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Abstract. It is shown that the nonstationary Navier-Stokes equation (NS) in Rt x R™ is
well posed in certain Morrey spaces M,, » (R™) (see the text for the definition: in particular
M, o =LPif p > 1 and Mj o is the space of finite measures), in the following sense. Given
a vector @ € Mp m—p With diva = 0 and with certain supplementary conditions, there is a
unique local (in time) solution (velocity field) u(t, -+ ) € Mp m—p, Which is smooth for £ > 0
and takes the initial value a at least in a weak sense. » is a global solution if a is sufficiently
small. Of particular interest is the space Mj ,,—1, Which admits certain measures; thus a
may be a surface measure on a smooth (m — 1)- dimensional surface in R™. The regularity
of solutions and the decay of global solutions are also considered. The associated vorticity
equation (for the vorticity ¢ = 8 A u) can similarly be solved in (tensor-valued) Mim—2,
which is also a space of measures of another kind.

Introduction
In this paper we continue the study of strong solutions of the Cauchy problem
for the free Navier-Stokes equation in R™ (cf. [S]):
diu—Au+T9-(u®u)=0,
duu=0, u(0)=a (3-a=0).
Here 8 = (81,... ,0m), 8; = 8/dzj, u:[0,T] x R™ — R™ is the velocity
field, u ® u is the tensor with jk-components ujuk, 0 - (u ® u) is a vector with

(NVS)

j-th component 9 (uxu;) = (dkug)u; (with summation convention), and II is
the projection operator onto divergence free vectors along gradients. II is an
m X m-matrix with elements ;i + R; Rg, where R; = 3;(—A)~/% are singular
integral operators (the Riesz transforms). The pressure field 7 may be recovered,
if necessary, by a7 = (II — 1)9 - (u @ u).

Roughly speaking, a strong solution u(t) of (NS) is smooth for ¢ > 0 but
the initial velocity a may be nonsmooth and of slow spatial decay. It was shown
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in [5] that if @ € L™, then a unique strong solution u(t) € L™ exists for short
time, and for all time if ||a||,, is sufficiently small. (L? means L?(R™) unless
otherwise stated, and || ||, denotes the LP-norm.) No other L? is known to have
this property.

Recently Giga and Miyakawa [3] proved that if the initial vorticity 0 A a
is a Radon measure belonging to a certain Morrey space, then (NS) is uniquely
solvable in a similar sense. The Morrey space M,y on R™ is defined, for 0 <
A < m, as the class of (scalar or vector valued) functions f such that the integral
of | f|P on a ball of radius R is dominated by const. R* for all R > 0, uniformly
in the position of the ball. (By extension M;  includes some measures.) M, is
identical with L? (or the space M of finite measures if p = 1). For 0 < A < m,
M, , may include various nonsmooth functions or measures that have no decay
in some directions. (For example, f(z) = §(z1)6(z2) on R® belongs to M ;.)

The main assumption in [3] is that & A a belongs to (vector-valued) M 1(R3).
This assumption implies certain' differentiability of a.

The purpose of the present paper is to solve (NS) for u(t) in Morrey spaces,
without considering the vorticity d A u except in the last section. A typical result
is that if 1 < p < m, (NS) is well posed in M, ,,_, in the following sense: if
a € My, m—p with small norm, then a global solution u(t) € Mp, n,—p exists, and
it is unique within certain restrictions. (For p = m, this reduces to the case of
[5].) Since it is known that 8 A a € M 4, implies a € M, ,,,_,, for any p
with 1 < p < m/(m — 1) (see Lemma 4.1), this partially generalizes the result
of [3] by eliminating the differentiability of a.

With some modifications, similar results hold for p = 1 as well as for local
existence for large a. For details see Theorems I, II in sections 5,6. The case
p = lis interesting in that certain measures are allowed as the initial velocity a.
For example, a may be a divergence free, tangential vector measure concentrated
on a smooth surface in R® (see Remark 6.3). ;

For the global solution u we have the decay ||u(t)||., = O(t~1/2). This
rate is improved under the additional condition that a € M, , for another pair
(¢, #). In particular @ € L' (or M) will lead to the “maximal” decay ||u(t)||, =
O(t™/?-m/2), 1 < r < oco. For details see Theorem III (section 7). The
smoothness of the solution for ¢ > 0 is proved in Theorem v (section 8). Finally
we consider the vorticity equation, and recover some other results from [3] (section
9).
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The proofs of these theorems are basically the same as in [5], but more
complicated due to the fact that neither translations nor heat operators form Cp-
semigroups on M, 5 with A > 0. For this reason we have to interpret the initial
condition u(0) = a in a weak sense, or else restrict a to certain subspaces of
M, ». .
Section 1 summarizes the main properties of the Morrey spaces and their
subspaces, and introduces a convenient geometric notation, by which M, , is
represented by a point A = (1/p, ) € R? with & = (m — A)/p. In sections 2
and 3, we study the behavior of the heat operator U (t) = €2 and the translation
group. In particular we identify the maximal subspace of M), x on which U (t)
has the Cy-property. It turns out that it is also the maximal subspace on which
translations form a Cy-group. In section 4 we prove the boundedness of potential
operators and singular integral operators, including the projection II. In section
5 we solve the integral equation associated with (NS). Sections 6 to 9 contain the
main results of this paper.

The writer is greatly indebted to Y. Giga and G. Ponce for useful comments.

1. Morrey spaces and their subspaces
We summarize the basic properties of Morrey spaces that we need in the sequel,
with sketches of proof when necessary.

