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A method of desingularization for analytic
two-dimensional vector field families

Zofia Denkowska and Robert Roussarie

Abstract. It is well known that isolated singularities of two dimensional analytic vector
fields can be desingularized: after a finite number of blowing up operations we obtain a vector
field that exhibits only elementary singularities. In the present paper we introduce a similar
method to simplify the periodic limit sets of analytic families of vector fields. Although the
method is applied here only to reduce to families in which the zero set has codimension at
least two, we conjecture that it can be used in general. This is related to the famouss Hilbert’s
problem about planar vector fields.

Introduction

Let X = {X,} be a real analytic family of vector ficlds on a two-dimensional
surface S?, with parameter A € A, where A is some compact real-analytic man-
ifold. To avoid complicated recurrence phenomena we suppose that S? is either
a two-dimensional sphere or any compact two-dimensional analytic submanifold
(with boundary) of the sphere.

The sct of singular points of X, denoted by Z (X), is an analytic subset of
S?% x A. The aim of this paper is to describe a method of desingularization of
X. This desingularization is done to simplify the family and obtain in this way
a better knowledge of it, for instance concerning its limit cycles, i.e. isolated
periodic orbits.

In order to motivate the interest of such desingularization we recall that
Hilbert’s 16®* problem can be formulated as follows: given any n > 2, prove
the existence of an upper bound H(n) on the number of limit cycles of any
polynomial vector field on R? of degree less than n.

The family of all polynomial vector fields of degree smaller than n may be
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replaced by an analytic family X as above after extending the given vector field to
the 2-sphere S? and restricting the parameters to the unit sphere in the coefficient

space.

It was suggested in [R1] to replace Hilbert’s 16" problem by a more general
conjecture about the family X, called

Finiteness Conjecture. For any analytic family X as above, there exists a
bound C on the number of limit cycles of each vector field Xy. We say that
the family X has the finiteness property.

It was explained in [R1] how this conjecture is implied by a local one, con-
cerning the existence of such a bound for analytic unfoldings. To state the local
conjecture, we need the following definition of a limit periodic set ([FP]):

Definition. Let X be an analytic family of vector ficlds on S2, with A € A, A
not necessarily compact. A limit periodic set of X is a compact set I' C 82,
invariant by X, for some A, € A, and such that there exist a sequence o P
converging to A, and for each A, a limit cycle ~y, of X),,, with the property that
{7} converges to T' in the Hausdorff metric on SZ.

Then, the existence of a local bound is made precise, using the notion of

cyclicity, introduced in [R1]:

Definition. We will say that a limit periodic set I' of the family X has finite
cyclicity, if there is a neighbourhood V' of X,, and there exists € > 0, N €N
such that for each A € V the number of limit cycles of the field X 2 Whose
Hausdorff distance to T is less than ¢, is not bigger than N. The cyclicity of T'
in X is the infimum of such N as the diameter of V" and ¢ tend to 0.

It is shown in [R1] that the Finiteness Conjecture is implied by the following:

Finite Cyclicity Conjecture. ([R1].) Every limit periodic set of any analytic
family X has finite cyclicity.

So finally Hilbert’s 16t* problem will be a consequence of the finite cyclicity
of any analytic unfolding of any limit periodic sct.

Our desingularization method is aimed to further the simplification of limit

periodic sets of analytic families. In particular, at each step of this desingulariza-
tion we will keep track of all the limit cycles. This seems to distinguish the ideas
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presented here from a similar work recently published by Trifonov ([Tr]).

A step of desingularization will consist in making one of the following three
operations, locally performed around limit periodic sets:

Induction of a family by another one (for instance by versal unfolding when
it exists),

Local division by factor functions. This operation needs the generalization
of vector fields into what is called local vector fields (see Chapter I),

Generalized blowing up. This operation consists in making a weighted blow-
ing up along analytic submanifolds. It is the most important of the three opera-
tions.

Now, the source of difficultics is the following: when applied to a family
X, the generalized blowing up operation, as conceived here, destroys the family
structure, because it is done globally in S? x A. For instance, see an example
in [R3], where this operation was first used. The blown up family is no longer a
family but a new object, consisting of a vector field tangent to a two-dimensional
singular foliation and called a foliated local vector field.

This object is studied in detail in Chapter 1.

It is clear that, because we want to use it in a recurrent way, we have to define
the operation of generalized blowing up directly for foliated local vector fields.
This is done in Chapter II.

In the present paper we limit ourselves to the presentation of the method and
we do not give a proof of any desingularization thecorem. In Chapter III we only
indicate what such a theorem could be. By analogy to the desingularization of
a single analytic vector field (sce [D], [S], [V]) we introduce elementary limit
periodic sets (all their points arc elementary singular points, i.e. at least one of
their eigenvalues is non-zero) in the context of foliated local vector ficlds. We
conjecture that for any analytic family X there is a finite number of steps, using
one of our three operations, which produce foliated local vector fields with all
their limit periodic sets elementary.

In Chapter IV we make the first step toward the proof of such a result, showing
that any analytic family can be desingularized to obtain a family whose singular
set Z(X) is of codimension at least two.
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This paper deals with the method but we do not provide any examples of suc-
cessful desingularization here. The rescaling formulae ([Ta], [B], [DRS1]) provide
the first example of this type. The global blowing up described in this paper has
already been applied in [R3], where it is proved that analytic unfoldings of cusp
loops can be desingularized in the sense of Chapter III. Some new applications of
such desingularization to particular cases are forthcoming ([DR1], [DR2], [DRS]),
along with the desingularization of families with nilpotent points ([R4]).

One of the authors, Z. Denkowska, wishes to express her gratitude to the
Laboratoire de Topologie of the Bourgogne University, for constant support and
help in her research work, and to Université Paris Sud for the kind hospitality.

1. Foliated Local Vector Fields

In the next chapter we will describe an operation of generalized blowing up,
which transforms a family of vector fields into a new object, called foliated local
vector field and defined in the present chapter. Because of the fact that we want
to use this desingularization in a recurrent way, we have to define the generalized
blowing up for this new object i.e. for a foliated local vector field. In order to
enlighten a little the subject, we begin with a very simple example of a blowing
up that produces a foliated local vector field:

(L.1) Example. Let us take a family of analytic vector fields, parameterized
analytically by

0 )
X)\ = F(x,y,)\)a +G($,y,/\)5—§

with (z,y) € R? and a two-dimensional parameter A. It can also be regarded
as an analytic vector field X in R*. Suppose X(0) = 0 and take the simplest
blowing up, i.c. the blowing up of R* with centre O:

$: 5% xRt 3 (2,9, A1, A2, 7) — (rZ,79,7A1,7A2) € R%.
Throughout the paper we denote by R the set [0, co) of nonnegative real numbers.
For such a blowing up there exists (cf. [D2]) an analytic vectbr field X on
S3 x R such that ¢,(X) = X. We have the surjection p = x o ¢ which is
no longer regular. The blown up field Xis tangent to regular fibers of p, which

fill an open dense set U, in S x RY. The complement of this set consists of
the singular fiber p~1(0,0) = S3 x {0} U S! x R*. The regular fibers form
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a two-dimensional foliation of U,. This foliation extends in a unique way to a
maximal foliation ¥ with the singular set ) which is the circle S! embedded
in the exceptional divisor S3 x {0} of ¢. The leaves of ¥ in S3\ Y are all
equal to the interior of an open disc with boundary . For more precise similar
description see [R3].

As we will use iterations of blowing ups, we need to generalize the example
above, which amounts to generalizing the field and the foliation in the blown up
space.

(I.2) Definition. A local vector field X is defined on a compact (maybe with
boundary) analytic manifold E by an open finite covering {U;) of E and a col-
lection {X;} of analytic vector ficlds on Uj;, verifying the following compatibility
condition: for each pair of indices ¢, 7 such that U; N U; # ¢, there is an analytic
function g;; defined and strictly positive in U; N U; such that:

X,':g,'ij in U,'ﬂUj.

