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Abstract. The method of moving planes and the sliding method are used in proving mono-
tonicity or symmetry in, say, the z; direction for solutions of nonlinear elliptic equations
F(z,u,Du, D?u) = 0 in a bounded domain 2 in R™ which is convex in the z; direction.
Here we present a much simplified approach to these methods; at the same time it yields
improved results. For example, for the Dirichlet problem, no regularity of the boundary is
assumed. The new approach relies on improved forms of the Maximum Principle in “narrow
domains”. Several results are also presented in cylindrical domains — under more general
boundary conditions.

1. The Methods for Simple Equations in General Domains

1.1. Symmetry in general domains

The moving plane and the sliding methods are techniques that have been used
in recent years to establish some qualitative properties of positive solutions of
nonlinear elliptic equations like symmetry, monotonicity etc... For instance, they
are used to prove monotonicity in, say, the z; direction of scalar solutions of
nonlinear second order elliptic equations in domains 2 in R™ (and even parabolic
equations). The essential ingredient in their use is the maximum principle. Both
methods compare values of the solution of the equation at two different points. In
the first method one point is the reflection of the other in a hyperplane z3 = A,
and then, the plane is moved up to a critical position. In the other, the second
point is obtained from the first by sliding the domain in the z;-direction. Again,
the domain is slid up to a critical position.
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The purpose of this work is to present a considerably simpler approach to
these methods for nonlinear elliptic equations of the type

F(z,u,Du,D*u)=0.

It also yields extensions of the previous results.

On the Method of Moving Planes and the Sliding Method

The moving plane method goes back to A. D. Alexandroff (in his study of surfaces
of constant mean curvature) and then J. Serrin [S]. In [GNN1], it was used to prove
monotonicity of positive solutions vanishing on 92 and, as a corollary, symmetry;
[GNN2] extended these techniques to equations in all of R™. Since then, further
extensions and generalizations have been made. We mention a few. In [BNI-
2] (where other references may be found, as well as in [GNN1]) solutions were
no longer required to be constant on the boundary; also, more general equations
were treated. Subsequently [L1-2] extended and simplified some of the results
there. In [BN1-2] the sliding method was introduced — first for infinite cylinders;
L. Caffarelli then suggested its use for finite cylinders. (Both methods will be
described in full detail.)

In all of these papers the maximum principle plays, as we said, the crucial
role, but the papers had to rely on many forms of the maximum principle. These
included the Hopf lemma at the boundary and its refinement at corners — the
method of moving planes indeed always forces one to deal with domains having
corners (see [S] and [GNN1].) Another basic forni of the maximum principle
which is sometimes used in order to get the methods started is the maximum
principle for narrow domains. In addition, [BN1] introduced the use of maximum
principles for degenerate parabolic equations in these problems. The various forms
of the maximum principle may be found in [GNN1] and [BN1]. '

However, up o now, because of the difficulties at corners, certain simple
domains could not be treated. For example, a simple and basic result of [GNN1]
is the following.

Theorem 1.1. In the ball Q : |z| < R in R", let u be a positive solution
belonging to C*(Q) of

(.1} Au+ f(u)=0 with u=0 on 9.
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Here f € CY. Then u is radially symmetric and the radial derivative satisfies
w1 < Bfor: Quir <ol

A more general form of this result is the following, also proved in [GNN1].

Theorem 1.2. Consider a domain Q0 in R™ of class C* which is convex in
the =1 direction and symmetric with respect to the plane 1 = 0. Let u
be a positive solution belonging to C*(Q) of (1.1) with f € C*. Then u is
symmetric with respect to zy, and uz, <0 for 0 < zy in Q.

At the time of this result, the question came up of proving the corresponding
symmetry (in each argument) for {2 a cube. The method failed — because of
the corners — and the problem even in the simple case of the cube has remained

open until now.

Recently we found a considerable simplification of the method and the purpose
of this paper is to describe this argument and use it to rederive and improve various
results of [GNN1], [BN1] and [L1], and to trcat more general domains, including
the cube. For instance, in the case of (1.1), here is the general result of symmetry
in any domain and with more gencral regularity assumptions on the function.

Theorem 1.3. Let Q be an arbitrary bounded domain in R™ which is convex
in the = direction and symmetric with respect to the plane z, = 0. Let u be
a positive solution of (1.1) belonging to Wli:‘(ﬂ) N C(Q). We assume that f
is Lipschitz continuous. Then u is symmetric with respect to xy, and ug, <0
for 0 < zy in .

Using the new method, we give a short proof of this result in section 1.3.
Much more gencral equations — in fact fully nonlinear equations— are considered
later on, in section 2.

The new idea enables us to avoid careful study of the boundary: we no
longer (rather, hardly) need the Hopf lemma or its refinements at corners. Also,
the previous application of these methods involved careful examination of various
cases of boundary points; we now avoid this. Instead we use an improved form
of the maximum principle in “narrow domains”.

1.2. Maximum principle in “narrow domains”.

In our treatment it is essential to find conditions ensuring that the maximum
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principle holds. In particular, to consider such general domains as in Theorem 1.3,
we need generalized forms of the Maximum principle. The crucial observations
enabling us to treat such general domains were furnished by S. R. S. Varadhan
— to whom we are extremely grateful.

Consider a second order elliptic operator in a bounded domain 2 C R™:
(P L="M4'¢ = ai(x)0;; +5:{£)0; + '¢(x)
with L coefficients and which is uniformly elliptic:
(1.3)  colé® < aij(2)&& < Colél*, €0, Co>0, VEER",
and satisfying

(1.4) VI, el <.

The functions on which L will be applied will always be assumed to belong to
2,n
W, (Q).

Definition. We say that the maximum principle holds for L in 2 if

(1.5) Lz>0 in Q
and
(1.6) Hz _, an?@ <0

implies z < 0 in (2.
The following are three well known sufficient conditions:
i) ¢ < 0 (see [Bo], [L], [BN1] and Theorem 9.6'in [GT]).

ii) There exists a continuous positive function g in W %= (Q)NC (Q) satisfying
Lg < 0. Indeed z/g satisfies a new elliptic inequality like (1.5) but with a new
coefficient ¢ which is nonpositive.

iii) 2 lies in a narrow band o < z; < a + €, with € small. In this case, one
constructs a function g(z;) satisfying the conditions of ii).
Varadhan’s first observation is the following:

Proposition 1.1. Assume diam Q < d. There exists 6 > 0 depending only on
n, d, co and b, such that the maximum principle holds for L in €1 provided

(1.7) meas 1= |0 <.
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In the proof only ¢ < b is required, rather than le| < b. We have just found
out that a similar obscrvation had already been made by A. Bakelman [B]. We
also refer the reader to [BNV] for various generalizations and applications of this

type of results.

The proposition follows easily from the theorem of Alexandroff, Bakelman
and Pucci which we use in the following form: If ¢ < 0 and z satisfies Lz > f
and (1.6), then

(1.8) supz < C||fllzn
Q

where C depends only on n, co, b and d.

This result is proved in a more general form in Theorem 9.1 in [GT]. It is
assumed there that z € C (ﬁ) but, as they remark, the argument works under
condition (1.6).

Proof of Proposition 1.1. Consider z satisfying (1.5), (1.6). We write (1.5) in
the form
(M—-c)z>—ct2"

where ¢ = ¢t — ¢, ¢t = max{c,0}, and simply apply (1.8). It yields
supzt < C b‘ﬂ|1/n supzt
) Q
and it follows that sup z < O incase C b 6/* < 1.0

To illustrate the new ideas, including how to use this proposition, we give now
our short proof of Theorem 1.3, that is, of monotonicity (and symmetry) for (1.1)
in any bounded domain 2 which is convex in the z; direction (and symmetric
about the plane z; = 0) — for example, a cube.

1.3. Proof of Theorem 1.3
With z = (z1,y) € Q we will prove

u_1>0 if 1 <0
and

(1.9) u(zy,y) < u(zl,y) if z3 <2y, z1+2;<0.
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Indeed, using (1.9), and letting =} * —z1, we find by continuity,
(1.10) u(z, ) <u(~z1,y) if £1<0.