1. The Morrey space My, = M, »(R™) is defined as the subspace of Lj, (R™)
with the norm defined by
||f||p,>‘ = sup{R'A/p ||f||p;z,R iz €R™, R > 0}
1<p<oo,0<A<m,

(1.1)

where [|f]|,,., g denotes the LP-norm of f on Bg(z) (the closed ball in R™ with
center z and radius R). If p = 1, we allow (signed) measures for f € M; ), with
1 £1l;.;  denoting the total variation of f on Br(z). M, is a Banach space.
For basic results on Morrey spaces, see e.g. Campanato [1], Peetre [6].

In particular Mo = LP for p > 1, and M ¢ is the Banach space of finite
measures, which we denote by M. For various reasons we find it convenient to
include L* among the Morrey spaces, but the indices in the notation My x will
always be restricted to 1 < p < o0, 0 < A < m, notwithstanding that (1.1)
makes sense for A = m and the resulting space is equivalent to L (irrespective
of the value of p).
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We define a subset Mp, a of M, » by requiring, in addition to || f |]p,,\ < oo,
that
R?sup{||f|l,., r ;= €ER™} — O as R — 0. (1.1a)

Note that (1.1a) is trivially satisfied if f € L°°.
We define another subset Mp,,\ of M, » by the condition that

llref = fll,» — 0as £—0, (1.1b)

where 7¢ denotes translation: 7 f(z) = f(z — €), z, £ € R™. _

It follows from the Banach-Steinhaus theorem that M A and Mp a are closed
subspaces of M), . We have M, o = Mpo = Mpo = L? for p > 1, by the
uniform integrability of L!-functions and the continuity of translations on LP.
Actually we have Mp 2 IE Mp x> as will be proved later (section 3).

2. M, , forms a two-parameter family, in which there is a one- parameter family
of inclusion relations (cf. [6])

MyucCc M,y if (m-X)/p=(m-p)lg, p<q. 1.2)

To see this, it suffices to note that || f||,.., < gRm(r-mla ||f|| 2 g Dy the Holder
inequality. The same proof applies to show that Mp a and Mp a also satisfy the
same inclusion relations.

Relation (1.2) suggests that it is convenient to introduce a new set of param-
eters 1o describe the Morrey spaces (cf. [6]). We shall write

Myy=M(A), A=(l/p,a)c4, a=(m—-3)/p>0, (1.3)

where 4 = 4, denotes the right triangle with vertices O = (0, 0), (1,0), (m, 0),
with the bottom side excluded except for the origin O, with the convention that
M(O) = L* (see Fig. 1). For A = (1/p, @), we write 1/p = z(A), a = y(A);
y(A) will be called the height of A. y(A) = 0 occurs only for A = O. The
closed segment connecting two points A, B will be denoted by [AB] or [A, B].
]AB][ denotes the open segment. (The parameter « is the same as in [6], with the
sign reversed.)

Corresponding to (1.3), the norm || f||,, , will be denoted by || f; M(A)]| or,
more simply, by || f; A|| (with ||f;O|| = ||f]|..)- Thus

17 Al = sup{R~™/P* || £

pmRal EB a7 W6 (1.4)
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(M)m

Figure 1

Also we use the obvious notations M(A) and M(A). For A = O, we
define M(0O) ¢ M(O) = L* as the set of bounded continuous functions, and
M(O) as the set of bounded, uniformly continuous functions. We note that
M(A) N M(0) C M(A).

The points A € 4 corresponding to A = const are on a ray emanating from
O. The hypotenuse of 4 corresponds to A = 0, and represents the spaces L¥ or
M, according as p > 1 or p = 1. The vertical side (z(A) = 1) of 4 corresponds
to spaces of measures and is singular in many respects. Finally, we write A C B
if y(A) = y(B) and B is to the right of A.

With these notations, (1.2) may be expressed by ' .

(1) (inclusion) A C B implies that M(A) ¢ M(B), M(A) C M(B), and
M(A) c M(B). )

It should be noted, however, that a relation like M(A) c M(B), suggested
by analogy with Holder spaces, is not true. For a counterexample, see Example

1.1, (b), below.
Other important properties of Morrey spaces are also conveniently expressed
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by the notation (1.3).

(IT) (the Holder inequality) f € M(A) and ¢ € M(B) imply fg € M(A +
B), with || fg; A+ B|| < ||f; A|| ||g; B||- (Here A, B are regarded as 2-vectors.)
Proof. This follows from the Holder inequality “fg“r;z,R < ||f||p;z'R “g”q;z,R
where 1/r = 1/p + 1/q, combined with (1.4).

(II) (convexity) f € M(A) N M(B) implies f € M(C) for C € [AB],
with || £;C|| < ||£; Al[*7*|; B||*, where k = [AC]/[AB]. (|AB] may also
denote the length of the segment [AB], depending on the context.)

Proof. This follows easily from (II), combined with the simple identity

7% kAl = |If; AlF, k> o. (1.5)

3. We add another kind of inclusion relation, using the original notation M, 5.
(IV) M, » is continuously embedded in the weighted LP-space

Py, = @ cs'(=<z>k M if p=1)

for any k > X, where (z) = (1 + |2’|2)l/2'

Proof. With a continuous functions ¢ on R*, we have the identity

Jon D @F 2= [~ 60)antr), o)= [ 1f@Pdz 00

If f € My, so that p(r) < [[f|IPr* (I F]l = [|£]l,) and if 0 < ¢ € C* with
#(r) = o(r=?) for large r, an integration by parts gives

LoD 1@ d < [ (¢ o) < rlP [ 1g/ )] Par. 07
If we choose ¢(r) =< r >~F with k > A, the integral converges, proving the
required result. (If p = 1, | f(z)| dz should be interpreted as | f| (dz).)