Two collections {U;, X;} and {V;,Y;} as above are said to be equivalent if there
exists a collection of strictly positive analytic functions f;;, defined on U; N Vi
such that X; = f,'j}fj in U; N VJ

A local vector field on E is an equivalence class of this relation.

We will denote by Z(X) the set UZ;(X) of singular points of all X;. Tt does
not depend on the choice of the defining collection.

Remark. The notion of a local vector field is not new. It is what has been
sometimes called an oriented singular foliation of dimension one (cf. for instance
[R1]). The notion of oriented orbits and limit cycles is thus well known for this
object. If we use a different name here, it is because we reserve the name of
singular foliation for another object, defined later in this chapter.

(I.3) Definition. We will call a singular fibration a triplet (E,x, A) consisting
of:

— a compact real analytic manifold E of dimension k + 2,
— a compact real analytic manifold A of dimension k,

— an analytic surjective mapping 7: £ — A such that for each z € E there are
local coordinates z3,. .. ,zk42 in a neighbourhood of z, sending z to 0, and
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there are local coordinates Ap, ... , A in a neighbourhood of x(z), sending
m(z) to 0, such that in these coordinates n takes the form:

L k+2 4
=] Ae= [ 2%, wih pieN i
= Pl ey =] 2%, with- p; €N, (1.1)
1 1

We suppose, moreover, that « is regular (rank(r) = rk 7 = k) on an open
dense set U, in E, which is equivalent to saying that the matrix P = (p’]) of the
definition above has the rank k. We suppose also that each regular fiber of 7 in
U, is diffeomorphic to a two-dimensional compact submanifold of the 2-sphere.

Each manifold in this definition can be a manifold with or without boundary.
In the case where there arc boundaries, we suppose that 7~1(9A) C JE.

Observe that for a foliation defined on an open dense set in E any two
extensions coincide on the intersection of their domains, thus there exists the
unique maximal foliation extending the given one.

We will denote by 7 the maximal foliation extending the foliation F, defined
by the connected components of the regular fibers of w in U,.

The domain of 7 will be denoted by U and the singular set of 7, equal to
E/U, will be denoted by >_.

(L4) Proposition. The maximal foliation ¥ associated to a singular fibration
(E,x,A) verifies the following properties:

1. The set Y. is an analytic subset of E and it is decomposed into two analytic
manifolds, Y, and Y, with codim ‘21 > 1and codim Y, > 2, such that
93, = Do

2. Each leaf of F is homeomorphic to a closed submanifold of S*, with
boundary and corners. For a given leaf L let 8, L stands for the set of
corners and 8;L = 0L\, L.

3. We have U61L = Y, and {8:L,L € 7} define an analytic one-dimen-
sional folzatzon of ¥, Also, Ud,L = 3_,, which can be regarded as a
0-dimensional foliation of ..

4. Let z € 3 and L, denote the collection of all the leaves L of 7 such

that L is an analytic manifold with boundary in some neighbourhood of

z. Suppose that x € Y, and let I denote the leaf of 31 through x. We
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have:

N{T,L; L€ L, and x € L} = Tyl,.

Similarly, for z € 3, we have: N{T,L;L € L, and = € L} = {0}.
Proof. First observe that the interior of each leaf L of 7 is hdmeomorphic to
an open subset of S2. Indeed, if this was not true, we would have a compact
handle in L. Since in an open dense set U, the foliation is without holonomy,

some leaves in U, would also include a handle, which contradicts the condition
put on regular fibers in definition (I.3).

All the other properties are local, so let us now take a point z € E and local
coordinates z1,... ,Zn,n = k + 2, in a neighbourhood of z such that in these
coordinates 7 is given by formula (1.1). We then have:

dAj = Aj ij-/:cid:c;,i =1 . pgpd g=1,.... k (z2)

Let @ be the st {z; 21 ...z, # 0} and P the matrix (p’). By hypothesis, the
set U, of regular points of « is open and dense. This implies that rk P = k and
that @ C U,.
Let us take the Abelian Lie algebra A of diagonal vector ficlds Zn: T Q /0%
1

This algebra is isomorphic to R™, with X corresponding to v = (71, ... ,¥n) by
this isomorphism.

. L :
For a function p of the form p =[] x?, and field X € A we have:
1

z-p=(7 a)u,
where « - a stands for the Euclidean scalar product of o = (ay,... ,0,) and
v=(71,.-- ,Yn) in R™
Now we define
Ar={X € A; X -)A=0},
where A is the function of definition (I.3).

Obviously, A, is a two-dimensional Lie subalgebra of A, corresponding to
vectors v € Ker P.

For z € @ the orbits of A, are two-dimensional and coincide with the leaves
of %,. Thus extending %, amounts to extending the foliation by orbits defined by
Axin Q.
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In the sequel we will use the symbol W (i1, ... ,1,) for the subspace {z;z; =
0 for ¢ ¢ {i1,...,%,}} and we will choose for our reasoning appropriate basis
of A,, denoted

2] . a
X1 = Z’Yma—zi, Xp = 25;'96;5;-

We will have to consider two cases:

Case (a). Suppose there exist a basis X1, Xz with Xy = 6,3/9x,, 6, # 0.
Then we can choose X; with v, = 0.

As [X3,8/9z,] = 0, the fields X;,8/dz,, define also 7 in Q, therefore we
can replace in our reasoning X1, Xa by X1,0/0z,. After a suitable permutation

of coordinate variables we can suppose that

0 0
X; = e AT o
1= Mg +...t TmEmy
with m < n and all 4; # 0. Now, if m = 1, we can replace again X;, X, by
d/8x1,8 /0, and in this case the foliation 7 is the everywhere regular foliation

defined by the last two fields.

If, however, m > 1, we only know that the restriction of X to the space
W (1,... ,m)is a hyperbolic field. Zero is the only singular point of this restric-
tion.

Since dimW (m, ... ,n) > 2, the foliation by orbits cannot be exiended to
the origin, as in the case where m = 1 above. :

The field X; restricted to the hyperplane W (1,... ,n — 1) admits, as the
singular set, the space W(m +1,... ,n — 1) and is normally hyperbolic (o it.

The foliation defined by X;,d/dz,, is obtained as the Cartesian product of
the foliation given by X; on W (1,... ,n — 1) by the axis W (n).

This is a two-dimensional analytic foliation outside the space W (m + 1,

. ,n) and cannot be extended to it. Thus this is the maximal foliation 7. Its

singular set ¥ is reduced to £1 = W (m+1,... ,n), foliated in dimension 1 by
the orbits of 8/dzy,.

The boundaries of the leaves L of # are leaves of this foliation. In particular,
the products of W (n) by {z; > 0}, =1,... ,m, are leaves of L (i.e. analytic
manifolds with boundary), which proves property 4.
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Case (b). Suppose now that we are not in the case (a). Denote by D, the set
D, = {z:dim{X;(z), X2(z)} = 0}. We have two subcases:

(b1). Suppose we can choose X; hyperbolic i.e. X; = i'y,-:c,-c') /dz; with all
~; 7 0. This is equivalent to saying that dim D, = 0. y :

We will denote by X (¢, ) the flow of X;. Let Pi*, P, stand for the sets
{z; = +1}, {z; = —1}, respectively.

Lerye" = LtJXI(t,P;‘) and V| = LtJXl(t,R‘).

Observe that X; is transversal to P,-*', P, the sets V,.+,V,.' are open in R™,
invariant by A,, and (UV;T) U (UV;") = R*\{0}.
We will establish the properties of 7 by looking at it in restriction to the sets
V£, As the proof is the same for each V;*, suppose we are in V;". After a
n
suitable permutation of coordinates, we can write Xy = 3 6;z;0/9z;, with all
m
Oit0ti= m f o, nand 1< am < n.
The field X5 is then obviously tangent to P1+ and hyperbolic in restriction to
W(m,...,n).
As dimW (m,... ,n) > 2, in this space we can reason as in case (a) for

m > 1. Take
doavit =Xt W(1,... ,m—1)).
1 t

This set is foliated in dimension 1 by the orbits of X;. All properties of ), are
verified like in case (a). This proves property 4 for » ;. We still have to prove it
for 3, which in this case is equal to {0} and was empty in case (a). Property 4
for ), follows directly from the properties of the restrictions of A, to the planes

W (i, 7)-

(b2). In this subcase we have dim D, > 0. After a suitable permutation of
coordinates we can write
m a m
X1=) qiziz— and Xp= Z&'ﬂsi
T dx; S
withl<m<mnandall 4; #0,fori=1,... ,m.

