j$ -tuple  $(1, \ldots, 1)$ .

In the case  $n=n_1^m$  any r-tuple  $E=(e(1),\ldots,e(r))$  such that  $e(1)\geq\ldots\geq e(r),\ e(1)+\ldots+e(r)=n,$  and all e(i) are non-negative powers of  $n_1$ , factors according to the factorization  $n=n_1\cdot\ldots\cdot n_1$  (m times), as is checked easily. Therefore corollary 1 yields:

Corollary 2. With the same hypotheses as in theorem 1, assume that n and all  $e(\eta, i)$   $(i = 1, \ldots, r_{\eta}; \eta \in H)$  are non-negative powers of some positive integer  $n_1$ . Then there exists a field K with the properties indicated in theorem 1 such that  $e(v) \leq n_1$  for all  $v \in S_K \setminus H_K$ .

For example, there exists a field extension K of  $\mathbb{C}(z)$  of degree 16 with the following properties: There are exactly 2 (resp. 1, resp. 11) points of  $S_K$  lying over the point 0 (resp. 1, resp.  $\infty$ ) of  $S_0$ , with ramification indices 8, 8 (resp. 16, resp. 4, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1), whereas all other branch points of  $S_K$  have ramification index 2.

We are going to show that we may prescribe, in addition to the ramification indices  $e(\eta, 1), \ldots, e(\eta, r_{\eta})$ , the initial parts of the *Puiseux* series  $P_{\eta,i} = \sum_{q=-s}^{\infty} \omega_{\eta,i,q} \cdot (z-\eta)^{q/e(\eta,i)} (i=1,\ldots,r_{\eta})$  for a generator w of

K over  $\mathbb{C}(z)$ . To make this statement more precise, we recall that for any  $\zeta \in S_0$  the field  $M_{\zeta}(S_0)$  of germs of meromorphic functions at  $\zeta$  contains  $M(S_0)$  and is contained in the quotient field  $\mathbb{C}((z-\zeta))$  of the ring  $\mathbb{C}[[z-\zeta]]$  of formal power series in  $z-\zeta$ , with coefficients in  $\mathbb{C}$ . Similarly, for any finite extension K of  $\mathbb{C}(z)$  and any  $v \in S_K$ , the field  $M_v(S_K)$  of germs of meromorphic functions at v contains  $M(S_K)$  and is contained in  $\mathbb{C}((t\{v\}))$ , where  $t\{v\}$  is an e(v)-th root of z-z(v). The containment  $\mathbb{C}((z-z(v))) \subset \mathbb{C}((t\{v\}))$  implies the imbedding of  $M_{z(v)}(S_0)$  in  $M_v(S_K)$  by  $f \to f \circ z$ , and we have  $[M_v(S_K): M_{z(v)}(S_0)] = e(v)$ . In particular, any element  $c \in K = M(S_K)$  may be represented by a Laurent

series in 
$$t\{v\}$$
, say  $c = \sum_{q=-s}^{\infty} \gamma_{v;q} \cdot (t\{v\})^q$ , which is sometimes written as a Puiseux series  $\sum_{q=-s}^{\infty} \gamma_{v,q} \cdot (z-z(v))^{q/e(v)}$ .

<sup>3</sup>For a résumé without proofs see [3].

Using a theorem on valuations ([2], Satz 7, or [4], theorem (25.7))<sup>3</sup>, which strengthens the above mentioned results obtained by HASSE and KRULL, we get:

Theorem 2. With the same hypotheses as in theorem 1, let  $\Omega_{\eta,i} = (\omega_{\eta,i,q})_{q \in \mathbb{Z}} \in \mathbb{C}^{\mathbb{Z}}$  such that  $\{q \in \mathbb{Z} \setminus \mathbb{N} \mid \omega_{\eta,i,q} \neq 0\}$  is finite  $(i=1,\ldots,r_{\eta}; \eta \in H)$ . Then for any  $q_0 \in \mathbb{Z}$  there exists an algebraic function w such that  $K = \mathbb{C}(z,w)$  has the properties indicated in theorem 1 and

$$w - \sum_{q \in \mathbb{Z}} \omega_{\eta,i,q} \cdot t_{\eta,i} \in t_{\eta,i}^{q_0+1} \cdot \mathbb{C}[[t_{\eta,i}]]$$

for any  $\eta \in H$  and  $i \in \{1, \ldots, r_{\eta}\}$ , where  $t_{\eta,i} = t\{v_{\eta,i}\}$ .

In other words, the coefficients of the Laurent series in  $t\{v_{\eta,i}\}$  of some generator w of K over  $\mathbb{C}(z)$  coincide with those of the prescribed series  $\sum_{q\in\mathbb{Z}}\omega_{\eta,i,q}\cdot X^q$  up to the  $q_0$ -th coefficient, for any  $\eta\in H$  and  $i=1,\ldots,r_n$ .

In the special case n=1, theorem 2 is well known. It affirms the existence of a rational function  $w \in \mathbb{C}(z)$  which has prescribed Laurent series at any  $\eta \in H$ , up to the  $q_0$ -th coefficient.

Most part of the results presented in this paper can be easily generalized to algebraic functions over an arbitrary field  $K_0$  (instead of  $\mathbb{C}$ ).

## **Bibliography**

- [1] C. CHEVALLEY Introduction to the Theory of Algebraic Functions of One Variable. Math. Surveys, Am. Math. Soc., New York 1951
- [2] O. ENDLER Endliche separable Korpererweiterungen mit vorgeschriebenen Bewertungsfortsetzungen. I. Abh. Math. Sem. Hamburg 33 (1969), 80-101
- [3] O. ENDLER Sôbre o prolongamento de Valorizações. Atas do Sétimo Colóquio Brasileiro de Matemática, São Paulo 1971, 33-37
- [4] O. ENDLER Valuation Theory. To appear in Springer-Verlag
- [5] R. C. GUNNING Lectures on Riemann Surfaces. Princeton University Press, Princeton, N. J., 1966
- [6] H. HASSE Zwei Existenztheoreme über algebraische Zahlkorper. Math. Annalen 95 (1925), 229-238
- [7] W. KRULL Uber einen Existenzsatz der Bewertungstheorie. Abh. Math. Sem. Hamburg 23 (1959), 29-35
- [8] S. LEFSCHETZ The Early Development of Algebraic Topology. Boletim da Sociedade Brasil. de Matemática 1, N.º 1(1970), 1-48

Instituto de Matemática Pura e Aplicada do CNPq, Rio de Janeiro, and Mathematisches Institut der Universität Bonn