Finally we mention the Morrey spaces of vector valued functions. Given

f:R™ — R™, we say f € M(A)[M(A), M(A)] if each component of f has
the same property, and define the norm by ||f; A|| = || |f]; A]|-

Example 1.1. (a) LP ¢ M(A) if p < oo and y(A) = m/p.

I 0 < k < m, |z|7* belongs to M(A) for A = (1/p,k) with
1 < p <m/k, but not to M(A) for any A € 4.

(c) Let v = d¢, where ¢ is the Cantor ternary function defined on [0,1]. v
is a singular measure on [0,1]. Extend v on all R by setting v = 0 outside [0,1].
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Then v € M(1, ) with X = log(2)/log(3). (This follows from the fact that ¢
is Holder continuous with exponent A.)

@Ifm < m, f e MA)R™) adif f(z1,...,2Zm) = f(21,... ,zm),
then f € M(A)(R™). Thus the property f € M(A) remains unchanged when
functions are “lifted” to higher dimensional space. (Note, however, that the trian-
gle 4,, is larger for larger m.)

(e) The Dirac measure on R™~! belongs to M (1,m — 1). Hence the “fila-
ment” in R™ concentrated on zy = ... = z,,—1 = 0 belongs to M (1, m — 1)
(apply (d) with m2 = m — 1).

2. The heat operator
We now study the behavior of the heat operator U(t) = €2 between Morrey
spaces. Recall that U () is a convolution operator with kernel

hi(z) = he(|z]), Re(r) = ct™™ ?exp(—r?/4t), t>0.  (2.1)
(We denote various constants by c.) It is easy to see that U(t) f = hy * f is well
defined for f € M(A) and belongs to C*(R™), with all the derivatives bounded.

Lemma 2.1. Let A, B € 4, with B on or to the right of the segment [O A]. Let
a=y(A), B=y(B),sothat 0 < B < a<m. Ift> 0, the operators U(t),
W (t) = 8U(t), and 3,U (t) are bounded from M(A) to M(B) c M(B), and
depend on t continuously (in norm). Moreover, we have for f € M(A)

12/2-B/2 WU@)f; Bl <c|lf;All, withc=1if A= B, (2.2)
£/7+/201 | (1); BI| < ¢ £ 4 (224
t1+e/2-812 10,0 (t)f; B|| < c||f; All. (2.2b)

The constants ¢ depend on A, B, o and 8.
Proof. Set fy = U(t)f = hy % f, t > 0. The case A = O admits only B = O,
and the proof is casy. So we assume that A # O in the sequel. Since ||h¢||; = 1,
the Holder inequality gives

el < he*|fIP, 1<p<co. (2.3)
Using ||h¢||; = 1 again, we obtain ||f|[? . r < ||fII> y R?, which implies that
1 £ell, » < 1I£1l,, 5 With A = m — ap, this proves (2.2) for B = A = (1/p, a).
Similarly, (2.2a) and (2.2b) for B = A follow by using the inequalities

|0he(2)| < ct™?ha(|a]), |9ehi(=)] < bt ha(|=]). (24)
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Next we prove (2.2) for B = O (so that M (B) = L*). (2.3) gives | ft ) <
[ %:(|z|) | f(2)|P dz. Hence we have by (1.7)

1O < [ RO 191 ar
< Ct—l—m/z /w [lfHP e_'2/4tr>‘+1dr
0
< el IP eI £l = 11l 25)

Since o = (m— A)/p for My, » = M(A), and since = = 0 is not a distinguished
point, this proves (2.2) for B = O. Similarly, (2.2a) and (2.2b) are proved for
B = O by using (2.4).

Next we prove (2.2)-(2.2b) in the general case. In view of the inclusion
property (I), we may assume that B = (1/¢, 8) € [OA], so that B¢ = ap. Then

1 felgse,re < NSNS/ SRR & < USSP (1155 Al RM/P=)P.

Since || fi; Al| < ||f; Al| as shown above, and since (m/p—a)(p/q) = m/q— B,
it follows that

1fe; Bll = sup{R~™**8||f|l... o s B > O} < |5 Ol P12 ||£; AIP/% . 2.6)

In view of (2.2) for the special case B = O already proved, we thus obtain (2.2)
(recall that ap = Bq). (2.2a) and (2.2b) follow in the same way from (2.4) and
the special case B = O.

Finally, it remains to prove that f; € M (B). This follows easily from
(2.2a), which implies (1.1b) for M, x» = M(B). Similarly, (2.2b) shows that
3:U(t) € B(M(A); M(B)) is bounded locally uniformly for ¢ > 0. Hence
U(t) € B(M(A); M(B)) is continuous in ¢ > 0. The continuity of W (t) =
AU (t) can be proved similarly by estimating ;W (t) in the same way as above.
The continuity of ;U (t) = AU (t) = dU(t/2) - dU(t/2) follows from that of
AU (t) = W (t), etc. '
Lemma 2.2. Let f € M(A), A € 4. If o > B, the left members of (2.2)-
(2.2b) tend to zero as t — 0. (Hence t*/*~P/2U (), t1/2+2/2=B/2w (1), and
t1+a/2-B/29,U (t) are strongly continuous for t > 0 on M(A) to M(B), with
values zero att = 0.)