0
ox;’

The foliation 7 is the same, up to a translation, in every space parallel to
W(1,...,m), where we have the situation of (by).
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The set Y, is thus equal to the space W(m + 1,... ,n) and all the re-
quired properties follow from the properties verified in the spaces parallel to

w(l,...,m). O

(L.5) Definition. Given a singular fibration (E,n,A) and a point z € E a leaf
through x is:

the 2-dimensional leaf of 7 containing z, if z € U,

the 1-dimensional leaf of Y, containing z, if = € 37,

the point z, if z € 3.

We will introduce now the main object of our study, generalizing the notation

of a family of vector fields:

(L.6) Definition. A foliated local vector field & = (E,n,A,X) is an object
consisting of a singular fibration (E,r,A) and of a local vector field X defined
on E such that X is tangent to the fibers, i.e. dn(z)[X(z)] =0 for all z € E.

If F is a compact analytic submanifold of E such that «(F) is a submanifold
of A, we will denote by €p the restriction (F,np,n(F),Xr), if it is again a
foliated local vector field.

If A is a compact submanifold of A, we will denote by £a the restriction
€x-1(a)> Whenever the associated restricted object for F' = n~1(A) is a foliated

local vector field.

Remark. A family {X)},A € A, of analytic vector ficlds defined on S? is a
foliated vector field with E = S% x A and « the natural projection of E on A.

(1.7) Definition. A limit cycle of a foliated local vector field 7 is a limit cycle
of a restriction Xz, of X to one of the leaves of 7.

(L.8) Proposition. A foliated local vector field X is tangent at each point
z € E to the leaf through x.

Proof. The ficld X is tangent to the regular fibers by definition, so, by continuity
and by the density of @, it is tangent to all the leaves of the maximal foliation
F. Now take a point z in Y_,. By continuity, X(z) € Tyl;, where [, is the leaf
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through z. The same reasoning holds for the points of >> .. O

2. Operations of Desingularization

In this chapter we will define three operations of desingularization in the class
of foliated local vector fields, associating to a certain foliated local vector field
& =(E,m,L,X)ancwone 7 = (17}‘,7?,/”&,)”().

First we will generalize the notion of a uniform bound on the number of limit

cycles of X in a family {X)} to the notion of a uniform bound by leaves for a
foliated local vector field.

(IL.1) Definition. We say that K is a uniform bound on the number of limit
cycles by leaves for a foliated local vector field € if, for each L belonging to the
maximal foliation ¥, the number of limit cycles of the restricted field X7, is not
greater than K.

If such a bound exists for a given foliated local vector field &, we say that £
has the finiteness property.

The most important property of the three operations defined below is that they
preserve the existence of a uniform bound, i.e. if a uniform bound on the number
of limit cycles by leaves exists for ¢ and is equal to K, then N.K, for some
N €N, is a uniform bound on the number of limit cycles by leaves for €.

Induction

(IL.2) Definition. Let {X,}, {5( } be two analytic familics of vector fields on
the same analytlc surface S, with parameters A € A and X € A, respectively,
where A, A are two analytic manifolds.

We say that the family {X i) is induced from {X,} by an analytic map
h:A — A, if for each A € A , X is topologically equivalent to Xh(,\)

If we regard {X,} and {X } as foliated local vector fields £ = (S x
A,m, A, X)and € = (SxA, 7,4, X ), where 7 and # are the natural projections,
it is easy to see that if there is a uniform bound by leaves for £, then the same
number is a uniform bound by leaves for £.
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Local Division

(IL.3) Definition. Given two local vector fields X,Y on (E,w, A), we say that
Y is the result of local division of X if there is a finite open covering {V;} of
E, defining both X and Y, and analytic functions f;:V; — R such that

X;=fiY; in Vi (2.1)

A uniform bound on the number of limit cycles is preserved by this operation too,
as the leaves of (E,n,A,X) and (E,n,A,Y) are the same. It is sufficient to
remark that no limit cycle for X intersects the set Z(X) and then Z(Y) € Z(X).
Thus, if there is a uniform bound on the number of limit cycles in leaves for Y,

the same bound is good for X.

Generalized Blowing Up
This operation will be the most important one and, as we have already mentioned,
it is the reason for introducing the notion of foliated local vector fields.

In order to explain why we have to use a generalized blowing up, we begin
with recalling an example, which is dealt with in [R3]:

Let us take the two-parameter family (known as the Bogdanov-Takens family

[Ta], [B]) near zero in R%:

J 0
Xa=yy-+ (2? +u+y(v+m))a—y, (2:2)

where A = (u,v) is the parameter.

Take the following rescaling formulae:

r=u’z, y=14%y, wu=u'n, v=up. (2.3)

The family (2.2) can be desingularized with the use of these formulae as a singular
change of variables and parameters ¢, transforming points ((Z, g),u, (m,7)) €
D x Rt x St into (z,y,p,v) € R? X R?, where D is a fixed compact domain
in the (Z,y) space. ’

The family X, can then be replaced by the new family X () = 1_1‘¢; ).
depending on the parameter (u,X) € R* x S, where X = (&, 7), and has 10 be
studied on D.
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It can be shown that the new family is desingularized in the sense that each
of its singular points has at least one non-zero eigenvalue.

Such a desingularization by rescaling the family allowed a complete study of
the unfoldings defined by the family (2.2) near 0 € R* (see [B], [Ta] for more
details).

Suppose now that the singular point 0 € R? of X, belongs to some polycycle
I'. To study the unfolding of I' we have to glue the preceding local study to
the study of the deformations of the remaining part of T'. Here a major problem
arises: the domain in the (z, y)-plane which is covered by the rescaling formulae
is equal to D, = {u?z,43y):(2,9) € D} and its diameter tends to zero as u
tends to zero.

To bypass this difficulty, the following idea was used in [R3]: to regard the
rescaling (2.3) as formulae for global rescaling with weights. This means that
now we are going to take (z, 9, ,7) € S° and u € R and we will apply them
to X regarded as a global vector ficld in R%. The result is no longer a family,
but precisely a foliated local vector field (and here we have a global vector field).
It is exactly with this global blowing up that we will work.

Since we want to use this blowing up in a recurrent way, we will have to
define it in the context of foliated local vector fields. To make the presentation
clear, we begin explaining this operation in detail for a one-point centre g € E.
This is a mere extension of the particular case presented in [R3]. Next, we will
describe our blowing up operation in all generality. This is what is called in the
sequel a generalized blowing up of E along an analytic submanifold C c E
of codimension n. This operation is associated to weights a = (ay, ... , Ol
and we will also need some restriction on the choice of trivializations of tubular
neighbourhoods of C in E. The general idea is to have locally good trivializing
charts transversally to C, so as to be brought back to a situation similar to the
one with one-point centre.

Generalized Blowing Up With One-point Centre

(IL.4) Definition. Given a point @ € E, a coordinate map T:R™ — W on a
neighbourhood W of a (coordinates: zy, ... ,z,) and weights o = (ay, .. . , ap)
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€ N", take
$:S" 1 xRt > (21,... ,%n,r) 2 r?Z = (ro1zy,... ,r*"Z,) ER"
and put E = E\{a} U S™! x R*, glued together by T' o ¢, with the natural

structure of a compact analytic manifold (cf. [BJ] for instance). Let ® be the
analytic mapping defined by the commuting diagram:

¢
§n=1 x Rt —— R®

where ¢ stands for the natural inclusion.

We say that (fZ‘, ®, E) constructed in this way is a blowing up of E in
a, associated to the map T, with weights a. We will denote by D the set
i($7~1 x {0}), which is the exceptional divisor of ®.