Since we may replace z; by —z; and use u(—zy,y), we see that equality must
hold in (1.10), i.e., we obtain the symmetry of v in z;1. As we will see, that u; > 0
if z; < 0, follows easily from (1.9). In the following, we let —a = infzcq 1.

We now start the method of moving planes: for —a < A < 0, let T be the
plane z1 = A, and
S (A)sH{k'E Q oy AY .
In X(X) set
v(z1,y) = u(2A — z1,9) , w(z,A) =v(z) - u(z) .

Since f is Lipschitz we see that w satisfies an equation
Aw+ c(z,\)w=0 in %(A),

wz 0 on d%(N),

for some bounded function ¢(z, ), = € €, with |¢| < b ,Vz € B(A), VA. The
boundary inequality in (1.11) holds because w = 0 on T and u = 0 on 2. To

(1.11)

prove (1.9) we wish to get
(1.12) w(z,\) >0 for z€ X(A).

It then follows from the Hopf lemma that on T N Q, where w = 0, we have
0 > wgy, = —2u;. Thus once we have proved (1.12) our proof of the theorem

will be complete.

Now for 0 < X + a small, the domain () is narrow in the z;-direction
and it follows from Proposition 1.1, (or the corollary on page 213 of [GNN1] and
remarks on page 24 of [BN1]) that the maximum principle holds, so that we may
infer w > 0 in £(A). In fact we are in case iii) mentioned earlier. Let (—a,u)
be the largest open interval of values of A such that (1.12) holds. We want to
show that u = 0. We suppose g < 0 and argue by contradiction. By continuity,
then, w(z,u) > 0 in (). Since w # 0 on dX(u) it follows by the usual
maximum principle that w > 0in 3(u). We will show that for all positive small
€, w(z,u+e€) >0in I+ e).

Here is the new idea. Fix § > 0 as in (1.7) (Proposition 1.1.) Let K be
a closed set in X(u) such that |E(u) \ K| < 6/2. Clearly, by compactness,
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w(z, u) > 0 for z € K. Hence, by continuity it follows that Ve with 0 < € < €
small, the following hold: |X(px + €) \ K| < 6 and

w(z,u+€ >0 on-K.

In the remaining part 3 of B(u + €), w = w(z, u + €) satisfies V

(1.13) {Aw+cw=0, in B=F(u+e\K,

w ; 0 on 8% .
here ¢ = ¢(z,p + €). Indeed, the boundary inequality in (1.13) follows from

w > 0 on d%(u + €) by construction (since v = 0 on 9, and w = 0 on Ty4)
and from the fact that w > 0 on 0 K.

Applying Proposition 1.1 in 33 we infer that w > 0in 3. Hence w(z, ute) >
0 in B(u + €). But this contradicts the maximality of the interval (—a, ).

Finally we show that u; > 0 if z; < 0. Since w(z,A) > 0 in X(X) and
w(X,y) = 0, we may apply the Hopf lemma at the planar boundary, z; = A, of
¥(A) and conclude that wg, (A,y) = —2uz, (A, y) < 0— forevery A < 0.0

1.4. The sliding method in general domains

In the sliding method introduced in [BN2] one compares translations of the func-
tion rather than reflections. In this context too, the approach based on the maxi-
mum principle for “narrow domains” yields not only a simpler but a more general
result. To illustrate the main idea we now state and prove a monotonicity result
for equation (1.1), but with other boundary conditions, in an arbitrary domain and
with general regularity assumptions on the solution. In section 2 we treat fully
nonlinear equations.

Theorem 1.4. Let Q be an arbitrary bounded domain of R™ which is convex

in the zy-direction. Let uw € WE™(Q) N C(Q) be a solution of

loc

(1.14) Au+ f(u)=0 in Q

(1.15) u=¢ on Of.

The function f is supposed to be Lipschitz continuous. Here we assume that
for any three points ' = (z},y), z = (z1,y), =" = (2}, y) lying on a segment
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parallel to the zi-axis, y < 21 < zf, with «',z" € 911, the following hold

(1.16) o(z') < u(z) < p(") if z€Q
and
(1.17) o) < p(z) < p(z") if z€00.

Then, u is monotone with respect to xy in (L
u(z1 +7,y) > u(z,y) for (z1,9) , (z1+7y)€Qand 7>0.

Furthermore, if f is differentiable, then ugz, > 0in 1. Finally, u is the unique
solution of (1.14), (1.15), in W2(Q) n C(Q) satisfying (1.16).

c

Condition (1.17) requires monotonicity of ¢ on any segment parallel to the
z1-axis lying on 9. It is obviously a necessary condition for the result to hold.

Proof. Theorem 1.4 is proved by using the sliding technique. For 7 > 0, we let
u"(z1,y) = u(z1 + 7,y). The function u” is defined on the set Q7 = {1 — 7e;
obtained from 2 by sliding it to the left a distance r parallel to the z1-axis. The
main part of the proof consists in showing that
(1.18) u">u in Q'NQ forany 7 >0.
Indeed, (1.18) means precisely that u is monotone increasing in the z; direction.
Set w'(z) = u”(z) — u(z) ie. w(z1,y) = u(z1 + r,y) — u(z1,y); w’ is

defined in D™ = 2N Q. As before, since u” satisfics the same equation (1.14)
in Q7 as does u in €, we see that w7 satisfies an equation

Aw™ +c"(z)w” =0 in D"
(1.19) { (2) .

w’ >0 on D"
where ¢ is some L® function satisfying |c"(z)| < b, Vz € D7, V7. The
inequality on the boundary D" C a0 U Q7 follows from the assumptions

(1.16)-(1.17).
Let 7o = sup{r > 0 ; D" # @}. For 0 < o — 7 small, | D"| is small, that is
D7 is a “narrow domain”. Therefore, from (1.19) it follows that forO<m-—r1

small, w™ > 0in D”.

Next, let us start sliding ™ back to the right, that is we decrease 7 from 7g
to a critical position 7 € [0,70): let (r,70) be a maximal interval, with 7 > 0,
such that for all 7 in 7 < 7' < 7, w" > 0in D™ . We want to prove that 7 = 0.
We argue by contradiction, assuming 7 > 0.
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By continuity, we have w” > 0 in D". Furthermore, we know by (1.16)
that for any z € QN D", w'(z) > 0. It follows easily that w™ # O in every
component of the open set D”. By the strong Maximum Principle (see [GNNI1]) it
follows from (1.19) that w™ > 0 in D". Indeed if z = (z1, y) is any interior point
of D7, then the half line {z, + ¢,y; ¢t > 0} hits D" at a point Z € Q" N .
This point Z is on the boundary of that component of D" to which z belongs,
and u(z) > 0.

Now choose § > 0 as in Proposition 1.1 and carve out of D" a closed set
K c D7 such that |D™ \ K| < §/2. We know that w™ > 0 on K. Hence,
for small ¢ > 0, w"™ ¢ is also positive on K. Moreover, for € > 0 small,
|D™¢\ K| < §. Since (D"~ ¢\ K) c dD"¢U K, we see that w™~¢ > 0 on
d(D7¢\ K). Thus, w" ¢ satisfies
{ Aw™ ¢+ (z)w™ ¢ =0 inD\K

w¢>0 ond(D"¢\ K) .
It then follows from Proposition 1.1 that w”™ ¢ > 0in D"~¢\ K and hence in all
of D™"€. We have reached a contradiction and thus proved that u is monotone:

(1.20)

u">u in D", Vr>0.
(Again this follows from equation (1.19) since we know w” > 0 and w”™ # 0
which implies w™ > 0.)
If, furthermore, f is differentiable, u,, satisfies a linear equation in (1, by
differentiation of (1.14):
Aug, + f'(u)ug, =0 in Q
Since we already know that uz, > 0, u,, # 0, we infer from this equation that

uz, > 0in (2.