Proof. First we prove the assertion for (2.2) with B = O. According to the
definition of M(A) = M, 5, we may replace || f|| in (2.5) by a function F(r) <
||| that tends to zero with r. Given any & > 0, therefore, we may choose § > 0
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in such a way that F(r)? < e for r < §, obtaining

§ oo
)P <t (e [ |
0 é

t_1/2§ oo -
= 5/ +Hf”p/ e~ 41y,
0 t=1/25

On letting t — 0 we sce that limsup of the right member does not exceed ce.
Since € was arbitrary, the left member must tend to zero with ¢. Since the same
result holds when f;(0) is replaced by f;(z) for general z € R™, uniformly in z,
we have proved the lemma for (2.2) (recall that m — A = ap). (2.2a) and (2.2b)
for B = O can be handled in the same way.

That (2.2) tends to zero in the general case 8 < « can be seen from (2.6), in
which || f¢; O|| = o(t~*/2) by what was just proved (recall that we may assume
op = fq). The same results for (2.2a) and (2.2b) follow similarly.

Remark 2.3. (2.2) and (2.2b) with B = A show that {U(t)} forms a bounded
analytic semigroup on M (A). As we shall see in next section, it is a Cp-
semigroup on M(A) but in general not on M(A) or M(A). (This is natural
since U (t)M(A) c M(A).)

On the other hand, a € M, , implics a € L* Efy by (IV) (section 1) if
1 <p<ooand k> A Since U(t) is a Co-semigroup on L”, Jp» We have
U(t)a — a, t — 0, in the norm of Lfs/p. Of course this implies local LP-
convergence.

Lemma 2.4. Let A, B € 4, with B on or to the right of [OA]. Let o = y(A),
B = y(B) (so that f < «). If t > 0, we have for f € M(A) N M(B),
W (@)l < ct™ 2P+ )21 1,40 B, 2.7
W @)1; BIl < et™ 2 (1 +2)22 | £, 40 B, (2.73)
where ||f; AN B|| is short for || f; M(A) N M(B)]).

Proof. Set g(t) = W(t)f. We have ||g(t)||l, < ct=1/2-#/2||f; B|| and
lg®)l., < et=/2=2/2||f; A||, by (2.22). Hence we obtain (2.7). (2.7a) can
be proved in the same way.

3. The heat semigroup and the translation group
In what follows we denote by A a generic point of 4, but occasionally use the
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old notation My, », if A # O. i

We have shown (Lemma 2.1) that U (¢)M(A) € M(A). We shall now prove
that M(A) is in fact the maximal closed subspace of M(A) on which U(t) is
a Co-semigroup. This question is closely related to the continuity of the trans-
lation group {r¢; € € R™}, since the heat semigroup is, like many convolution
semigroups, subordinated to the translation group. We note the obvious fact that
M(A), M(A) and M(A) are translation invariant.

Lemma 3.1. Let f € M(A). The following conditions are equivalent.

(@) f e M(A).

®) ||lref — f; Al > 0as £ = 0.

© [U(t)f - £; 4]l > 0as 1\, 0.

Corollary 3.2. M(A) is the maximal closed subspace of M(A) on which
the family ¢ forms a strongly continuous group and, at the same time, the
maximal subspace on which U(t) is a Co-semigroup.

Proof. For each f € M(A), we write f¢ = 7¢f, fr = U(t)f.

(a) and (b) are equivalent, by definition.

(b) implies (c). Indeed, we have

7(&) = 1@) = [ MO (e - &) - 1(@lde = [ h(O)fels) - F()de.

The last member may be interpreted as an integral of the M(A)-valued function
h¢(€)(fe — f), which is continuous in £ by hypothesis. Hence

e — 1541 < [ he(©) 15e - £ AlTde. 6.

Since || f¢ — f; Al| is bounded by 2 || f; Al| and tends to zero as £ — 0, a standard
argument shows that (3.1) tends to zero with ¢. This proves (c).
Finally, (c) implies (a) because f; € M (A) for t > 0, by Lemma 2.1.

!

Corollary 3.3. M(A) C M(A).
Proof. Let f € M(A). Then f; — f in M(A) as t — 0, by Lemma 3.1. But
fi € M(A), since f; € M(A) N L™ by (2.2) with B = O. Hence f € M(A).

Example 3.4. We give an example which shows that M (A) is in general a proper
subspace of M (A). Let us assume for simplicity that m = 1 and introduce the
wave packets

¢n(z) = sin(27nz) for 0 < z < 1, =O0elsewhere, n=1,2,....
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If we set

f(z) =é1(z —a1) + ¢2(z —az) +..., where Qnt1 — A > 2,

then f € L* with ||f||, = 1. This implies that ||f| ., » = o(R*?) as R — 0
for any A < 1. Moreover, with any A € (0,1) fixed, we can achieve that
f € My, by letting a,, grow sufficiently fast. Thus f € Mp, A forp > 1.

On the other hand we have 7, /2nPn & — @y for large n. Therefore

o

&y
pian+1/2,1

“ (Tl/zn 1) f
with the error tending to zero as n — co. Hence
”(T1/2n - l)f“p’)‘ Z 1 as n— oo,

showing that (1.1b) is violated. This implies that f ¢ M, ,.

4. Convolution operators
We prove some results on convolution operators on Morrey spaces. Most of the
following results are found in [6], but we shall give elementary proofs.

Lemma 4.1. Let S:R™ — R such that
1S(z)| < c|z°™™, where 0 < 6 < m. @.1)
Let A= (1/p,a), B = (1/q,B), with
0<pf<a<m,a-fB=6m/p-m/g<§(<bifp=1). (42)

Then S* (convolution with S) is bounded from M(A) [M(A), M(A)] 1o
M(B) [M(B), M(B)].