Remark. In the case where a € dE, we suppose that, in the coordinate system,
JE is given by {z; = 0}, for some 1.
To be able to work in coordinate systems, we prove the following lemma:
(IL5) Lemma. Let C c R*\{0} be a hypersurface such that the mapping
¢c:C xRY 3 (c1,... 60, 7) = 7% = (1"2cy, ... ,T%"¢,) €R™

is an analytic embedding.

Then there exist an analytic embedding T:C — S™1 and an analytic
function T:C — R such that + defined as

»:C xRY 3 (¢,7) = (2(c), T(c).7) € =Lz e

is aﬁ analytic embedding and ¢gs o = ¢c, where ¢s stands for the map
of Definition (I1.4).

Proof. The map ¢g is an analytic diffecomorphism between S n-1 w Rt and
R"\{0}. Take ¢5':R™\{0} — Sn-1 x Rt and denote it by (Z, T), where
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z:R™\{0} — S ! and T:R™\{0} — R*. Observe that the hypothesis about
$c is equivalent to Z being an embedding. We have ¢g(Z(c), T(c)) = ¢, which
means ¢ = T%Z,¢ = 1,... ,n. Now take ¢¢(c,7). We have

dele,r) =1 = r*T%z ={rT )9z

This implies that ¢ = ¢g o p. O

" Remark (IL5.1). When C is the hyperplane {z; = +1} or {z; = —1}, the

mapping ¢¢ is called directional blowing up in the direction z;, associated to obs.

Now we look at the effect such a blowing up has on a vector field defined
near a:

(IL.6) Lemma. Suppose we have a blowing up of E in a, with weights o,
associated to T (coordinates z, ... ,z,) and ®: E—>E (cf. Def. (II.4)). Let
X be an analytic vector field defined in the chart domain W and such that
X(a) = 0. Then there exists s € N, such that the field t*®;1(X), defined on
@~ (W)\D, can be extended to the whole set (W) analytically.

Proof. We use the coordinate system (z1,...,z,). Put Q = dz; A ... A dzy,
and let w = X |2, where | stands for the interior product.

Denote & = ¢,w and Q= ¢.£). Observe that

N=1%10, (2.4)

where (2 is a volume form on "1 x R,

As ¢ is a diffeomorphism on S™~1 x (R* — {0}), the field X = ¢;1(X) is
defined in this set.

We have :XJ Q_: @ in S™~1 x (R* — {0}). Substituting €2 by the formula
(2.4) we get X [t°Q) = @&, where s = Ba; — 1.

Therefore, since X |¢*(3 = ¢*X |} on $7~1 x (R* — {0}), the field t*X is
defined and analytic in the whole set ®~1(W), also for ¢t = 0. O

Remark (IL6.1). In the case where oy = 1,4 = 1,... ,n, we can take s = 0
and obtain the classical result (cf. for instance [D2]).

Remark (I1.6.2). In the coordinate system (z1, . .. ,,) the map ® is expressed
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Let a collection of manifolds C; C R™\{0} (space of the variable Z) be as in
Lemma I1.5 and such that the corresponding maps +; form an atlas of S™~1 x R™
and let

¢o,(ci,n) = 7f'ci, ¢::Ci xRt - R"

be as in lemma II.5.

Then, proceeding like in lemma II.6, we can define a collection of vector
ficlds X; = rf¢1(X) in cach chart domain C; x R*.
1

It follows from lemma IL5 that each X; is equivalent to the global X =
tsqbgl(X ) in its chart domain and thus the collection {X;,C; x RT}; is a local
vector field in S™~1 x Rt.

Generalized Blowing Up Along a Submanifold

In the sequel C will denote a connected compact analytic submanifold of F, with
or without boundary. If C is with boundary, it will always be supposed that
0C C OE. The proofs we give below concern submanifolds without boundary,
but each of them exiends in an obvious way to C' with boundary dC C 9 E.

n will now stand for the codimension of C in E and k will denote the
dimension of C. Therefore dim F = n + k.

Let a be a system of weights as above. We suppose that it is ordered in the
following way: o3 > a2 > ... > «ay,. For what follows, we need to introduce

the gap values 1 < Iy < ... <lp < ndefinedby a; =".. =y, > oy 41 =
coo = Q> Q41 = ... = oy The gap values correspond to the “jumps” in
the sequence c.

Let | = {ly,...,l,n} with | = & when weights are equal. We consider the
following subspaces of the space R™

Fi, ={(=1,... yzp):2z; =0 whenever §<Il, or ¢>l,1;}

for s = 1,...,m — 1. This definition is easily extended to s = 0,m (for
instance Fj, = R™. Next we define Ej, for s = 0,...,m as the direct sums:

E,=F,®...® F,, The collection £y = (E,,..., E,,) is called a flag.
We have the inclusions: E,, = F,, C...C E;, C E;, C E;, = R™

Let GL; € G L(n,R™) be the subgroup of invertible n X n matrices for which
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Ei;,s =0,...,m are invariant subspaces, i.e.:
GL ={M € GL(n,R): M(E,,) C E, for s=0,... ,m}.

The subgroup GL; consists of all invertible matrices M —= (M;;) such that
M;j =0forly <i<lsypyand 5 > I,y Forl = & GL,; is the whole linear
group GL(n,R).

(IL7) Definition. Let «* = «i* ... 2» be a monomial in z — (z1,... ,2,) and
let 1 = (iy,...,1,).
i The a-degree of «*, denoted by a-deg (2*), is defined as a-deg (') = ai =
p T
i=1

More generally, if f(z) is an analytic function, with £(0) = 0, we define:

a-deg(f) = Inf{s: f(u*z) = O(v’) for (u,z) € R™ x $""1}.

See (I1.4) for the notation u*Z.

It is easy to compute a-deg (f) by looking at the Newton diagram of f.

Remark. Let M be an invertible matrix M € GL(n,R™). Then M € G, if
and only if a-deg (3 M;;z;) = oy, fori = 1,... ,n.
]

Now we are in position to define a weighted blowing up transversal to the
given submanifold C' (C as above) and which will have the form z = u®Z in
local coordinates, analogous to that of Definition IT.4. To this end, we introduce
the following:

(IL.8) Definition. For a sequence of weights o and a submanifold C as above,
an a-admissible trivialization of C' is given by a collection of charts (Wi, ;)
such that:

(1) ¥;:U; X R® — E is an analytic diffeomorphism on its open image W; and
@b,'(U" X {0}) = W;nC,

(2) T = UW; is an open tubular neighbourhood of C.

(3) EW;NW; # 3, let the transition map Gor = gb].‘l ot; be written g;(c;, ;) =
(85i(ci, 2:), Cii(ci, @) € U; x R™

For sake of simplicity, we will write C(c, z) for Cj;(c;, ;). We suppose that
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for each (¢, 0) in the set ¢;1[¢¢(Ui x {0})] the following conditions are satisfied:

the partial Jacobian matrix

(2—3@, o)) eGL for all (c,0) €U, @.5)
a-deg (C,-(:z:)— < %Ci (c,0),z >) > ;. (2.6)
r

We say that a trivialization chart (W, ), with W C T (i.e. a chart that verifies
(1)) is compatible with the collection {W;,);} above if it verifies (3) for each
(W, ¢;) of the collection. The a-admissible trivialization of C will be precisely
the maximal collection of all trivialization charts compatible with the collection

{Ws, i }.

Remark. If a; = ... = oy, the condition (3) is verified by any transition map
gji» therefore in this case any trivialization of C is «-admissible. This is the
case of the standard blowing up. In the general situation, we have a list of gap
values | = {l,,... ,l,,} and condition (2.5) above implies that the normal bundle
NC of C admits a reduction of its structural group to the group G L, i.e. that
NC' admits a filtration by an [-flag of bundles. For instance, if the sequence «
is strictly decreasing: o3 > :+- > ay, the group GL; is the group of inferior
triangular matrices and NC must contain a flag of subbundles of any dimension
1 and n.