To prove the last assertion of the theorem suppose v is another solution. We
argue exactly as before but instead of w™ = u™ — u we now take w”™ = v — u.
The same proof shows Lhat‘vT > u V7 > 0. Hence v > u, and by symmetry we
have v = u. O

~1.5. Fully nonlinear equations

In the remainder of the paper we will primarily consider real functions u in a
bounded domain Q in R”, uw € C%(Q2) N C(Q), which are solutions of a fully
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nonlinear elliptic equation
(1.21) F(z,u, Du,D*u) =0.

Q is always assumed to be convex in the z;-direction and our aim is to prove

monotonicity of w in z; in all or part of (2.

The function F(z,u,p;,p;k) (here 4,5,k = 1,... ,n) is always assumed to
be continuous in all arguments for z € Q, (u,p1,...,pn) lying in a convex
region in R™*1, and for {p;x} belonging to a convex region in the space of
symmetric matrices. In addition, we assume that the derivatives

oF
Opjik

are also continuous there and that the equation is uniformly elliptic, i.e., for some

k= 155 05 1

b

constants cq,Cg > 0,
oF

(1.22) col” < 3 5—&ié < Colél*
Pjk

Assume furthermore that, here p = (p1,... ,Pn)

(1.23)  F is Lipschitz-continuous in (p, u) with Lipschitz constant b > 0.

We will concentrate more on the sliding method since we will use some of
the results in [BN4] (see also [BN3]). In Theorems 4.2 and 4.3 of [BN1] we used
the sliding method to prove monotonicity. We have discovered however that the
proofs are not quite correct: Proposition 1.1 of [BN1] does-not apply as stated.
In section 4 we will present corrected and improved results.

The sliding method is used here to prove zi-monotonicity of w in all of (1,
and uniqueness of u, and when applying it we assume, as in Theorem 4.1 in
[BN1]:

(1.24) F(=,u,pi,pjk) is nondecreasing in z; for p; > 0.

In using the method of moving planes, however, we will usually prove z;-
monotonicity of u only in the region in {2 where z; < 0, and in place of (1.24)
we assume as in [BN1] and [L1]: for z; < 2}, z1 + z} <0 and p; > 0,

F(xla y;“;Pi,ij)

(1.25) ‘
SF(xla Y,U, —P1,P2,--- yPn, P11, —P125. -+ > ~Pln; P22, - - 7pnn)
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We will first show in section 2 that the arguments used in proving Theo-
rems 1.3 and 1.4 carry over directly to the Dirichlet problem in any bounded
domain 2 which is convex in the zi-direction in case (1.24) or (1.25) hold for
all p1, not merely for p; > 0.

As in [BN1], the fact that the condition (1.24) or (1.25) is assumed-only for
p1 > 0 leads us to the use of the maximum principle for degenerate parabolic
equations. In this connection we were led to a related question for families of
elliptic operators. S.R.S. Varadhan gave an elegant affirmative answer to this
question and we will present this result in section 3. It deals with the construction
of some auxiliary function; earlier, we had constructed such functions, but only
for fairly regular domains.

1.6. Combining sliding and moving planes methods ?

It is natural to ask whether the moving planes and sliding methods can be sub-
sumed in a more gencral one which uses some combination of conditions (1.24),
(1.25). (In Theorem 2.5 we usc the method of moving plancs to prove mono-
tonicity in all of €2 under suitable conditions.)

Even in one dimension (our results also hold for n = 1), for a simple ordinary
differential equation,

(1.26) i+ b(z)u+ f(u) =0 on (—a,a)
the methods lead to different results:

Theorem 1.5. Let u be a C* solution of (1.26) in (—a, a) which is continuous
on [—a,al, and satisfies

(1.27) u(—a) < u(z) < u(a) for —a<z<a.

Suppose b is continuous and f Lipschitz continuous. Then u is strictly in-
creasing in x under any one of the following conditions:

i) b <0on (—a,a)
@ii) b >0 on (—a,a)
(iii) b is nondecreasing.

The case (i) is contained in Theorem 3.2 of [BN1] (or Theorem 2.5 here), as
is the case (ii) if z; is replaced by —z3 and u by —u, while case (iii) is contained
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in Theorem 4.1 of [BN1], or in Theorem 2.1 here. In case (iii), any solution

satisfying (1.27) is also unique.

We conjectured that Theorem 1.3 holds if in place of (i), (ii) or (iii) one
assumes the following single condition. If b(z) > O for some z in (—a,a) then
b(z') > 0 if 2’ > z in (—a,a). Alan Weinstein then found a direct proof.
For our fully nonlinear equations, though, we do not know how to formulate a

corresponding conjecture.

1.7. Organization of the paper

In Section 2 we state our monotonicity results for fully nonlinear elliptic equations.
In addition to the Dirichlet problem in a general domain, we consider also a
cylinder with generators parallel to the z1-axis. On the curved side of the cylinder
we consider more general conditions than Dirichlet — for application in [BN3-4].
In that same section, as mentioned, we also show that the proofs of section 1 carry
over easily to the fully nonlinear equations under slightly stronger hypotheses (if
conditions (1.24) or (1.25) hold for all py). Proofs of the general results are given
in sections 5 and 6. In Section 3 we first present a preliminary useful result due to
Varadhan concerning the construction of some auxiliary function. This is related
to the maximum principle for a family of operators. In section 4, we derive some
auxiliary results (some from [BN1]) for parabolic inequalities. In the last section,
as an application of Theorem 2.2, we present an existence and uniqueness theorem
for a scmilinear equation in a finite cylinder. It will be used.in [BN4].

For the reader who just wishes to understand th¢ method for the Dirichlet
problem we suggest he skip Theorems 2.4, 2.5 and Lemma 3.1 since their proofs
arc more intricate.

We wish to express our thanks to L. Caffarelli, as well as to S. R. S. Varadhan,

for several very useful discussions.

2. Principal Results and Proofs under Relaxed Conditions

Throughout the paper, ) is always assumed to be a bounded domain which is
convex in the z; direction. u is assumed to be in C%(€2) N C(Q) and to satisfy
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a nonlinear elliptic equation:
(2.1) F(z,u,Du,D*u)=0 inQ,

with F satisfying conditions (1.22), (1.23). We begin with the sliding method for
proving monotonicity in z;. The first result is the general form of Theorem 1.4.
It refers to a solution of the Dirichlet problem: wu satisfies (2.1) and

(2.2) u=¢ ondfl, with ¢ C(9).

Theorem 2.1. Assume F satisfies (1.24) and assume
If (z1,9) , (1, y) lie on 8Q, =y < =, then ¢(z1,y) < (27, y)
and if in addition the interior of the segment joining

(2.3)

(z},y) to (z1,y) belongs to ) then for z on it,

$(z1,9) < u(z) < 8(z71,y) -
Then wu is strictly increasing in zy. Furthermore it is the unique solution
satisfying (2.2) and (2.3). Finally, if F (and hence u) is smooth, then uy > 0
in €.

Remarks. This is an improved form of Theorem 4.3 of [BN1] in that we no longer
require Hypothesis 3 there. Moreover, in the (incorrect) proof of Theorcm 4.3
in [BN1] we relied on Proposition 1.1 of that paper. But the proposition cannot
really be applied in the region U of page 265 of [BN1]. In case 0 < o+ A small,
the region is narrow in the zi-direction but not in the sense of Proposition 1.1
there. Rather, it is narrow in the sense that it is convex in the z;-direction, and
the length of any interval in U parallel to the z; axis is at most a + A, which is
small.

In place of Proposition 1.1 of [BN1] we will, at a certain point, make use
of an auxiliary function with special properties — as described in Theorem 3.1
below.