Proof. 1. In view of the inclusion property (I), we may assume that
m/p—-m/q=68ifp>1;, m/p—-m/qg<éifp=1. 4.3)

For each p > 0, let S,(z) = S(z) for |z| < p and = O otherwise. Let
f € M(A). We shall estimate g' = S, * f and g" = (S — S,) * f separately.

First we show that ¢ € L*. Let 1/p' = 1 — 1/p and choose positive
numbers r, s such that :

r/p+s/p=m-6 r>m-ap, s>m; (4.4)
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this is possible since (m — ap)/p+ m/p' = m —a <m — 6. Then

1/p' 1/p
lg"(z)| < ¢ (/Wp Iyl-sdy) (/MM ly| ™" (= — )IP dy) -

The first factor is equal to cp(m‘s)/"', while the second one is majorized by
cpP=1)/?||f; Al| as in (1.7), where A = m — ap. It follows that

l9"(@)] < ecplm=VfpHmmer=nlle ||, )| < cp7P | £; A,
where we have used (4.4). Thus ¢” € L* and, consequently,

19"]ly;z.2 < cR™297P || £; A @4.5)

2. Next we show that
”g'”q;z,R <c¢(R+ p)m/q—ﬂ f; All - (4.6)
For this we note that the values of f outside the ball Bg.,(z) have no coniribution

to the left member. Hence we have, on setting f = f on Bgy4,(z) and = 0
elsewhere,

o'l = S5+ 7] o < |55 #7] - @)

If p > 1, this does not exceed
e|7] < llfllemrp < c(R+ )™ |; 4
by the Sobolev inequality. Since m/p — a = m/q — f by (4.3), this proves (4.6).
If p = 1, (4.7) does not exceed ||S,||, [I£1l;, where ||S,]l, < cp?—mm™/e
(note that § — m+m/q > 0 by (4.2)), while |||, < (R+p)™ *||f; A||. Since
§ —m+m/q+ m—a=m/q— B, we have proved (4.6).
Since S * f = ¢' + ¢”, (4.5) and (4.6) give
IS % fllyor < (CR™9570 + (R4 9™ ) ;4] @8)
Given any R > 0, we may choose p = R. Then (4.8) gives || f||,;, p <
cR™/9=P || f; Al|. This implies that S* f € M(B) with ||S * f; B|| < c||f; Al|,
as required.
3. Next assume that f € M(A). For any € € (0,1), there is R, > 0 such that
Wfllpz,mep < e™ PR + p)™P=<||f; A|| for any z € R™ if R+ p < 2R..
This leads to an analog of (4.8):
IS # fllya,p < (€B™2p7P + ce™Pa(R + p)™/27P) |I£; Al
R4 p < 2R

q;z,R

4.9)
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Now let R < €/PR. < R., and set p = Re™'/# < R.. Then R+ ¢ < 2R.
and (4.9) gives, after a simple computation,

S fll,.p<ceR™IPif R < VPR,
q;z,R

This shows that S % f € M(B).
Finally, that S* maps M(A) into M (B) follows from Lemma 3.1, (b), and
the fact that $* commutes with translations.

Lemma 4.2. Let K:R™ \ {0}:R be a singular kernel of Calderén-Zyzmund
type, i.e. a homogeneous continuous function of degree —m with integral
zero on any sphere about the origin. Let A € 4,0 < z(A) < 1. Then K« is
bounded on M(A) [M(A), M(A)) into itself.

Proof. It suffices to modify the proof of Lemma 4.1 slightly, on setting ¢ = p,
6 =0, B = a. With obvious notation, the same argument as above gives (4.5)
for g" = (K — K,) * f, ¢ = p, B = . On the other hand, (4.7) is true (with S,
replaced by K ), with ¢ = p. Since it is known that K ,* is a bounded operator
on LP, 1 < p < oo, with bound independent of p, we have

|, +7]

e < [Ko27], <[],

= ¢\ fllpis,pep S o(B+0)™P |55 All.
The remaining arguments are the same as in Lemma 4.1.

Lemma 4.3. Lemmas 2.1, 2.2, and 2.4 remain true when U (t) is replaced
by U (t)II, with possible change of the constants c, except for the cases A =
B = 0O and z(A) = z(B) = 1 (if applicable).

Proof. II is a special case of the K* of Lemma 4.2. The assumption excludes
the case A = O in those lemmas. First consider Lemmas 2.1 and 2.4. The results
are obvious if z(A) < 1, since II is then bounded on M(A) by Lemma 4.2.
Suppose that £(A) = 1. If 0 < z(B) < 1, then II is bounded on M(B), so
that U (t)IT = ITU (t), ctc. satisfy the same estimates as U (t), etc. If z(B) = 1
but B is lower than A, then ITU(¢), etc. are bounded from M(A) to M(B'),
where B’ € [0 A] with y(B') = y(B). Hence the results follow by property (I).
If B = O, we may use a factorization such as U (¢)II = U(¢/2)I1U(¢/2) and
let it act from M(A) to M(A/2) to M(O) = L, with II acting in M(4/2)
where it is bounded.
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To prove the result for Lemma 2.2, we may use the factorization
12/3-BI2Y ()T = (¢/4-F14U ¢/ )/ PU (t/2)),  ete.

acting from M (A) to M(C) to M(B) where C = A/2 + B/2. The rightmost
factor is strongly continuous on M(A) to M(C) in t > 0, with value zero at
t = 0, by Lemma 2.2. The remaining factor, which acts from M(C) to M(B),
is bounded uniformly in ¢. Hence we obtain the required result.