(I1.9) Proposition. Let C C E be, as above, a compact connected sub-
manifold with an o-admissible trivialization and lef T' denote the associated
tubular neighbourhood. )

Then there exists an analytic manifold T and an analytic surjective map-
ping ¢: T — T such that to each compatible trivialization chart (W, ) for C,
:U X R™® — T corresponds to an analytic diffeomorphism 17): UxSr1x
Rt — T on its image W (we will call it a chart of T) which verifies:

Vo doP(c,z,u) = (c,uz) , (2.7)
and T is the union of the W,

The inverse image ¢~1(C) = D will be called the exceptional divisor of
¢. In each chart W we have DNW = (U x §"=1 x {0}), so D is a fiber
bundle over C with fiber S™ 1.
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Proof, Suppose 'that such an analytic manifold T exists, together with the map

¢ and charts (W, %) as stated above.

Take two a-admissible trivializing charts for T, denoted (W, ¢)(W',4'). Let
¢ be the transition map between their domains U X R™ and U’ xR". For simplicity,
we do not write down the domain of g.

Let (c,z) € U x R™,(c',2') € U' x R™, and (c,Z,u) € U x S"1 x
R, (c, %) € U’ x §"1 x Rt be the corresponding coordinates.

Put
du (e, z,u) = (c,u’z),

dv(c, &, u') = (', u'"F).
Using the two relations
Yplogodu=du and i 040 Yy = gy,

we sce that the transition map § between the two T-charts (W, fp) and (W', 9"
must verify

godu =y og (2.8)
We remark that ¢ is invertible for u’ # 0. Therefore, for u # O the map g is
defined by the formula:

g=¢yiogody (2.9)
To construct 7' we have 1o prove first that the map g defined by (2.9) for u # 0
has an analytic extension to u = 0. To this end, take g(c,z) = (¢, z'), where

¢ = Bfe,x)
{ z' = C(c,z) = C(c)z + R(c,z), (2.10)

where R(c,z) = O(||z||*) and C(c) is an n x n matrix.

We have to compute g o ¢y, so in formulas (2.9) above we substitute = by

u®z.

Consider first the linear part A = C(c)(u*z).
WIS (C(c)i; )is, B = (B1,. .- ,Zn), B = (F),. .. ,Eh).

Develop the ¢? line in A

A; = Zj: C(C),’j (uaf f:j)
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and take I, < 7 < lyyq. By hypothesis, we have @y iag-ifg < bay ooy =iay if
I, < ] < ls+1 and C(C),'j =0 lf] = 13+1.

Therefore, if I, < 1 < l,1, we have:
4 = u% Y7 C(e)ii3; + ofu), (2.11)
where the sum is taken over all Jsuchthatl, < 5 < loy1.

Let Q(c) be the reduced matrix whose coefficients are: Q(c)i; = C(c)i;
forly, < 1 < lyppand I, < J < lgt1, zero otherwise. Geometrically, the
matrix @ can be interpreted in the following way: the matrix C(c) leaves the
flag B, C ... C E;, invariant and thus induces isomorphisms on each quotient
space F, = +1/ By, 50 the matrix Q(c) is the matrix of this representation
of C(c) on the direct sum @™, F,.

So finally we get the following expression for the linear part:
Ai = u™ ) " Q(c)isE; + o(u%).
J
Now, consider the remaining term R(c,u®z). Write it as R = (Bl o, B5)
By the condition (2.6) in Definition (IL.8) we have:
Ry(c,u*iz) = u® Ry(c, z, u),
where R; is an analytic function of (c, é, u) such that R;(c,z,0) = 0. Then:
z; = Cilc,x) = u% [(Q(c):i),- + R;(c, a‘:,u)] :
Denote by M(ec, z, u) the analytic function inside brackets above. We have:
M =Q(c)z+ R, where R= (Ri,...,R,).

For any ¢, the map S™~! 5 z — 7' = Q(c)z is transversal 1o the trajectories
of the linear vector field az'd/dz' = ¥ ®;Z;0/0z}. This follows easily from

1
the fact that Q(c) preserves each space F), and on this space aZ'd /07’ is radial
with a single eigenvalue oy,.

This property remains true for the map z — M (¢, Z,u) with u sufficiently
small, thus the composition G(c,z,u) of the map £ — M(c,z,u) with the
projection along the trajectories of the field a#'d /0Z' onto the unitary sphere
So=L i the z'-space is a covering map and thus it is an analytic diffeomorphism
in variable z, which depends analytically on ¢ and u. The time wu, needed to g0
from G(c, z,u) to M(c, Z, u), is also an analytic function, denoted T'(e, =, u).

D.1 o n ar et e
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By definition, we have:
M(c,%,u) = T(c, Z,u)*G(c, z, u),
SO
' = u*M = u®T*G = (uT)*G, . (2.12)
with T € Rt and G € S™ 1.

Now, if (¢',z',u') = §(c,Z, u), by substitution in (2.10) and identification
(2.12) above we get for g:

¢ = ®(c,uz)
Ft B i=Ccz.u)
u' = ul(c, E,u)

with all formulas analytic for u = 0.

Now we construct our space i by taking the quotient of the disjoint union
[L; U; x S*~1 x R by the transition map §. In order to obtain a structure of an
analytic manifold, we have to verify the cocycle condition g;; o gx; = g; for the
maps §. Remark that outside of the exceptional divisor D this is obvious, as the
maps ¢ are defined there by formula (2.9), so the cocycle condition for the maps
g outside D is implied by the analogous condition verified by the maps g. By
continuity, this condition extends to D.

In this way we have constructed the analytic manifold T'. The chart maps 1,~b¢
are induced by the inclusions of U; x S™*! x RT in the disjoint union.

The map ¢ is defined now by the condition ¢y o ¢ o ¢y, = J)Ui in each
1
chart domain U; x S™~1 x RT. The consistence of this definition comes from the

construction of the maps g. [

Now we are in a position to define the operation of generalized blowing up
along C.

(I1.10) Definition. Given « and C as above, let an o-admissible trivialization of
C be taken, T denote the associated tubular neighbourhood of C and ¢: T — T
be the analytic submersion constructed in Proposition (IL9) above.

Put £ = (E\C) U T, the disjoint union obtained by the identification of
i € T with ¢(fn) € T C E for all m € T\D. This endows E with a
natural structure of a compact analytic manifold. Let ® be the analytic mapping
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®: £ — E defined by the commuting diagram:

i

E’*—)E‘
~ ¢
1

wh—)T

where ¢ stands for natural inclusions.

We say that the map ®: E — E constructed above is the a-weighted blowing
up of E along C, relative to the given a-admissible trivialization of C.

As in definition (IL4), we will denote by D the image (D) and call it excep-
tional divisor of this blowing up. Since D is diffeomorphism to D, it is fibered
on C with fiber $7-1.

Now we have a lemma, analogous to lemma (I1.6):

(I.11) Lemma. Suppose we have a blowing up ® in the sense of Definition
(11.10) and a local vector field X defined on the associated tubular neigh-
bourhood T such that C C Z(X), where Z(X) is the set of zeros of X.

Then there exists an analytic local vector field X on T which is equal to
®;1(X) on T/D, where D is the exceptional divisor.

Proof. It suffices to prove this result locally. So let us choose an open covering
of T' by a collection of a-admissible charts (Wi, i), %i:U; x R* — T as in
definition (IL.8) and such that X is defined by an analytic vector field X; on W;
for all ¢. The transition maps from X; to X j» when W; N W; # &, are denoted
fij-

Now, in each chart domain W;, up to a trivial factor u; we have a situation
analogous to that of lemma (11.6). A reasoning similar to the proof of this lemma
shows that if s = 37 a; —1, then in each chart W; of T the vector field uw P (X))
defined on W; i\D is extended to an analytic vector field X; on W;. The collection
(Wi, X; ;} defines a local vector field X on 7', with transition maps f,] = fi 0P,
Clearly, X is equal to ®71(X) on T\D. O
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Remark. As in Remark (I1.6.2), if we have a covering of S™~! by a collection
of charts, X; will be replaced by another representant of its equivalence class and
so will X.