Next, we present the general form of Theorem 1.3. In case 92 is smooth
and u € C»*(Q), a > 0 it is due to Li, Cong Ming (Thcorem 3.1 in [L1]). It
is an improvement of Theorem 2.1’ in [GNN1]. Li’s proof is fairly intricate. It
involves considerable use of the condition (1.25) and careful treatment of corners
while ours does not. We suppose —a = min{z;; =z € Q} and assume

(2.4) (Z1,9) €, 2y € O=x(2),9) €N for 3y <z < —24l.
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Theorem 2.2. In Q consider a solution u € C*(£2) N c(@) of 2.1). Fis
assumed to satisfy (1.25). Assume also:

(25) If (Il,y) = 8ﬂ, (xll: y) = Q; 1 < I’Ia then u(zl,y) < u(xllay) g

(2.6) {If(:tl,y) , (z},y) €902, T < x4, 71+ 2§ <O then
u(xh y) S u(xlla y)

Then, for (z1,v), (21,y) € O, z1 < 2y, 21+ 27 <0,

(2.7) u(z1,y) < u(zy,y) and ui(z1,y) > 0.

Furthermore if uy = 0 at some point (0,y) € (1 then u is symmetric in x1.

The conclusion (2.7) of Theorem 2.2 asserts z1-monotonicity in only part of
the domain €2. In Theorems 3.2 and 3.3 of [BN1] we also showed how to use the

method of moving planes to obtain full monotonicity in this situation. Here is an

improvement:
Theorem 2.3. Theorem 2.1 holds if condition (1.24) is replaced by (1.25)
which is assumed to hold whenever zy < 3 and py 2 0. In addition, u1 > 0
in €1

Before stating other results it is worthwhile pointing out that the proofs of The-
orems 1.3 and 1.4 carry over immediately to Theorems 2.2 and 2.1, respectively,
if we assume that (1.24) and (1.25) hold for all py, not merely for py > 0.

Proof of Theorem 2.2 in this case. We follow the proof of Theorem 1.3. With
$(), v and w(z, ) as defined there, we have to prove that (1.12) holds,i.e.

(2.8) w(z,A) >0 for z€ 2(A), A<0.

We no longer have the equation (1.13) for w, but instead w satisfies an elliptic
incquality which we now derive. Tn 5(X), v(z1,y) = u(2X — 1, y) satisfies

(2.9) F(2/\ —Z15Y, Y, —V1,V2,.-. ,Un, V11, —V12y. - ,—'Uln,vzg, %3 ): 0.
It follows from (1.25) — assumed to hold for all p; — that
(2.10) F(z1,y,v,vi,vk) <0

Subtracting the equation (2.1) and using the integral form of the theorem
of the mean we find that w(z,A) = v — u satisfics an clliptic inequality similar
to (1.5).

(2.11) Lw= a,-j(a:,)\)wzizj + b,-(:c,/\)wzi +¢(z,\)w <0,
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with coefficients satisfying conditions (1.3), (1.4). Furthermore
(2.12) w(z,A) 20 on dT(A).

The proof of Theorem 1.3 now just carries over, with the equation in (1.13)
replaced by the inequality (2.11). The last assertion in Theorem 2.2 follows from
the Hopf lemma. For if u;(0,y) = O then in %(0), w(=,0) satisfies (2.11), it
has a minimum at the boundary point (0,y) and there, w;, = —2u; = 0. Since
w(z,0) > 0, it follows by the Hopf lemma that w(z,0) = 0 — which implies
the symmetry of u. O

Proof of Theorem 2.1 in case (1.24) holds for all p;. Again we just follow
the proof of Theorem 1.4. With D7, u” and w" as in that proof we find that in
D", w" satisfies, in place of the equation (1.19), an elliptic inequality of the form
(2.11). Namely v = u” satisfies
F(zy +7,y,v,vi,v%) =0.
Condition (1.24) for all p; then yields
F(mla Y,, ’U,‘,’Ujk) < 0.

Arguing as in the preceding proof we sce that in D7, w” satisfies (2.11). The
remainder of the proof of Theorem 1.4 is then easily adapted.

We now continue with general results.

We take €2 to be a finite cylinder and consider more general boundary condi-
tions.

(2.48) =8, ={z=(e1y) ER"; |21| <0, § = (28, e 5P ) S0}

here w is a bounded domain in R™1, with smooth boundary; we denote by v the
exterior unit normal to € (and to w) at a point z € 9€1 with —a < z1 < a. We
consider a function u € C2(Q2) N C1((~a,a) x @) N C(Q2) which satisfies (2.1)
in Q and nonlinear boundary conditions:

(2.14) o(z1,y,u,Vu)=0 for —a<z3<a,y€dw,

{2.15) w(—a,y) =¥1(y), wula,y) =12(y), Vyew.
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We assume that
P1(y) < u(z1,y) < ¢2(y) for—a<zi<a,ycw
(2.16) and V z; in (—a,a) , 3y €w such that ¥;(y) < u(z1,y),
orVzjin (—a,a) , 3y €w  such that u(zy,y) < ¥a(y) .
We suppose that o(z, u, p), as well as oy, Vpo, are continuous in all arguments
for (u,p) contained in a convex region in R**! and bounded in absolute value
by b. In addition we assume that for —a < z; < a, y € dw,

(2.17) 0,20, v-V,0>0 and o,+v-V,yo>0

and (analogous to (16) in [L1] where, however, ¢ is assumed to be independent
of py):

(2.18) o(z1,Yy, u,p) is nonincreasing in z; for p; > 0 .

Theorem 2.4. (i) Assume the conditions above and assume F satisfies (1.24)
then, u is strictly increasing in zy. In addition, if F is also smooth then
uz, > 0in Q. (ii) The solution u is unique, i.e. if u is another solution
satisfying all the conditions above (in particular (2.16)) then u = u.

Remark. In case F is semilinear,
F= a,-]-(:z:)uzizj + f(z,u, Vu),

we need only suppose about u, that

loc

u € WEM(Q) N CH{(~a,a) x @} N C(0QY).
This may be scen from the proof.

The method of moving planes yields a similar but slightly different result in the
finite cylinder {2 = S,. Let u be a solution in 2 of (2.1) with the same regularity
properties as in Theorem 2.4, satisfying the nonlinear boundary conditions (2.14),
(2.15). Concerning F' and o, we assume they satisfy the same properties as in
Theorem 2.4, except that in place of conditions (1.24) we assume (1.25) and in
place of (2.18) we assume: /

forz; <2y, z1+2, <0 and 93 =08
o (21,4, 8,91, ,pn) > (2], ¥, %, —P1,P2," -+ s Ba)
This condition is assumed in [BN1] and [L1] (actually Li assumes o independent
of p1).

(2.19)
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Theorem 2.5. In addition to all the hypotheses above, in particular that F
satisfies (1.25), assume

u(—a,y) < u(z1,y) for —a<z1<a;
(£=t) Y zq in (—a,a), strict inequality holds for some y € w .
Then, for —a < z1 < zj,z1+ 2] <0,y Ew,
(2.21) u(zy1,y) < u(zy,y) and uy(z1,y) > 0.

Furthermore if u1(0,y) = O for some y € w then u is a symmetric function
of xy.
The following is an immediate consequence:

Corollary 2.1. Assume all the conditions in Theorem 2.5 and assume in

addition:
u(a,y) < u(zy,y) for —a<z1<a,y€Ew

(2.20)' R : ’
with strict inequality holding for some y, for each z; ,

as well as (2.19) with the opposite inequalities, in case z1 < =y, z1 + 27 > 0,
p1 > 0 — so equalities hold in case 1+ xy = 0. Then u is symmetric in x.

Proof. Fixing z; < 0 and letting z§} — —z1 in (2.20) we find
{2.22) u(z1,y) < u(—z1,y) for —a<z1 <0, yeEwW.

On the other hand conditions of the corollary enable us to apply the theorem to
the function v(zy,y) = u(—z1,y). But then (2.22) holds for v, which implies
that equality holds everywhere in (2.22). O

Remarks. In some cases, it is possible to reduce a problem where condition
(2.17) is not met to one where it is. Typically, this can be achieved through the
introduction of a function ¥ = x(y) > 0 of y alone and by working with the
function v = u/x instead of w.