Remark 4.4. If p > 1and A < k < m, II is bounded also on L?, b =
(:::)k/"Lp D M,y (see (IV), section 1), due to the boundedness of singular
integral operators in weighted LP-spaces (see Coifman-Fefferman [2], Stein [8]).
IT is not bounded on M j, or on (z)*M > M; », k > X. Spaces which contain
(z)* M and on which II is bounded are found among weighted Sobolev spaces
K=l e (110 A)/2LE, where € > 0 and n > me/(1+¢). Kisa
reflexive Banach space and contains (z)"M, by the Sobolev embedding theorem.
Moreover the inclusion is compact, since Kl_*;f_ 5 is compactly embedded in the
same type of space with larger k and # (cf. Prosser [7]). Since IT commutes with
1— A, it follows by [2] that 1 is bounded on K if —me/(1+¢€) < k < m/(1+e¢).
We also note that U (t) and £'/2W (¢) are bounded on K, uniformly in t € (0, T,
T' < oo, and that U(t) — 1 as t — 0 strongly in K.

5. The integral equation
In this section we solve the integral equation
u= Pu = up + G(u,u), :

G(u,v) = — /OtW(t —s)- II - (u®v)(s)ds,

to which (NS) will be reduced (recall that W (t) = AU (t)). Here uq(t) is a given
function such that @ - up(t) = 0. We shall solve (INT) in the closed subspaces
M (A) of divergence free vectors in the vector- valued Morrey spaces M(A),
A€ 4 If0 < z(A) < 1, we may write M(A) = TIM(A), since II is then a
bounded projection in M(A) by Lemma 4.2. ASEE.

It will be seen that the boundedness of £1/2-¥(4)/2y4(t) in t in some M(A)
with y(A) < 1 is decisive for global solvability of (INT). To deal with such
functions, it is convenient to introduce vector valued continuous functions with
weighted sup-norm. Given a Banach space Z, we denote by ClZ) 1=
Ck((0,T); Z) the space of Z-valued continuous functions f on (0, T) with the

(INT)
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norm
W £:Z k=1l £;Z lllkor = sup t¥||f(t);Z]| < 0.  (5.1)
o<t<T

In particular Cy = BC' (bounded continuous functions). In most cases we have
k > 0, but k < 0 is not excluded. In Ci((0,T); Z) we introduce the seminorm

I 7;Z Wl = limsups*||(2); Z]| = Ym Il £ Z llleor- (52)
The~subspace of C}, consisting of functions f with || f; Z ]I, = 0 will be denoted
by C'k.

In these definitions, (0,7") may be replaced by a general interval (a,b); then
t* in (5.1-2) should be replaced by (t — a)¥, and t \, 0 by ¢ \ a, ec.
We begin with a lemma estimating the nonlinear term G (u, v).

Lemma S5.1. Let P,Q € 4 such that P+ Q € A. Let
u € Cp((0,T); M(P)), veCk((0,T); M(Q)), where h+k < 1. (5.3)

If R € 4is on or to the right of the segment [O, P + Q], with 0 < y(P) +
¥(Q) — y(R) = 6 < 1 (replace < with < if z(P + Q) = 1), then we have
G(u,v) € C¢((0,T); M(R)),

with
| G(u,v); B ||le < elll w P [||n]l] v;@ [k

G(u,v); RIL < cllw; P LI v Q s,
where £ = h+ k — (1 — 6)/2. (c depends on h,k,y(P),y(Q), y(R) but not
onT.)

Proof. To prove the estimates in (5.4), we note that
t
G0 Rl < ¢ [ (¢~ ) 2w @ v)(s); P +Ql ds,

by Lemmas 2.1 and 4.3. Since ||(u ® v)(s); P + Q|| < ||u(s); P|| [|v(s); Q|| <
s Pk||| u; P |||n||| v;@ |||x» the required results follow. The continuity state-
ment about G(u, v) can be proved by using the following lemma, on setting

p=h+k, v=(1+68)/2, f(s,t)=8(t—8)’W(t—3s) -II:-(u®v)(s).

(5.4)

Lemma 5.2. Let Z be a Banach space, f(s,t) a Z-valued continuous and
bounded function defined for 0 < s <t < T < oo. Let u < 1, v < 1, and set

t
g(t) = t"“"l/c; sH(t—-s)"Vf(s,t)ds, O0<t<T.
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Then g € BC((0,T);Z). If, in addition, lim f(s,t) = f exists as s,t —
(0,0), then g € BC([0,T); Z) with g(0) = fB(u,v), where B is the beta
function.

Proof. Introducing the new variable o by s = to gives

g(t) = /01 o #(1-0)"Yf(to,t)do.

¢ is bounded since f is. The continuity of g follows by dominated convergence
theorem. The last statement of the lemma is obvious.
We now solve (INT) in Morrey spaces.

Theorem I. Let A,2A € 4 with 0 < y(A) < 1. Let
ug € Ci((0,00); M(A)), h=1/2-y(A)/2. (5.5)

Then there is § > 0 such that if || uo; All, < 8, there is 0 < T < oo such
that (INT) has a unique solution u satisfying

u€ Ch((0,T); M(4)), lu;All, < 26. (5.6)
Moreover,
u—up € Cp((0,T); M(A") N M(A")), K =1/2-y(A)/2, (G7)

for any A’ € [0,2A4] with 2y(A) — 1 < y(A") < 2y(A) (< 2y(A) if z(24) =
1). Ifug € éh(M(A)), the symbols C in (5.6-7) may be replaced by C. If the
norm ||| uo; A |||n0,00 is Sufficiently small, then we can set T = oo (global
solution).