(II.12) Definition. Given a blowing up ®: E — E as in Definition (II.10), along
a submanifold C of F, and a local vector field X such that C' ¢ Z(X), we will
call the blowing up of X the local vector field X on W constructed in Lemma
(II.11) above.

By the construction, X is equal to X on E\D.

To have the uniqueness in this construction (up to the equivalence relation
for local vector fields) we take the minimal s € N U {0} such that the field
uf QII(X,-) extends analytically and denote the blown up field for such minimal
s by X.

Clearly, this definition does not depend on the choice of the collection of
a-admissible charts (W;, ;) made in the proof of lemma (IL11).

(IL13) Definition. Let C' C E be as above and let £ = (E,7,A,X) be a
foliated local vector field. Take an a-admissible trivialization of C' and let ® be
the generalized blowing up relative to it.

We say that this blowing up is compatible with the given singular fibration
(E,m,A) if mc:C — A is a submersion onto an analytic submanifold C’ C A.

For each o-admissible chart (W, ) of C, there exists a trivialization chart
(W', ") of C",4": U’ x Rt — A being a local diffeomorphism on its image W',
with ¢'(U’ x {0} = W' N C' such that if (zy,...,z,) are coordinates in R"

and (Aq,...,A;) coordinates in R!, we have:
(W) tomo(e,z1,... ,20) = (mo(c), A1y .. s A1),
with Aq,... ,A; monomials of z;,... ,z,. In the above, [ denotes the codimen-

sion of C' in A.

Remark. This definition is clearly independent of the choice of (W, ) and
(W', ¢").

(IT.14) Proposition. Suppose that we have a foliated local vector field £ =
(E,n,A,X) and a blowing up ® compatible with the singular fibration
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(E, 7, A) along a submanifold C c Z(X). Such a blowing up, applied to £,
gives as a result the object & = (&,#% A, X ), Which is again a foliated local
vector field. We have A = A and # = 7 o ®.

Proof. All the required properties are easily verified, except the form of #. We
will restrict the proof to the case where C' restricts to one point. The general case
is completely analogous, using systems of local coordinates of definition (I1.13).

Suppose C' = {a}. In the local coordinates (z1,...,z,) chosen for 7 (cf.
Def. (1.3)), it has the form

vt h_
/\1 = HIC,-I,... ;’\n—Z = Hzi" 2
Putting z; = r%Z;,¢ = 1,...,n, i.e. substituting ¢ into these formulas we
obtain (take one )

1 n
A:TN.’_I—:II) ...2‘;5’1’ where N:a1p1+...+anpn_

Let us look at A in the coordinate system {z; = cst}, for instance {z; = 1}

(cf. Lemma (I1.6)). Local coordinates are (¢, z2,..., ), and in this coordinate

system a = (0, az, ... ,a,) (we have supposed z;(a) > O to take {z1 = 1}).
By the change of coordinates

{t:Xl
z;=a;+X; for 1=2,... n

we get
A=u-rV.XP X
with u an analytic strictly positive function and some 7* # 0.
As we have done this for each A;,7 = 1,... ,n — 2, we obtain a matrix p
with entries p;

By the hypothesis about x, we have rgA\ = n — 2. This implies that rg P =
n — 2 too and after a suitable permutation of rangs and columns in P we may
suppose that pf #0fori=1,...,n— 2. Now we can take agairi a coordinate
change

Yyir =121
y,-:ulfﬁz'-X,-, 122, ,n

and the wanted form of 7 is obtained. [
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(IL.15) Proposition. If there is a uniform bound K on the number of limit
cycles of & by leaves, then there is a uniform bound K - N, for some N € N,
on the number of limit cycles of € by leaves, where € is a foliated local vector
field and & its blowing up (cf. (1.11)).

Proof. Because C C Z(X), any limit cycle in a leaf L is in L\C. Now by the
quasitransversality of C' there exists an N € N such that the number of connected
components of L\C is equal to N for each leaf L intersecting C. This proves
the proposition. O

Each of the three operations defined above induces a new foliated local vector
field & when applied to a foliated local vector field £. We have shown that, for
each operation, the finiteness property of & implies the finiteness property of €.

3. Conjectures

In this chapter we will formulate and discuss the conjectures that we would aim
to prove in future works on the subject, using the tools presented in the present
paper. In Chapters I and II we introduced the tools we will use (such as foliated
local vector fields or the three desingularization operations). Let us first introduce
some notions.

(IIL1) Definition. Let £ = (E, x, A, X) be a foliated local vector ficld
(FL.V.F) and let a € E be a singular point of X (a € Z(X)).

We say that a is an elementary singular point if for each leaf L € £, the
point a is an elementary singular point of Xz (i.e. the 1-jet X £ has at least
one nonzero eigenvalue).

Remark. If a € ¥, it may happen that @ € L for several leaves of L,. Also,
we do not require the elementary singular point to be algebraically isolated. As
they are hyperbolic or semi-hyperbolic points, in the case they are not isolated,
they will form a normally hyperbolic line.

(IIL.2) Definition. Let £ = (E,x, A, X) be a foliated local vector field. We say
that a compact invariant set I' C E is a limit periodic set of € if there exists a
sequence of limit cycles of £ that converges to I' in the Hausdorff metric.

(ITL3) Definition. A limit periodic set of € is called an elementary limit periodic
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set if each of its points is either regular (X (a) # 0) or is an elementary singular
point of £.

Remark. It is possible to show, using the Poincaré-Bendixon theorem, that an
elementary limit periodic set is formed of a finite number of arcs, each of them
being either a trajectory or a normally hyperbolic line of X. Besides, each of
these arcs is contained in the closure of one of the leaves of 7. The extremal
points of the arcs are in Z(X) and may belong to X.

In particular, an elementary polycycle contained in a leaf I, € 7 is an exam-
ple of an elementary limit periodic set, although in general an elementary limit
periodic set need not be contained in a leaf of 7. See [R3] for more examples.

(ITL.4) Definition. A step of desingularization is given by a correspondence

{&tier = {€ij} . )erxs
between two collections of foliated local vector fields, satisfying the following
conditions: let &; = (E;,m;, A;, X;), and suppose that there exists a collection
{5 ayerxa €5 = (Eij, mij, Aij, Xij) such that:
(1) E;j C E;forall (i,5) e I x J,

(2) for each ¢ € I, every non-clementary limit periodic set of £; is contained in
the interior of one of E;;,

(3) for each (7, 5) € I x J, the maximal foliation of €5 s the trace on E;; of the
maximal foliation of &;. Moreover, there is an analytic map Gy hey — A
such that 7; o 1 = ¢; o m;;, where ¢ is the inclusion ¢: E;; — E;,

(4) for each (1,7) € I X J,¢&;; is either equal to &5 or is induced from &5 by
one of the three desingularization operations of Chapter II.

Now we are in a position to formulate the two conjectures:

(ITLS) Desingularization Conjecture. For any analytically parameterized
family {X)}, X € A, of analytic vector fields in S? a finite number of desingu-
larization steps can be chosen, such that in the resulting final collection {&}
of foliated local vector field each &; has only elementary limit periodic sets.

(IT11.6) Reduced Local Finite Cyclicity Conjecture. Each elementary limit
periodic set T of a foliated local vector field & = (E,n, A, X) has the finite
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cyclicity property, i.e. there exist € > 0 and K € N such that for each leaf
L € 7 the number of limit cycles of £, at a E-Hausdorff distance to T' less
than e, is bounded by K.

(IT1.7) Definition. We say that a foliated local vector field £ has the finiteness
property if there exists a number K such that each leaf of the maximal foliation
of £ contains less than K limit cycles. In the case of families this definition
coincides with the one given in the introduction.

(IT1.8) Proposition. Desingularization Conjecture (IIL.5) together with Re-
duced Local Finite Cyclicity Conjecture (111.6) imply that each family on S? x A
as in the introduction has the finiteness property.

Proof. Suppose that after k desingularization steps we have obtained a collection
of foliated local vector fields whose limit periodic set is elementary. We want to
prove that all foliated local vector field of this collection, preceding the final one,
has the finiteness property.