General boundary conditions like (2.14) come up naturally in some applica-
tions. This is the case for the problem of solitary water waves. Symmetry and
monotonicity away from a single crest have been shown for the solitary water
waves problem by Craig and Sternberg [CS] using the moving planes method.
There, after a change of variable, the problem is reduced to an elliptic equation
in an infinite strip with nonlinear boundary conditions of the type (2.14). Li [L2]
has shown how a further change of unknown of the type v = u/x allows one to
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suitably modify this boundary condition in order to satisfy a condition of the type
(2.14).

Finally, here is the analogue of Theorem 2.3 for the cylinder S,. It is an
improvement of Theorem 3.3 of [BN1].

Theorem 2.6. Theorem 2.4 holds if condition (1.24) is replaced by (1.25)
which is assumed to hold whenever zi < zi and py > 0. In addition, u; > 0
in Q.

3. A Result of Varadhan

In this and the next section, we derive some auxiliary results which will be needed
in the proofs of some of the results of section 2. We start with a result of Varadhan
which shows how to construct a function ¢ in a given set, which is simultaneously
a “supersolution” for a whole class of elliptic operators. In the following, we set
B, = {|z] <r}.

Theorem 3.1. (Varadhan.). Given b > 1, 38 > 0 such that for every closed
set Q in By with measure < &, there exists a C* function g in By, with
1 < g < 2 such that for every positive definite matrix {a;;} with

(3.1) th(a,'j) 2 1%
one has
(3.2) a;jg;j(m)+b(|Vg|+g) <00 Vzeq .

Remark. We emphasize that g depends on the set @ but not on the operator
a;;0;; as long as (3.1) holds. In particular, it does not involve upper bounds on
the agj.

Proof. Let f be a positive C'* function on Bj satisfying

f>1 on @ and f<26.
B,

In B,, solve the Dirichlet problem for the Monge-Ampére equation

det(—u,-j) s oinkdBe
u=107" on @Bz
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There is such a unique, concave positive solution in Bz which belongs to C*°( Bs);
see [CNS] and references there, in particular [CY]. We now apply the Alexandroff,
Bakelman, Pucci inequality (which, incidentally, is also the main ingredient in the
proof of (1.8)): For some C = C(n),

lull Lo (B,) < C[/ det(—u;;) dz]
B,

< C(28)Hn .

1/n

Since wu is concave and positive it follows that

(3.3) u, |Vu|<C(28)Y" in By.

Using the arithmetic-geometric mean theorem we find for our {a;;},

_%“ij“ij > [det(—uy;) det(azj)]/"
(3.4) > [det(—u;)]™ by B.0),
=1 "one @

Set ¢ = 2bu + 1. Then
1<g<1+2C(26)/" <2 if 26C(28)Y" < 1.
On @ we have by (3.4) and (3.3),
ai;9i; + b(|Vg| + ) < —2bn + 4b*C(26)/" + b
< —b+ 4b*C(26)\/"
<0 if 4bC(26)/" < 1.
The theorem is proved if, for instance, we choose 6 so that

(3.5) 4bC(26)1/" = % .

4. Some auxiliary facts

To demonstrate the general results of section 2 we rely on Theorem 3.1. It is
used in proving Proposition 4.1 below. The setup is the following: Let V' be a
bounded domain in R*+1, with coordinates (z,t), lying in |z| < r, to <t < T.
With

Vii={z; (z,t) €V}
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we assume
(4.1) Ve cV,fort < a'.
Set
vr=J V.
t<T

The parabolic boundary of V' is
J=aV < Tk,
Set
Vrp=dV\J={(z,T);z€Vr}.

In V we are given a uniformly elliptic operator in the z variables with L
coefficients depending on ¢:
L = a;;(2,t)8:5 + bi(z,8)9; + ¢(=,t) .
Here a;; € C(V') and the coefficients satisfy

(4.2) col€|? < a;;&:€; < Colél*, ¢0,Co>0, YEER™.

(4.3) T e I

Proposition 4.1. Let z be a function with Dz, D%z and z continuous in
V U Vp. Assume z € C(V) and z < 0 on J. Assume furthermore the
following

(4.4) Lz>0 wherever 2, >0 in V.

Then 36 > O depending only on n, r, co and b such that if the measure |Vr|
of Vp is less than & then z < 0in'V.

Remarks. Condition (4.4) seems somewhat strange. It would be interesting to
know if it can be replaced by other conditions. Clearly, the conditions

Lz>0 where 2z +az>0

(for some real o) suffices. This simply follows from the result by considering
e—%tz. Condition (4.4) clearly holds if z satisfies a degenerate parabolic inequality
Bz — Lz < 0 with 8 > 0. It is easily seen that the result need not hold if the
assumption that Vz is small in measure is dropped.
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Proof. Without loss of generality we may suppose r = 1 and co = 1 — the
constant b is then replaced by another which we may choose to be not less than
18

Suppose N = maxy 2z > 0. Set
- N
W ={(zt) e ¥s 2(zt) 2 ?} and
Q = {z ; {z,t} € W for some t} .

Clearly |Q| < 6.

With this Q, choose & as in Theorem 3.1 and let g = g(z) be the function in
the conclusion of the theorem. It satisfies

1£952
and the important condition (3.2). By that condition it follows that
(4.5) Lg < 0 at every point in W .

Here we are using condition (4.1), and Theorem 3.1 for a;; = aij(:u,t) for each
fixed .

We use g in a standard way. Maximize ¢ = z/g in V. Ata point (Z,) where
the maximum is assumed,

¥4

N
S e
-2

max ¢ = max , hence z(z,t)> N/2.

Thus (Z,%) is an interior point of W, or else t = T. In either case, ¢; > 0 whence
z; > 0, there. Consequently by (4.4), Lz > 0 at (Z,t). This means

L =
M’g+—ggg >0 @ (230

where M’ is an elliptic operator with no zero order term. But at this maximum
point (%,%), M'¢ < 0. Since g, ¢ > O there, and (4.5) holds, we obtain a
contradiction. O

In the proof of Theorem 2.4 we will make use of an auxiliary function which
plays the same role as the function g in the preceding proof. With w as in
Theorem 2.4, (w smooth) set w, = {y € w ; d(y,0w) < 7} for 7 small. In the
cylinder S = (—a, p) X w, let S be the region near the boundary defined by:

(4.6) §:{(—a,—a+7)xw}u{(p—r, p)xwtU{la+7,p— 7] Xw,}.
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Lemma 4.1. Given cg, b > 0, 3719 > 0, with 210 < p + a such that for any t
in0 < 1 < 1o there exists a CY! function g > 1 in S satisfying

(4.7) Vy9(z,y) =v(y) for y€odw, 5|5 /2 ,
and such that for any positive definite symmetric matrix {a;i } satisfying (1.3),

(4.8) Jlg] = ajxdjxg +b(|Vg| +9) <0 in S .

Proof: For y € @, d(y) = d(y, dw) is smooth if d(y) < 7o for rg small. Let
h be a C? function > 1 in @ with

Vh= 2v "ken''dw |

(Near the boundary, h(z) is just —2d+ constant.)We take

9(z1,9) = h(y) + £(y) + m(z1)

where )
7 d(y) .2 .
[ Tt e o V() <
e(y):{’ 1= ) i dl)<r
'3 if d(y)>r
1
I—E(I—E—g)2 if —a<z1<—-a+r
7
m(:cl):T3/2 1 if —a+7<z;<p—17
1 o
1—-'2'(1—-&—1-:)2 if p—Tleﬁp.
For 1 < 7,k < n and d(y) < 7 we have

d 1 d
G=01-2)dj, L= —didet (1= =)dji -

Hence for y € dw,
Vye=-v(y), ie Vyg=uv(y).
Furthermore for d(y) < 7, one readily verifies that for 7 small,
n
v co
;019 < Y ajkdjkh — =k CCy
5,k=2

where C depends on bounds on d,xd in d < 7. Similarly, if z; < —a+7 or
z1 > p — 7, we have

|91m| < Y2 dym= -2,
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Note indeed that d;3m = 0 where —a + 7 < 3 < p — 7. These inequalities
yicld (4.7) and (4.8) for 7 small. O

As in [BN1], the proof of the theorems in Section 2 will rely on some results
for parabolic inequalitics which we restate here. Note that we have changed the
sign of w from [BN1].