Proof. First we construct a global solution when ||| uo; 4 |||h0,0 = Ko is
small. Let Ex be the set of f € Ch((0,00); M(A)) with [||f; Al|, < K.
Application of Lemma 5.1 with P =Q = R = A, h=Fk = 1/2 — y(A)/2
(so that £ = h) shows that u € E implies G (u,u) € Cj((0,00); M(A)) with
|| G(u,u); A ||| < cK?; note that (1 — IT)G(u,u) = O is obvious, It follows
that ®u € Ex if Ko + cK? < K. This condition is met if Ko < 1/4c, with
K = 2Ko/(1+ (1 - 4cKp)'/?) < 2K, < 1/2¢. Moreover, it is easy to see that
@ is a contraction on Ex in the metric induced by ||| ;A |||5 (cf.[5]). Since Ex
is a complete metric space, it follows that ® has a fixed point u. u is a global
solution of (INT), which satisfies (5.6) with T' =oco and § = 1 /4c.
Next suppose that || uo; A [l < 1/4c. Then (5.2) shows that

Il wo; A [llmo,r < 1/4¢
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if T is sufficiently small. Since the argument given above holds true when (0, co)
is replaced by (0,7'), we conclude that there is a solution u of (INT) on (0, T)
satisfying (5.6) with § = 1/4c.

Since u — up = G(u,u), (5.7) follows directly from Lemma 5.1: set P =
Q=A R=A"h=k=1/2—y(A)/2, 5o that £ =1/2 — y(A')/2.

If ug € Ch(M(A)), then || ug; Al = 0 so that

2
HuAll, =l G(u,u); Ally < cll w; Al < Kl w; Ally,

hence || w; Al = O (because cK < 1), showing that u € Cr(M(A)) too.
Another application of Lemma 5.1 then shows that u € Cji(M(4")).

The uniqueness of the solution can be proved for sufficiently small ¢; here the
contraction property can be used due to the assumption that |} u; A [l, < 1/2¢.
To extend the result to possibly larger ¢, we may repeat the same argument starting
with initial time ¢ = ¢ > 0; here the proof is trivial since u(o) € M(A), which
implies that u € Ci((o, T); M(A)).

Remark 5.3. Suppose that ug satisfies, in addition to (5.5),
dug € Ci((0,00); M(B)), k=1-y(B)/2,

where B is on the ray extending [OA[, with A+ B € 4, 1 —y(A) < y(B) < 2.
Then it can be shown that the solution u satisfies the same condition on (0, T)
and that 8(u — ug) has propertics analogous to (5.7).

6. Solution of (NS)

To begin with, it is necessary to clarify the meaning of a solution of (NS). Basically
we take it in the sense of classical ordinary differential equation in t with values
in §'(R™). (In particular the initial value is taken in the §’-topology.) This
interpretation coincides with the notion of the weak solution commonly used in
evolution equations. Strong and weak solutions are distinguished only by the
class of functions they are supposed to belong to.

Actually the solutions constructed will be smoother and satisfy the initial
condition in a stronger topology, as described in the theorems given below. What
is important is that the weak interpretation of (NS) is sufficient to ensure that (NS)
is equivalent to (INT) with the special free term

uo(t) = U(t)a, 6.1)
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if the integral in (INT) is also taken in the weak sense (at least initially). This
follows easily from the fact that U (t) is equicontinuous on §’ for0 <t < T < oo
and forms a Cp-semigroup with the (continuous) generator A.

Thus it suffices to apply the results of Theorem I with (6.1). To this end, it
is convenient to introduce a seminorm in M(A) by

| 4; Al = dist(¢, M(4)) < || 4|, ¢€M(4), Aca (62

(This is equal to the norm of the equivalence class 35, to which ¢ belongs mod-
ulo M(A).) The following lemma, which relates the two seminorms we have
introduced, is a direct consequence of Lemmas 2.1-2 and the definition of M (A).

Lemma 6.1. Let A, B € 4, y(B) < y(A), with B on or to the right of [0 A].
Then we have, for ug in (6.1),

Wuo; BIL <cla;Al, h=y(A)/2-y(B)/2 (6.3)

We now state our main existence theorem for (NS). Here it is crucial that the
initial value a is in M (Ao) with y(Ao) = 1. For the spaces L? , and K, see (IV)
in section 1 and Remarks 2.3, 4.4.

Theorem IL. Let a € M(Ao), where Ay = (1/p,1) € 4. If the seminorm
| a; Ao lis sufficiently small (which is the case if a € M(Ay)), there is T > 0
such that (NS) has a solution u satisfying

u € BC((0,T); M(Ao)) N BC([0,T); L1,) for L< g<pand k> m —q

(g=pis allowed if a € M(Ag)) if p>1, (6.4)
u € BC([0,T);K), K= Kl_f:_k,m— 1<k<m if p=1, (6.4a)

u € Cp((0,T); M(A')) for A' € [0, 40, K =1/2—y(4")/2. (6.5)
u is the unique solution within the class (6.5) with a small seminorm || u; A’ ||,
for any particular A' with 0 < y(A') < 1/2. If, in particular, p > 1 and
a € M(Ay), then (6.4) is strengthened to

u € BC([0,T); M(Ao)). . (6.6)

If the norm ||a; Ao|| is sufficiently small, then we may set T = oo, i.e., u is a
global solution and has the decay rate given by (6.5).
Remark 6.2. (a)In the original notation, M(Ag) = Mpm—p, M(A'") =
Mp/y(A'),m—p’ and M(O) = [P
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(b) The theorems show how u(0) = a holds in topologies stronger than that
of §': in M(Ao) for (6.6); in L? , for (6.4), which implies local L? convergence;
and in K for (6.4a). The last one (for p = 1) is rather weak; it is expected that
here we may take the weak* topology of measures, but we have no proof.

