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On the existence of periodic solutions
for the equation X + f(x) x + g(x) = 0

Hamilton Luiz Guidorizzi

Abstract. We establish in this work sufficient conditions for the existence of periodic
solutions for the Liénard equation % + f(z)% + g(z) = 0.

1. The Definite Positive Function V,. Auxiliary Lemmas.

Throughout this work we assume f, g : R — R are functions satisfying the
following conditions:

a) f is continuous and g is of class C1;
b) zg(z) > 0 for z # 0;
¢) fo"® g(z)dz = +o0 = [ g(z)dx.

Let o be a given real. We indicate by , the following open set:
1
Qo ={(z,y) €ER? |y>-=} for a>0;
(61

1

Qo ={(z,9) eR® |y< —=} for a<O0;
o

Q = R? for o =0.

We indicate by V, the definite positive function given by
z v
Va(z,y) = /0 g(u)du +/;

It can be immediately verified that, for « # 0,

+oo -4
s a &
/ ds:+oo:/ ds.
0 as+1 0 as+1

s
as—+1

ds, (z,y) € Q.
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It can also be immediately verified that the level curves of V, are all closed
curves and that V,(x,0) is strictly increasing in [0,+oco[. Such curves show
the aspect of Figure 1: (see [1])
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Figure 1
The equation .
2+ f(z)e+g(x) =0 (1)
is equivalent to the system:
T=y
(2)

y=—f(z)y —g(z)

The condition a) ensures existence and uniqueness o_f solution of (2). The
condition b) ensures that (0,0) is the only point of equilibrium for system (2).
It can be immediately verified that the derivative of V,, relative to system (2) is:

_f(=) —ag(2)] »

Va(z,y) = TSk (z,y) € Qq. (3)

Because oy + 1> 0 holds for all (z,y) € Q4, it follows that the sign of
V. depends only of f(z) — ag(z).

Lemma 1. Assume there are o > 0 and b > 0 such that for all = > b,
f(z) > ag(z).
Let yo >0, L =Vy(b,yo) and

K={(z,y)€a|2>b and V,(z,y) < L}.
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Let ~(t) = (z(t),y(t)) be the solution of (2) so that ~(to) = (b,y1),
with 0 < y1 < yo. Then, there is ty > to such that

Yt EK, tg<t<t
and
’7(t1) == (b: y2))
with -1 <y <0.

Proof. From z(tg) = y; > O, it follows there is t2 > ¢y so that

’7(t)€K, to <t < tg.

On the other hand, being (t) > 0 on the half plane y > 0, #(¢t) <0 on
the half plane y < 0, g(t) < O on the positive half-axis Oz and (0,0) the
only point of equilibrium, there must exist ¢s > t5 such that (¢3) ¢ K.

Let
t; =max{u >ty | 7(t) € K, to <t < u}.

From the hypothesis
f(z) 2 ag(z), ==,
and from (3) it follows that
Va(v(t)) <0, to<t<ty.
Since

Va('Y(tO)) = Va(b,yl) < L:

it follows that V' (y(¢1)) < L. So, ~(¢1) does not belong to the arc given by

z>b and V(e o)=L,
Because z(t) > 0 onthe y > 0 half-plane, it follows that

. 1
’y(tl) = (b,yz), with — a <y < 0.
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In a similar way, we can demonstrate the following lemmas:

Lemma 2. Assume there exist o« <0 and a <0 sﬂch that, for all = < a,
f(z) > ag(z).
Let yo <0, L=V,(a,y0) and
K={(z,y)€Qq|z<a and Vu(z,y) < L}.
Let ~(t) = (z(t),y(t)) the solution of (2) such that ~(to) = (a,y1),
with yo < y1 < 0. Then thereis t; >ty so that :
AWK, to<t<t
and
(1) = (a,y2)
with 0 <y < —L.
Lemma 3. Assume there exists a <0 such that for all z < a, f(z) > 0.
Let yo <0, L="Vy(a,yo) and |
K ={(z,y) €R* |z<a and Vo(z,y) < L}.

Let ~(t) = (z(t),y(t)) the solution of (2) such that ~(to) = (a,y1),
with yo < y1 < 0. Then, there is t1 > to such that ~(t) € K, to <t <t
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and

7(t1) = (a,92)
with

0 < yz < |yol-

Lemma 4. Assume there is b > 0 such that

f(z)>0, z>b.