In R™*1, with coordinates (z,t), £ € R™, let V' be a bounded domain lying
in {Ty < t < T}. InV consider a function w € C(V') having continuous
derivatives up to second order in z and first order in ¢, satisfying a (degenerate)
parabolic inequality:

(4.9) (L—B3)w = a;;(z,t) Wz +bi(z, t)wz, +c(z, t)w - B(z, tHwe < 0.
Here the a;; are continuous, bounded and satisfy the uniform ellipticity condition
(4.10) colé]* < aij&&, c0>0, YEER",

and the coefficients b;, ¢ are in L, and satisfy (1.4). In addition, we assume

B>0,p< 4b.
We first state Lemma 4.1 of [BN1], a parabolic form of the Hopf lemma.
With
Vp =098V \ J where J =0V N{t<T}
as before, sct
Vu VT = ‘7 :
We will denote by P a paraboloid
P={(z,t); t—-T+6>|z—2°%, 6§>0
for which the parabolic cap
Q=PN{t<T}licsinV .
We will also consider parabolic caps with T replaced by some other value.

Lemma 4.2. Let V, w and Q be as above. Suppose w > 0 in Q and equals
zero at a point (2,T) € dQ NAP. Then the exterior normal derivative there,
in the space variables, is negative in the sense that

T — T
w(zo + i(-’ﬂ z20),T) _ ¢

— 8

(4.11) lim, ~1

A simple corollary of this is (essentially Lemma 4.2 in [BN1]):
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Lemma 4.3. Let V and w be as above. Assume w > 0inV and w > 0 at
some point (z°,t°) € V. Then w > 0 on the component of Vyo containing
(e 17,

For proofs, sce [BN1].

5. Sliding Method.

In this section we prove Theorems 2.1 and 2.4, proceeding as in the proofs of
Theorems 3.5 and 4.1 of [BNI1] but using the “maximum principle in narrow
domains”, Proposition 1.1. We may assume, in Theorem 2.1, that the longest
open interval in (2 parallel to e; = (1,0, ... ,0) has length 2a and that z; = +a
at its end points. For —a < A < a let

TAN)={zeQ;z+(a—Ne1 €0} .
This is the intersection of {2 with the set obtained by sliding €2 in the direction

—ey by the distance a — A. Clearly X(A) € X(u) for A < p. In case ( is the
cylinder S,, (for Theorem 2.4)

B =tee's, a5 < X}"

The proofs of uniqueness and monotonicity in [BN1] make use of a (degen-
erate) parabolic inequality and we will now derive a more general version of it.
Here, we take the time variable ¢ to be A. In Theorems 2.1 or 2.4, suppose u is
another solution satisfying the same conditions as u. For z € X () we define

(5.1) v(z) =ul@i+a-Ny), w(zA) =u(z)-u(z).
Our aim will be to prove that for —a < A < a,
(5.2) w(z,A) >0 for zeX(})).

To do this, we derive parabolic inequalities of the form:
(5.3)
Lw = aij(I,A)wzizj + bi(z, \wz, + c(z,\)w <0 wherever wy <0,

and, in fact, more preciscly, for some 8 > 0:
(56.3) (L—Bo)w:= aij(z,/\)wz‘.zj + bi(z, A)ws, + c(z, \)w — fwy <0
These inequalities will be shown to hold in the region in R**! defined by

(5.4) V={(z,A);z€eX(N),—a<Ar<a}.
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Furthermore, with cg,Cp, b as in (1.22), (1.23) we will have

col€]? < aij&iéj < Col€|* VEER™, V(z,\) eV
(5.5) VB2, le < b, 0<B8<2b.
In X(A) the function v satisfies
F(z1+a—\,y,v,Dv,D%) =0.
By (1.24), it follows that
(5.6) I:= F(z1,y,v,vi,vj%) <0 if vi(z) >0,
while if vi(z) < 0 we have
I =F(z1,y,v,9,k) — F(z1,9,v,0,v3,... ,05,Vk)

+ F(z1,9,v,0,v2,... ,90,v%) — F(z1+a— X, y,v,0,vs,... ,vj%)

+ F(z1+a—A,y,v,0,vs,...,v5%) — F(z1+a— X, y,v,v;,vk)
ie.,
(5.6)' I< —2bvy,
again by (1.24) (applied to the middle two terms above) and Lipschitz continuity
in p1. Thus, in any case we have

F(z1,y,v,vi,vj5) < —Punr

where £ is a nonnegative L* function bounded by 2b (in view of (1.23)). Using
the integral form of the theorem of the mean, the inequalities (5.6), (5.6)" and the
identity v; = —38,w, we obtain (5.3), (5.3)". These hold in V and the coefficients
satisfy (5.5).

We set
VI ={z;x) &V ; A< T}
Note that V = V7 satisfies the condition (4.1), for (VT), = Z()).

Now we turn to the

Proof of Theorem 2.1. First we prove uniqueness; suppose u and u are solutions
satisfying all the conditions of the theorem. We wish to prove (5.2):

w30 dnyNY .
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Indeed, from this, letting A — a, we infer that u > u in (1. But u and u may be
interchanged, hence v = u. In addition if we set u = u in the argument we see
that (5.2) implies that  is strictly increasing in z;. Finally, if F is smooth, so is
u, by regularity theory; we may differentiate (2.1) with respect (0 z1 and conclude
from the maximum principle that u; > 0 in €. Thus to prove the theorem we
have only to verify (5.2).

The condition (2.3) implies
for A fixed, w(-,A) >z O on the boundary of each
5.7
L connected component of ().

(i) First we verify (5.2) for (z,A) € V = VT with 0 < T + a < € small.
Clearly Vp = (VT)p = E(T) has small measure. Using (5.7) we may apply
Proposition 4.1 to z = —w and infer that w > 0 in V. Strict inequality (5.2)
in V follows from (5.7) and Lemma 4.3. (It was in this step that our proof of
Theorem 4.3 in [BN1] was wrong; see the Remarks after Theorem 2.1 in this

paper.)

(i) Now we wish to increase A. Suppose w > 0in VT for —a < T < p < a.
By continuity, w > 0 in V¥, and with the aid of Lemma 4.3 we see that w > 0
in V#. We will show that for every positive g sufficiently small, w > 0 in Ve
for T = p + €o. This then yields (5.2).

Q lies in some ball {|z| < R}. Let § = 6(n, R, co, b) be as in Proposition 4.1.
Here however, § is associated with the ellipticity constant ¢q rather than 1 as in

that proposition. Let K be a closed set in S(u) such that [S(u) \ K| < §/2.
Clearly w(z, ) > 0 for z € K. By continuity, for 0'< € < ¢o small, we have

(5.8) |Z(u+€) \ K| < 6 and
(5.9) w(z,p+¢€) >0 for z€ K .
Let

Z={(z, )eV;z2¢ K, p<A<p+eo}.

It is easily verified that Z satisfies all the conditions of Proposition 4.1: (4.1)
holds; from (5.7), (5.9) and the fact that w > 0 in V# we see that w > O on the
parabolic boundary J of Z. Finally, set Z,4. = X(u + €) \ K, hence by (5.8),

|ZH-+60| 3 6.
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Applying Proposition 4.1 to z = —w(z,A) we conclude that w > 0 in Z and
hence in V#t€0, By (5.7) and Lemma 4.3 we conclude once more that w > 0 in
V#t€o, The proof of Theorem 2.1 is complete. O

Proof of Theorem 2.4. The proof is similar to that of Theorem 2.1. But here
the geometry is simpler since £(A) = {z € ; 1 < A}. On the other hand, we
have the nonlinear boundary condition (2.14) on the lateral boundary which makes
things more complicated. As in the preceding proof, for z € X (), we consider
w(z, A) given by (5.1); once more it suffices to establish (5.2) for —a < A < a.