It follows from (IIL.6) that each foliated local vector ficld £ in the final
collection has the finite cyclicity property. Using the proposition given in the
appendix we conclude that each & has the finiteness property.

Suppose we have proved that in the s-th step of desingularization, s > 1, all
foliated local vector fields have the finiteness property. Let £ be one of the foliated
local vector fields of the (s —1)-th step. Since the finiteness property is preserved
by the three desingularization operations, it follows that each non-clementary limit
periodic set of € has the finite cyclicity property. Each elementary limit periodic
set has it too, by (IIL.6). So £ has the finiteness property. Therefore, by decreasing
induction, we obtain the required result. O

4. Basic Simplifications

In this chapter we want to eliminate families of vector ficlds {X,}, defined on
S2 x A as in the introduction, for which some X » vanish identically, replacing
them by a finite collection of families {X 3 X € A;, not containing vanishing
fields. This result is established in Proposition (IV.3).

Next, we want to replace foliated local vector fields (E,x, A, X) such that
codim Z(X) = 1 by foliated local vector fields (E,x, A, X) for which codim
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Z(X) > 2. This will be done by local division, under the assumption that
H'(E,7;) = 0 (see Proposition (IV.5)).

Combining the two preceding results, it follows for instance that in order to
establish the finiteness property for any analytic family on the 2-sphere S? it
suffices to establish this property for the families with no exceptional values as
parameters and such that codim Z(X) > 2.

(IV.1) Definition. Given an analytic family of vector fields on S2, { X ALAEA,
we say that A, € A is an exceptional value if X,, = 0.

We will show how to eliminate exceptional values. In what follows, families
will be identified with local vector fields on the total space S2 x A and denote X
instead of X.

Take a point (m,, A,) in S% x A and local coordinates (z,y) in a neighbour-
hood of it, m, = (2o, y,). In a neighbourhood of (z,,y,, A,) we have:
X(z,y,A) = Xa(z,y) = F(z,y,1)3/0z + G(z, y, A)d/dy. (4.1)
We develop F and G, in a neighbourhood W,,, x U A, Of (zo,yo,,\o), in series
of (z — z,), (y — yo):
F(ZL‘, y;A) = Z alr(x - xo)l(y - yo)r
Lr
(4.2)
G(SL’, Y, ’\) = Z blr(z - zo)l(y - yo)r:

where a;,, by, are analytic in U,.

We will denote by J ;’:° the ideal generated by tlic germs of all ay,, by, in X,.
This ideal does not depend on the choice of local coordinates.

Using an argument similar to that of the proof of Prop. 1 in [R2], (cf. also
the book of Hervé [H]) we show that this ideal does not depend on m,.

(IV.2) Definition. The ideal J 1’:° will be called the ideal of coefficients of X
and denoted J,,.

Remark. Of course Jy, = Oy, when A, is not an exceptional value.

Now, the ring 0, being Noetherian, the ideal Jy, is finitely generated. We
will choose a system of generators fi,. .., f of J), and denote by f1,..., fm
. their representants in an open set G C A.
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It is always possible to choose the generators of J), among the germs of the
coefficients aiy, bir- We do that.

One can easily deduce (cf. [R2], Prop. 1) that S? is a finite union of connected
open sets W; such that there is a connected open neighbourhood U of A,,U ¢ G,

for which we have:

X=fX 4+ fmXL, inW; x U, (4.3)
where X3,..., X3, are analytic vector field families in W;, for each W;, j =
1,...,r. Remark that X vanishes identically for a certain A € U iff f1()) =

+ %= fom(A) = 0 and X;f" never vanishes identically in W;. This is due to the
choice of f1,..., fm. Now we apply Corollary 4.9 of [BM] to the functions
fi,---, fm and get a proper analytic surjection ¢: U — U, where U is a real
analytic manifold, such that ¢ is a local diffeomorphism on an open dense set of
U and 7’1 = fi0¢,: .. ,}m = fm o ¢ are locally normal crossings in U.

For each point X, € U take a system of local coordinates 5\1, o 35 :\k ina
neighbourhood V' ¢ U such that ]’1 =u -:\"‘1, =Y ,~m = Ay ¥ Xem in V, with
U1, ... ,Unp unities and ay, ... , oy, € NX,

In the proof given in [BM] we can read that, up to a suitable permutation of
fi, the coordinates X can be chosen in such a way that oy < -+ < a, (where

=01 %) <B=(P1,...,P) means y; < B; fori =1,...,k).

Now, take the field X (z,y, A) = X(z,y, $(})), defined in S% x U. By (4.3)
we know that:

X=h1Xi+ -+ fmXi inecach W;xU,j=1,..,r (4.4)

Observe that X f\ never vanish identically in W; and Xis an exceptional value for
Xiff i(N) == fm(X) =0.

By the ordering of ay,...,0m,, we know that }',/}'1,1' = L e 0 AR
analytic functions in V, so we can take the field X = X / f1 and it will be (cf.
(4.4)) an analytic vector field in S% x U. Take a finite subcovering V1, N Ve
such that ¢(V1),. .. ,¢(V3) cover U and denote by X* the field X obtained in
V;. Take ani € {1,... s}

The family X*, defined on S2 x 17, is obtained from X using the induction
defined by ¢|;., followed by a local division. Since ¢ is surjective, the finiteness

%
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property for X |Vi results from the same property for X*. One has to note that
the argument about induction is not used in the sense of Chapter 11, i.e. it does
not go from X ]V'. to X*, as in Chapter II, but in the inversed direction and the
result follows from the surjective property of 0.

Finally, we can summarize the result obtained as follows:

(IV.3) Proposition. The finiteness property of analytic vector field families
X on S x A, as defined in the introduction, is implied by the finiteness
property for the families without exceptional values of parameters.

Suppose now we have a local vector ficld X on E such that codim Z (X}= L
We will now proceed to eliminate this situation t0o. We will need the following:

(IV.4) Lemma. Given a local vector field X on E such that H 1(E‘, Z3) =0,
defined by an open finite covering {U:} of E, suppose we have a collection
{f:,Y:} of analytic functions fi and analytic vector fields Y;, defined in U;,
verifying:

Xi=fi-YiinUs,i=1,...,r and (4.5)
for each pair 1,3 of indices such that U; N U;j # O, there is an analytic
nonvanishing function g;; defined in U; N U; such that

fi=gij- fjinU;nU;. (4.6)

Then, after an appropriate change of signs of Y; when necessary, the collection
{Ui, £Y:} defines a local vector field on E, which is the result of local division
of X. 2

Proof. Let ¢;;: U; NU; — 7, where Z; is the multiplicative group {1,—1}, be
the function ;; = sgngi;. As sgng;; - sgng;r = sgngii because of (4.6), the
collection {1;;} is a Cech cocycle. Since H 1(E,7,) = 0, there exist continuous
functions ¢;: U; — 7, such that Yij = ¢ - ¢]T1, where ¢]71 stands for 1/¢;.

Let us take Y; = ®i - Y;. These are still analytic fields in U;. The equality
(4.5) implies g;; - Y; = Y; in U; n Uj. Let us multiply both sides of the last
equality by ¢; - ¢;. We get:

$i-bi-gij-Yi=¢i-¢;-Y;, hence ¢;-g;;-Vi=;-V;
Multiplying by 4. we obtain:

A A

567 0 Yi=Y;, therelore g Y; =7;.
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Since Yij = hji, We have §;; = Yiji - gi; > 0in U; N U;.
We have thus obtained a family {U;, ¥;} which defines a local vector field,

with transition functions g;;. O

(IV.5) Proposition. Suppose X is a local vector field on E, such that
H(E,7,) = 0 and that codim Z(X) = 1. Then there exists a local vector
field X on E, induced by local division of X and such that codim Z (X) >2.

Proof. Take a point @ € Z(X) and choose a local coordinate system (U,, 1),
(a) = 0, in a neighbourhood U, of a, such that X is written X = Y F;0/dz;

with F; analytic in ¢(U,).