Let yo >0, L =Vy(b,yo) and
K={(z,y) €R*|z>b and Vo(z,y) < L}.
Let ~(t) = (2(2),y(t)) be the solution of (2) such that ~(to) = (b, y1),
with 0 < yy < yo. Then there is ty >ty such that
1)K, to<t<t

and
v(t1) = (b, 92)
with —yo < y2 <0.

To close this section, we prove that the solutions of (2) do not admit vertical
asymptotes. It is enough, to this end, to show that all solutions of the equation

Yo s@)-1, yro (1

do not admit vertical asymptotcs.
Let us assume that (4) has a solution
y=ylz), a5 c<h
such that

lim y(z) = +oo. (5)

We can assume with no loss of generality, that 0 < y(a) < y(z) for
a<z<b Let

A > maxs<z<p |f(z)] and B > max.<z<p |9(2)|.
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It follows from the mean value thecorem that, for a < = < b,

)= v(a) <[4+ 5] (6= 0)

which is in clear contradiction with (5). The other situations can be analyzed in
a similar way. ‘

2. Sufficient conditions for the existence of periodic solutions

Theorem 1. Consider the equation
g+ f(z)z+g(z) =0 (1)

where f,g satisfy the conditions a), b) and c) of the previous section. Assume
also, that the following hypotheses are satisfied:

1) There are o >0 and b > 0 such that for all = > b, f(z) > ag(z);
2) The origin is repulsive;
3) There is a < O such that for all z € [c,a], f(z) > O where
Vo(e,0) = Vo(a,r), r = —cl; + (A+ aB)(b— a),
A>max,<z<p |f(2)] and B> max,<z<p |9(7)].
Under these conditions, the equation (1) will admit at least one non
trivial periodic solution.

Proof. The equation (1) is equivalent to the system
=y
y=—f(z)y—g(z)

Let ~(t) = (z(t),y(¢)) the solution of (2) that at time ¢t = 0 is at the

position ~(0) = (b, —1). Because 4 does not admit vertical asymptotes and
the origin is repulsive, there is a smallest time %¢; > O such that

(2)

7(t1) = (a’yl)’ y1 < 0;
or
4(ty) =H{z1:0); @<z <0,
It can be immediately shown that

—i—[A-{-aB](b—a) <y <O.
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(Indeed: Assuming y; < —%, let y=y(z) the solution of

dy 9(=)
such that y(a) = y; and y(b) = —L1. There is =zo €la,b] such that
y(zo) = —% and y(z) < —%, a < z < zg; by the mean value theorem,

y(zo) — y(a) < [A+ abl(zo — a).)

Let t; > O the smallest value of ¢t when ~ crosses the y ncgative
half-axis: ~(t2) = (0,y2), y2 < 0. The hypotheses 1), 2) and 3) together with
lemmas 1 and 3 ensure that ~(t) will again cross the y negative half-axis at a
point (0,ys) with yz < y3 <O.

Figure 3

(L1 = Vo(c,0) = Vg(a,r) and L = V,(b,y4)). From Theorem of Poincaré-
Bendixson, the equation will admit at least one periodic solution.

Remark 1. One possible value for y4 is
B
Yq = r 4 [A-+- T](b—a)

Let m > b such that Vy(m,0) = V4(b,ys). The hypothesis 1) can be
weakened: it is enough to assume

f(z) > ag(z), b<z<m.
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Remark 2. The hypotheses 1) and 3) can be replaced by:

1’) There are a <0 and a < O such that for all z < g,
f(z) 2 ag(z);
3’) There are b > 0 such that, for all z € [b,¢],
f(z)20
where Vo(c,0) = Vo(b,r), r = -1 + [A - aB|(b - a),

A > maXg<z<p |f(z)] and B > max<,<p |9(2)|-

Remark 3. A sufficient condition for the origin to be repulsive is that there exist
B, s €R, s> 0, such that

f(z) < Bg(z), 0<|z|<s,
for, in this case, we will have
Va(z,y) <0 for 0|z <e
which implies‘ that the origin is repulsive [sec (1)].
Theorem 2. Consider the equation & + f(z)z + g(z) = O where f and ¢

satisfy the conditions a), b) and c) of the previous section. Let us assume,
also, that the following hypotheses are satisfied:
1) There are o> 0 and b> 0 such that, for all z > b, f(z) > ag(z);
2) The origin is repulsive, '
3) There is a < O such that, for all = < a, f(z) > Bg(z) where
% > L4+ (A+aB)(b-a), A > maxsc,<p |f(z)] and B >
maXe<z<h [9(2)|- _
Under these conditions, the equation will admit at least one non trivial
periodic solution.