In V, given by (5.4), w satisfies (5.3), (5.3)" but it satisfies different conditions
on various parts of the parabolic boundary of V, i.e. on YV N {A < a}. This
“parabolic boundary” of V is the union of two disjoint sets:

J1={(z1,9,)); y€E@, A<a, z1=—-ao0rz; = A},
Jy=A{(@,A) €0V ; ~as s <A<a,ycow}.

Observe that Jy is a smooth hypersurface on which the exterior normal to V is
{v,0} with v; = 0. In view of (2.15) and (2.16) we see that

w>0, w#*0, on Jj.
On Jy we have
o(z1+a— X y,v,Vv) =0(z1,y,u,Vu) =0.
Using (2.18), and arguing as above in our derivation of (5.3)’, we find
o(z1,y,v,Vv) > By
with 0 < B € L, E < C. Consequently
o(z,v,Vv) — o(z,u,Vu) — Bv1 >0.

Hence, by the integral form of the theorem of the mean, and the identity vy =
—d\w,

n

(5.10) Zajwzj +yw+PBwy>0 on Jp.
1

From (2.17) we see that

n
(5.11) >0, Zu,-ajzo and '1+Zl/jaj>0.
2
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We proceed as before, but in place of Proposition 4.1 we use the function of
Lemma 4.1. The proof is again divided into two steps.

Step 1. Start the method i.e., prove (5.2) in V = VT with 0 < T + a small.
We use the function g of Lemma 4.1 (with p = T'). For T + a small, the region
%(T) lies in S of the lemma (here 7 is small), and hence Lg < 0 in £(T). It
follows that in V' the function z = w/g satisfies
Ly

g

where M’ is an elliptic operator in the z variables with no zero order terms. For

(5.12) (M +-2 - 88,)2<0 in V,
(z,A) on the parabolic boundary of V' we have
(5.13) w30 if zy=-a, and w>0if z3=2X,

while if —a < z1 < A, y € dw we find from (5.10):
n n -
(5.14) zljajzzj + (v g ; a;g;)z+ Bz > 0.

If w < 0 somewhere in V' then z achieves a negative minimum at some point
(z,) in V. At that point zy < 0, and if z € %(A) then we would have M’z > 0
there, contradicting (5.12) — for Lg/g < 0. Thus (z, A) must lic on the parabolic
boundary. By (5.13) we must have —a < z; < A, y € dw. But then at (z, A),
2z, = 0 and it follows from (5.14) that

0297+ Bdigy -

By (4.7) and (5.11), however,

n
g1+ B0 =9+ Z il bri/?
2
>0 for 7 small

Impossible. Thus w > 0in V.

With the aid of Lemma 4.3 we find as before that w > 0 in VT for T + a
small.

Step 2. Suppose now w > 0in V7 for —a < T < p < a. As before we sce
that w > 0 in V¥ and we wish to show that for every positive small €, w > 0 in
VT for T = p + e. This would imply (5.2) for —a < A < a.
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We will use the function g of Lemma 4.1 with p = p + €, 0 < € small and
with some 7 > 2¢. Then we proceed as in the proof of Theorem 2.1. Let

K ={ze€X(u); d(z,05(u) >r/2}.

Then w(z,u) > 0 for z € K, and so for every positive € sufficiently small (5.9)
holds in this K. That (5.2) holds in V#*€ is then proved by using as in step (i),
the function g of Lemma 4.1. On the parabolic boundary region

Q={(z,)) ,z€SA)\K ,p<A<p+e},

w > 0. One sces as before that for 7 small, the function z = w/g cannot have a
negative minimum in €. Thus w > 0 in V#*€ and as before, w > 0 there. O

6. The Method of Moving Planes

Sketch of proofs of Theorems 2.2 and 2.5. We work as in [GNN1] and [BN1]
with a domain () which is different from the one used in Scction 5. It is the
same as that used in the proof of Theorem 1.3. For —a < A < 0 we take

T(A)={ze; 21 < A}

and let T be the plane =y = A. In the proofs of both theorems, we consider in
¥(A) the functions

v(a:) = ’UI(ZCA) = u(2/\ i Il,y) )

(6.1) w(z, A) = v(z) — u(z) .

We have to prove that V A € (—a,0), z € (1,

(6.2) w(z,A\) >0 for zeX()),
(6.3) —2u; = O1w(z,y) <0 if z;=X.

Note that w(A,y,A) = 0.

As in the preceding section we make use of parabolic inequalities (5.3), (5.3)’
for w which we now derive as in [BN1]. In X() the function v satisfies

(6.4) F(ZA —T1,Y,v, —V1,V2,... yUn,V11 — V12,... , —Vln, V22,.. ) =05
It follows from (1.25) that

I:=F(z1,9,9,%,v) <0 if  wvy(z)=>0,
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while if v1(z) < 0 we have using (6.4), Lipschitz continuity in p; and (1.25)
again,

I =F(z1,y,v,vi,vk) — F(z1,9,v,0,v2,... ,0n,Vjk)
+ Fxy1,9,v,0,v2,. .., Vn, Yik)
— F(2X — 21,9,v,0,v3,... ,Up, V11, = V12, , —VIn,V22,...)
+F(2/\——x1,y,v,0,v2,... yUn, V11, — V12, ... ,—vln,v22,...)
- F(2/\ —T1,Y,V,—V1,V2,... ,Un, V11, —V12,... ,—Uln,vzz,...)
< —2bvg, .

(Lipschitz continuity is used on the first pair and last pair of terms of the right
hand side above. The difference between the two middle terms is < 0 by (1.25).)
Thus in any case

F(z1,y,v,v;,v5) < =28 vy,
where 3 is a nonnegative L*° function bounded by 4b. Using the integral theorem
of the mean and the identity dyw = —2v;, we obtain (5.3)":

(6.5) (L- Bd\)w= a,-j(x,)\)wzizj + bi(z, Nwg, + c(z, \)w — fwy <0
in the region
Y ={(z,)) ;z€X()),—a<A <0},

with coefficients satisfying (5.5), with the exception that now 0 < g < b. Hence,
similarly (5.3) holds.

To prove Theorems 2.2 and 2.5 we have to establish that for —a < T < 0,
(6.6) w>0inV? ={(z,));z€X()\), —a<A<T}.
We remark that if w > 0in V7T for —a < T < u then it follows from Lemma 4.2
that
(6.7) 0> wi(A,y,A) = —2u1(A,y) .

In both theorems, (6.6) is proved following the arguments uséd in the above

proofs of Theorems 2.1 and 2.4 respectively. The last statement of Theorem 2.5
follows from (6.7).

We omit the proofs of Theorems 2.3 and 2.6 which are improvements of
Theorems 3.2 and 3.3 of [BN1] — see the proofs there. One argues as above
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with 3(X) replaced by the set
{(z1,y) € Qwithzy < X; (2A —z1,y) € Q} .

7. An existence and uniqueness theorem in a cylinder.

We conclude with an application, Theorem 7.2 below, of Theorem 2.4. We state it
in a more general form than needed since it may prove useful on other occasions.
See also Remark 7.1 below.

In the finite cylinder {2 = S, we wish to solve the boundary value problem

(7.1) Mu + f(z,u) = aij(z)uij + bi(z)ui + f(z,u) =0 in S,
(72) uy(z1,y) =0 for —-a<z1<a,y€Edw

(7.3) u(—a,y) =¢1(y),  u(e,y) = 2(y) -
The coefficients a;; arc continuous in S, and satisfy the usual condition (1.3) of
uniform ellipticity:

(7.4) colé? < ai;€&; < Colé®, €0,Co>0,YEER" .

The functions )y, ¥ are assumed to belong to W% (w) and to satisfy conditions
compatible with (7.2):

(7.5) Q=0 on  Gw, F=512.