Take the germs (F;)o,7 = 1,...,n. The ring O is a ring with unique fac-
torization (cf. [T]), so there is the greatest common divisor of (F})o, ... ,(Fr)o,
defined up to a unit. Take one and name it f,. Take f, = 1if (F})o,i=1,... ,n
are relatively prime.

Now we have (F;)o = f, - (ff})o,i ="1,.07 0 and (Fl)o,... ,(Fn)o rela-
tively prime.

The fact that the germs (17‘;)0, 1 =1,...,n are relatively prime is equivalent
to the fact that the set {17’1 =...=F, = 0} is of codimension strictly greater
than one in 0.

‘We can choose a neighbourhood V' of 0,V c ¢(U,), in which the germs
above have representants Fj, f,, ff‘, such that, at each point of Z(X)NV =
{Fi = ... = F, = 0}, the germs of F; are rclatively prime. In V we have
Fi=fF:,i=1,... ,n PutV, = ¥~1(V'). The open sets V, form a covering
of E; choose a finite subcovering V7,... ,V,.

Let X = Y F/8/dz; in V;. Take Y; = y;1(T F/8/0;), where Fi are
the relatively prime functions defined above, taken for V; and let f; denote the
greatest common divisor of F,-’. by =1,...,n. Put h; = f; o 4. The collection
1hs) Y;.j },3=1,...,r, verifies the conditions of Lemma (IV.4) because we have
F! = f; - F7 in (V;) and F} = fi..F¥ in (V).

Thus, again by the uniqueness of factorization in 0, we conclude that locally,
in V; NV, the greatest common divisors h;, hy, differ by a nonvanishing function
gij- Since the conditions of lemma (IV.4) are satisficd, there exists a local vector
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field Y obtained from X by local division and such that codim Z (¥) = 2. O

Appendix

In [R1] it was proved that in any analytic compact family, the finite cyclicity
property implies the finiteness property. In chapter III we have used the same
implication for foliated local vector ficlds. We give now a precise formulation
and a proof of this result:

Proposition. Let £ = (E,A,n,X) be a foliated local vector field and 7 its
associated foliation as in chapter 1I. Suppose that any periodic limit set in £
has the finite cyclicity property. Then £ has the finiteness property (see the
definitions in chapter I111).

Proof. Let d be any metric defining the topology of E. Let C (E) be the set
of all compact subsets in E. We recall that C(E) endowed with the Hausdorff
distance dj, is also a compact metric space [K]. Now let C(¥) be the compact
subset in C(E), defined as the closure of the sct

{L|Lis a leaf of 7}.

Let also C(LC) c C(E) be the closure of the subset of all limit cycles of €.
This last subset C(LC') contains every periodic limit sct of £. The assumption
about the finite cyclicity property can be read as follows:

For any T € C(LC), there exist e > 0 and K (T') € N such that, for
every leaf L of 7, the number of limit cycles ~y in_L, with distp(v,T) < er,
is less than K (T').

Let W (') be the open ep-neighbourhood of T in C(E). Now, for any M e
C(7) we consider the following subset of C(E):

Mu = {T € C(CL)IT ¢ M)}

Clearly Mz is a closed subset and so is a compact subset in C (E). By com-
pactness, there exists a finite sequence TI'y,...,T, in Mps such that W =
W(T1)U...UW(T,) is an open neighbourhood of Mas in C(E). We have
the following property (*):

There exists a neighbourhood W of M in C(E) such that, for all L with
L € W and every limit cycle vy C L, we have y € W.
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Suppose that the property (*) is false. Then we can find a sequence (L;)
with (L;) converging to M in C(E) such that for each 1 there exists a limit cycle
% C© L; with 4; ¢ W. Now, because C(E) is compact, we can choose the
sequences (L;) and (~y;) such that (v;) converges to some I' C M. By definition
this I" belongs to Mas, which contradicts the property ~; & W.

Now consider W with the property (*). For any L with L € W, every limit
cycle of L belongs to W = W (T'1) U...UW(T,). So the number of such limit
cycles is less than K = K(T'y) + ---+ K(T';). Finally we have proved the
following:

For any M € C(F) there exist a neighbourhood War in C(E) and a
number Kar such that any leaf of 7 with L € War contains less than Ky
limit cycles.

The finiteness property follows now from the compactness of C(7): we can
extract a finite subcovering of { Was}ar, say {War1, ... , Was1} such that C(7)
War1 U...U Wasr. A uniform bound for the number of limit cycles in each leaf
of 7 is given by K = Sup {Kn1,... ,Kpn}- O

References

[BI] Brocker Th., Janich K., Introduction to Differential Topology, Cambridge University Press,
1973:

[BM] Bierstone E., Milman P., Semianalytic and subanalytic sets, IHES, Publications Math. nr
67, p. 1-42, 1988.

[B] Bogdanov R., Versal deformations of a singular point of a vector field on the plane in the
case of zero eigenvalues, Seminaria Petrovsky 1976, Sel. Math. Sov. 1 (4) 1981.

[D1] Dumortier F., Singularities of vector ficlds on the plane, J. Diff. Equations, 23, 2, (1977)
53-166.

[D2] Dumortier F., Singularities of vector fields, publ. IMPA, (1978)..

[DR1] Dumortier F., Roussarie R., Tracking limit cycles escaping from rescaling domains (to
appear).

[DR2] Dumortier F., Roussarie R., Duck cycles and central manifolds (to appear).

[DRS1] Dumortier F., Roussarie R., Sotomayor J., Generic 3-parameter families of vector fields
on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension
3. Erg. Th. and Dyn. Syst. vol. 7, p. 375-413, 1987.

[DRS2] Dumortier F., Roussarie R., Sotomayor J., Generic 3-parameter families of planar
vector fields, unfoldings of saddle, focus and elliptic singularities with nilpotent linear part.
Lect. Notes of Maths., 1480, 1991.



401 UENRUWDKA AND RUBERT ROUSSARIE

[DRS3] Dumortier F., Roussarie R., Sotomayor J., Bifurcations of cuspidal loops (to appear).
[FP] Frangoise J. P., Pugh C. C., Keeping track of limit cycles, J. Diff. Eq. 65, (1986) 139-157.
[H] Hervé H., Several complex Variables, Oxford University Press, 1963.

[K] Kuratowski K., Topology, vol. 2, Academic Press, N.Y. London, 1966.

[R1] Roussarie R., Note on the Finite cyclicity property and Hilbert’s 16th problem, Lect.
Notes in Math. no. 1331, Dynamical Systems-Valparaiso 1986, R. Bamon, R. Labarca, J. Palis
ed. (1988).

[R2] Roussarie R., Cyclicité finie des lacets et des points cuspidaux, Nonlinearity 2, 73-117,
1989.

[R3] Roussarie R., Desingularization of unfoldings of cusp loops, preprint, 1989, to appear in
Acta of “Workshop: Chaotic dynamics and bifurcations”, march 1989, H. Broer and F. Takens
org. :

[R4] Roussarie R., Desingularization of analytic families of planar vector fields without singular
points of vanishing linear part, to appear.

[S] Seidenberg A., Reduction of singularities of the equation Ady = Bdz, Amer. J. Math.,
(1968) 248-269.

[Ta] Takens F., Forced oscillations and bifurcations. In Applications of Global Analysis I,
Communications of Math. Inst. Rijksuniversitat, Utrecht 3, 1974.

[T] Tougeron J. Cl., Ideaux de fonctions différentiables, Springer Verlag 1972.

[Tr] Trifonov S. I., Desingularisation of singularities in families of analytic differential equations
(Preprint in Russian).

[V] Van den Essen, Reduction of singularities of the equation Ady = Bdz, L. N. M. 712,
1979, p. 44-60.

Zofia Denkowska

Jagellonian University

invited at Université Paris Sud 0
Mathématiques, bat. 425

91 405 Orsay

Robert Roussarie
Université de Bourgogne
Laboratoire de Topologie
Faculté Mirande, b.p. 138
21 004 Dijon

Ral Snr Ryne Mat V.l 99 AT 1 1nn:




