A note on random sums

by Pedro Jesus Fernández

In [1] the following theorem was proved.

Theorem 1. Suppose that $X_1, X_2, ...$ is a sequence of independent and identically distributed random variables with finite mean $m \neq 0$.

Suppose also that τ_n is a sequence of positive integer valued random variables for which

(I)
$$\lim_{n \to \infty} P \left[\frac{\tau_n}{a_n} \le x \right] = G(x), \quad G(+0) = 0$$

where $0 < a_n \to +\infty$ and G is a distribution function then

$$\lim_{n \to \infty} P \left[\frac{\sum_{i=1}^{\tau_n} X_i}{ma_n} \le x \right] = G(x)$$

The purpose of this note is to give a short proof of a generalization of this result.

Note that the condition (I) implies $\tau_n \xrightarrow{P} + \infty$. In what follows we use the notation of [2], Chapter 1. Since there exist applications to sequences in C[0,1] and the proof is essentially the same as in the case of real valued random variables we take random elements taking values in a separable normed space E.

Theorem 2. Let $\{Y_n\}_{n=1,2,...}$ be a sequence of random variables taking values in E and suppose $Y_n \xrightarrow{a \cdot s} a$ (a point of E) and $\frac{\tau_n}{a_n} \to \gamma$ with $P[\gamma > 0] = 1$, $0 < a_n \to +\infty$ then

$$Y_{\tau_n} \frac{\tau_n}{a_n} \to a\gamma$$

Proof: By using theorems 4.4 and 5.1 of [2] is enough to prove that $Y_{\tau_n} \xrightarrow{P} a$. Given $\varepsilon > 0$ and $\delta > 0$ there exist A and n_0 such that $P(A) < \varepsilon$ and for all $\omega \in A^c$ and $n \ge n_0 \| Y_n(\omega) - a \| < \delta$ (See theorem A, Sec. 21 of [3]; the proof is essentially valid in general).

$$P[\|Y_{\tau_n} - a\| \ge \delta] \le \varepsilon + P[A^c, \|Y_{\tau_n} - a\| \ge \delta]$$

$$\le \varepsilon + P[\tau_n < n_0]$$

Therefore

$$\lim_{n} \sup P[\|Y_{\tau_n} - a\| \ge \delta] \le \varepsilon$$

for all $\varepsilon > 0$ and $\delta > 0$. This clearly implies $Y_{\tau_n} \xrightarrow{P} a$.

Note: The conclusion of Theorem 2 can not be strengthen to with the Borel σ -field and the Lebesque measure, $Y_1 = 1$, $Y_k = -1$ for all $k \geq 2$,

$$\tau_{j}(\omega) = \begin{cases} 2^{i} \omega \in [0, 1) - \left[\frac{j-2^{i}}{2^{i}}, \frac{j-2^{i}+1}{2^{i}}\right) \\ 1 \omega \in \left[\frac{j-2^{i}}{2^{i}}, \frac{j-2^{i}+1}{2^{i}}\right) \end{cases}$$

for
$$2^{i} \le j < 2^{i+1}$$
 $i = 0, 1, ..., j = 1, 2, ...$
 $a_{j} = 2^{i}$ iff $2^{i} \le j < 2^{i+1}$

and

the hypothesis of theorem 2 are satisfied but $\{Y_{\tau_n}\}_{n=1,2,\cdots}$ are precisely the Rademacher functions. Also by using these functions is not difficult to give an example to show that the condition $Y_n \xrightarrow{a \cdot s} a$ in Theorem 2 can not be changed to $Y_n \xrightarrow{P} a$.

References

- [1] J. MOGYORÓDI. A remark on limiting distributions for sums of a random number of idependent random variables. Rev. Roum. Math. Pures et Appl. Tome XVI. N.º 4. P. 551-557 (1971).
- [2] P. BILLINGSLEY. Convergence of probability measures. John Wiley \hat{E} Sons, Inc. (1968).
- [3] PAUL R. HALMOS. Measure Theory. D. Van Nostrand Company, Inc. (1950).

Instituto de Matemática Pura e Aplicada