We assume that f(z, u) is continuous in all arguments and is Lipschitz continuous
inuV z € 8,, with Lipschitz constant k. Set & = {(z1,y); z1 = ta, y € dw}.

Theorem 7.1. Let u < @ be sub and super solutions of the problem (7.1)-(7.3)
belonging to C(S,) N C*(S,). More precisely, assume they satisfy

(7.6) Mu+ f(z,u) >0> Mu+ f(z,u) inS,

(1.7)  w,(z1,y) <0< Uy(z1,y) for —a<z1<a, Vye€iw,
u(~a,y) < ¥1(y) , ula,y) < ¥a(y)

(78) {u( aZ)>¢1(Z) AR sntd) wrveo.

o) NWEP(S,\ Z) of (7.1)«7.3) with
(7.9) u<u<
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This is proved in a standard way using monotone iteration. Since the domain
has corners, and different boundary conditions are imposed on parts of the bound-
ary which touch each other — a case not usually treated — we present a complete
proof. But first, an interesting consequence, which relies on Theorem 2.4.

Theorem 7.2. In Theorem 7.1 assume in addition that ¢, < 9 and that

¥1(y) = u(—a,y) < u(z1,9) < ¥2(y)
(7.10) P1(y) < u(z1,y) < U(a,y) = ¥2(y)
' for—a<z<a,Vy€w,

u and u are not solutions of (7.1)—(7.3).

Assume also that the coefficients a;; are independent of x1, and that they and
the b; are continuous in S,. Assume furthermore that f is Lipschitz continuous
in all arguments and that

(7.11) b1 and f are nondecreasing in z; .

Then there is only one solution u € W,i’c” (Sa \ ) n.C(S,) of (1.1)-(1.3)
satisfying (7.9). Furthermore, if the coefficients b; are Lipschitz continuous in
z1, then

(7.12) ugz, (z,y) >0 for —-a<z1<a, ye.

Proof of Theorem 7.2. Consider any solution u € C(S,) NW2?(8, \ ) of
(7.1)-(7.3) satisfying (7.9). Using the maximum principle and the Hopf lemma
we see easily that &

WIS B ISy

note that we are using here the last assertion in (7.10). It follows from (7.10)
that u satisfies the condition (2.16) in Theorem 2.4. In view of (7.11), and the
Remark after Theorem 2.4, the conclusions of Theorem 2.4 hold, and they imply
Theorem 7.2.

Remark 7.1. The proof we present of Theorem 7.1 is a fairly standard argument.
Using a slight modification of an argument of Amann and Crandall [AC] one may
prove a different form of Theorem 7.1. in which (7.1) takes the form

Z aii(y)u'zizi + f(x: u, Vu) :
1
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The result of the theorem holds if f(z,u, p) is defined and continuous for z € By
u(z) < u <(z), p € R, fis locally Lipschitz in (u,p), and for some constant
5

1 (z,u,p)] < K(1+]p[?) .

Proof of Theorem 7.1.

We begin first with a lemma for a linear problem; it will be used several
times.

Consider the linear problem

(7.13) Lu := Mu+ cu = a;j(z)ui; + bi(z)u; + c(z)u = g(2)
(7.14) uu(z1,y) =0 for —a<m<a,ycEdw.
(7.15) u(=a,y) = $1(y) , u(a,y) = ¥2(y) -

Here the a;;, 11, 2 are as in Theorem 7.1, g € L™ (S,), and the coefficients b,
¢ satisfy

(7.16) b, lej<C, e<0’

Lemma 7.1. Under the conditions above, the problem (7.13)-(7.15) has a
unique solution v € WrP(S, \ £) N C(Q), and

loc
(7.17) max [u] < C1(lal 0 5, + D 195 llw200)
1
with Cy depending only on w, a, co, C and p.

Proof. Uniqueness follows from the maximum principle (see p. 241 in [BN1]).
To prove existence we write

(7.18) w=v+t ) + ()
then for v we obtain the problem

(7.19) Lv=§ € L*(S,)

(7.20) Yy = for —a<z1<a,y€Edw,
(7.21) vw=>0 ifof ;| zi=1td,

with g obtained from g, % and ;.
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Because of the difficulties at the corners we consider an approximate problem

in a subdomain in which the corners have been rounded off. For 0 < € small
consider a domain 2, C ) with smooth boundary as in the diagram (in case
n = 2) such that Q \ 2 lies within a distance € of the corner set:

Y ={(£a,y) ,y € 0w} .

T N
N /a

In €2, we solve the boundary value problem for v = v, of
{ Lv=g
(e+o)v,+(1—0)v=0
where p is the outward unit normal to €2, on 9€2, and where o(z1) is a smooth
function of z3, 0 < o < 1, which vanishes on [—a,—a + €] and on [a — ¢, q]

7.22
{72) on 9() ,

and satisfies

(7.23) o(z1)=1 on [-a+2¢,a—2€,.

This problem has a solution in W27 (£2,). We wish now to let € — 0 and obtain
a limit function which is continuous in S, and is the desired solution.

For this purpose we make use of a concave symmetric positive barrier function
h(z1) on (—a,a) vanishing at the end points and satisfying Lh < —1. For
example we may take

1
h= c—geb“/c"[l - e‘(”/co)(-’hﬂ)] - 3(:zcl +a), on [—a,0
and extend it to be symmetric. Then on (—a, 0),

Lh :al.l.;l-}-blh—}-ch
<coh+bh=-1.

(Without loss of generality we may always assume b > 0.)
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We claim that the solution v of (7.22) satisfies
(7.24) o] < 1]l oo (h+ €k) in Sa,

where k = max|h|. In verifying this we may supposc |§| s =+ L Then
L(v — h — €k) > 0in €, and hence if v — h — €k is positive somewhere it
achieves its maximum at the boundary. At that point, (v — h), > 0 by the Hopf
lemma, and hence, there,

(e+o)(v-h)u+(1—0o)(v—h—€k)>0.
Because of the boundary condition in (7.22), this means
(e+o)hy+(1—0)(h+e€k) <0

there. At this point o cannot be positive, for if it were then h, would be zero
there; impossible. Thus o = O there; that again is impossible since k > h,.

Having established (7.24) we now let € — 0. Using standard local W 2P
estimates (up to smooth parts of the boundary) we find that for a sequence ¢; — 0,
v; — v uniformly in compact subsets of (—a,a) X @, v € W}P((—a,a) X @)
and satisfies (7.19)-(7.21). Furthermore v satisfics

o] < 11§l oo B

and is therefore continuous in S,. Using local WP theory again one sees that
veWEP(S, \ ). The lemma is proved.

loc
With its aid, Theorem 7.1 is proved by a well known argument. Rewrite the
equation (7.1) as
Lu = Mu—ku=—f(z,u) — ku
where k is the Lipschitz constant of f in u. Starting with ug = u this is solved
by monotone iteration: Let u; be the solution given by Lemma 7.1 of (7.13-7.15)
with
g(z) = —f(z,u0) — kug .

By the lemma it is continuous. Now
L(u1 = uo) S 0 y

and it follows from the maximum principle and the Hopf lemma (it is important
that u; € C(S,)) that
U= o'
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Using the fact that
(7.25) f(z,v) + kv is nondecreasing in v ,
we find again by the maximum principle that u; < 4.
Now continue iteratively: w;.q is the solution (via Lemma 7.1) of
Lujy1 = —f(z,u;) —ku; in S,

satisfying (7.2) and (7.3). Using the maximum principle and (7.25) recursively
we find
u=y<uSu<---<7T.
Furthermore, by Lemma 7.1, the functions u; all satisfy
a.—:Ty

a—+ 1
7.26 g —
( ) |u; 22 Y1 2a

for a fixed constant C. As usual one verifies that the u; converge uniformly on
compact subsets of S, \ ¥ to a solution u € W2F(S, \ ) of (7.1-7.3). From
(7.26) it follows that w is continuous in S, thus u is a solution with all the desired

Y2| <Ch

properties. O
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