Proof. Let v(t) = (z(t),y(t)) be the solution of (2) that at time ¢ =0 is at
the position v(0) = (b, —1).

By the same reasoning as in Theorem 1, there will be a smallest value ¢; > 0 -

such that
’7(t1) = (:1:1,0), a<z < 0
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or

v(t1) = (a,31)

< y1- Suppose ~(t1) = (a,y1). The
hypothesis 3) ensures that ~(t) cannot leave the compact set -

K = {(m,y) € Qg I z < a, Vﬂ(x;y) < Vﬁ(a‘a y4)}

where —% < y; < 0. Let s g

by crossing the arc
z<a and Vp(z,

/1

y) = Vs(a,ys) = Lo
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The proof is completed following the same reasoning as in Theorem 1.0J

Remark 4. The hypothesis 3) of Theorem 2 can be replaced by:

3’) There is a < 0 such that, for all z € [c,a],

f(z) = Bg(z)

where % > r > %-I— (A+ apf)(b—a), c < a is such that Vp(c,0) =
Va(a,—r), A > maxeczcs |f(z)| and B > maxa<z<h |9(2))-

When the hypothesis 3°) is satisfied, we can make y3 equal to

ys=ys + (4

where ys > 0 is such that Vg(a,—r)

B
iz '&;)(b — a)

= Vﬂ(a; y5)'
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In this case, it is enough to assume in hypothesis 1) that

fl@) 2 ag(z), b<z<m

where m > b is such that V,(b,ys) = Va(m,0).

Remark 5. The hypotheses 1) and 3) of Theorem 2 can be replaced by:

1”) There are o« < 0 and a < 0 such that, for all = < a,

f(z) > ag(z);
3”) There is b > 0 such that, for all = > b,
f(z) > Bg(=)

where —4 > —2 4 (A - aB)(b - a), A > maxe<z<s |f(2)| and B >

maXe<z<bd ]g(:c)|

To close, we shall present two examples for which the theorems of A.V.
Dragilév [2], A.F. Filippov [3], Barbalat and Halanay [4], G. Villari [5] and [6]

are not applied.

Example 1. Consider the equation

i+ [z°+162* — 2 + 2]z + 2% +2=0.

Let us make

f(z)=2°+162* —2® + 2z and g¢(z) =2° + <.

‘We have

1) f(z) > ag(z) for z>b, where =1 and b=1;

2) f(z) < g(x) for 0< |z| <1; from remark 3 the origin is repulsive;

3) Let a = —1; maxa<z<b [f(z)| <1 and maxg<z<p |g(z)| < 1. Let

‘ 2
A=1 and B=1. So,

r:a—{—(A—l—aB)(b—a):g.

From .
xr £/ of
Vi e 1o i 2 B0
it follows that
P a8 a2 4P
& 2 Bgg
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It can be easily verified that

f(z) >0 forall z e [c,—1]

D1

From

theorem 1, the equation admits at least one non trivial periodic solution.

Example 2. Consider the equation

i+ f(2)s +g(z) =0

where f(z) = (2z - 1) %2 +992—100

and g(z) =z. We have

1) f(z) > ag(z) for z>b, where =1 and b=1;

2) f(z) <0 for —1<z<d;

S0, the origin is repulsive;

3)iletlia= —%; maXg<z<p |f(2)] <1 and max,<;<p|g(z) < 1. Let

A=1 and B=1. So,

r=oa+[A+aB|(b—a)=14.

Making § = §, wehave
et a? T oos

—2— 2+0 ,38—}-1

> r. Let ¢ <0 be such that

ds (Vg(c,0) = Vg(a, —1)).

It can be immediately verified that

f(z) >

Bg(z), =z € |c,al.

From theorem 2 and remark 4, the equation admits at least one non trivial

periodic solution.
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