(c) Setting A’ = O in (6.5) gives ||u(t)||,, < et~/

(d) In view of the inclusion relation (I) (section 1), Ag in (6.4) and A’ in (6.5)
may be replaced by any point to its right with the same height.

Proof of Theorem II. As remarked above, it suffices to apply Theorem I with
ug given by (6.1). Since a € M (Ao), (5.5) is satisfied for all A € [OA[ by
Lemma 2.1. Thus there is a large freedom of choice for A.

We choose A = Ag/2, so that y(A) = 1/2, and note that ||| uo; A ||[1/4
is small if ||a; Aol| is small, by Lemma 2.1. Similarly [f uo; A [}/, is small i
| a; Ao | is small, by Lemma 6.1. Thus application of Theorem I shows that there
is a solution u of (INT) with u — ug satisfying (5.7) for A’ 6]0, Ag|. Since this
is also true of uy, it follows that u has the same property. Another application of
Lemma 5.1 extends this range to [O, Ag|, thus proving (6.5).

The remainder of the proof is concerned with (6.4) and (6.4a), which describe
the behavior of u in M(Ay) or related spaces. To this end, we consider ug and
u — ug separately.

First assume that p > 1. If a € M(Ao), then ug € C([0,T); M(Ao)) by
Corollary 3.2. Otherwise we have only ug € BC((0,T); M(Ao)), by Lemma
2.1. On the other hand, we have uo € C([0,T); L* ), since U(t) forms a
Co-semigroup on L¥ , > M(Ao) (see Remark 2.3). '

If a € M(Ap), then u — up € Co((0,T); M(Ao)) by Theorem T; in this
case u —ug — 0, t — 0, in M(Ap). In the general case, (5.7) gives u —
up € C_/5((0,T); M((1 + €)Ao)) with a small ¢ > 0, which implies that
u— ug — 0 in M((1+ €)Ag). Since (IV) implies that M((1 + €)Ao) C L%,
where ¢ = p/(1+¢) < p, we have “(u — ug)(t); Lq_k” — 0. On the other hand,
a € M(Ag) € M(1/g,1) by (I), hence ug(t) — ain LI, with any b > m —g.

Summing up, we obtain (6.4) and (6.6) for p > 1.

If p = 1, we use the inclusion M(Ag) C K = Kl_*;,f_ x- (Refer to Remark 4.4
for the following arguments, with k and € chosen so that A < k < m/(1 +¢).)
As above we have ug(t) — a in K. On the other hand, u—uo = G(u, u) satisfies

t
| (= w)@K 1< [t )™ u@u(s)iK flds, ¢<T' < oo,
0
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because W (¢t — s) is bounded on K with bound ¢(¢ — s)~1/2 and II is bounded
on K. Since

| u®u(s)iK || < cl| u® u(s); Ao || < cl| u(s); 40/2 || = O(s7?) (6.7)

by (6.5), it follows that (u — ug)(t) is bounded in K as ¢ — 0. We shall show
that it actually tends to zero in K.

To see this, we first note that it tends weakly to zero (see below for the proof).
But K is compactly embedded in a similar space with slightly larger parameters
k and 7. Since the precise values of these parameters are irrelevant, we conclude
that (u — ug)(t) — O strongly in K. This proves that u € BC([0,T]);K) with
u(0) = a. (The unboundedness of II is the major source of difficulty in working
with the space M(1,1).)

The statement of the uniqueness in Theorem II follows from Theorem I

We now prove the weak convergence used above. Since the boundedness in ¢
is known, it suffices to show that ((u — ug)(¢), ) — 0 for all p € § (note that
S is dense in K*). But we have

o) o) / S DT & o) (s), D). 638)

An estimate analogous to the one deduced above then shows that (6.8) is O (t1/2);
note that 8 in W (t — s) = AU(t — s) has been moved to the right member in
( , ). This proves the stated weak convergence.

Remark 6.3. (a) Suppose that a € S’ such that the associated vorticity w =
0 A ais a measure in M(1,2) = Mj p_2. Since a = S * w with a potential
operator S* satisfying the condition of Lemma 4.1 with § = 1 (the Biot-Savart
law), it follows that a € M(1/p,1) = My, p_p for any p < m/(m—1). Theorem
II thus gives a global solution of (NS) if the seminorm | w; (1, 2) | is sufficiently
small, since | $*w; (1/p,1) | < c] w;(1,2) | by Lemma 4.1. This recovers the
results of [3] so far as the velocity u is concerned. For m = 2, it is known [4]
that (NS) has a global solution for any (large) a with 8 A a € M, a result not
covered by our theorem. (We shall discuss the vorticity equation in section 9.)
(b) In Theorem II, the initial velocity field may be a measure a € M(1,1) =
M) m—1. For example, a may be a divergence free, tangential vector measure con-
centrated on a smooth (m — 1)-dimensional manifold & ¢ R™, if it is sufficiently
weak. More precisely, let % be the image of R™~! under a diffeomorphism ~,
and let b be a divergence free vector field on R™~!. We may define a as the
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distribution given by
(a,p) = f bk (v)7;k(v)ei(v(y))dy  (for vector-valued test functions ),
rRM—1

where v,k (y) = 87;(y)/dyk. Then a is a measure supportedon %, a € M m-1,
and it is easy to see that -a = 0. Such a velocity field is supposed to be infinitely
fast but infinitely thin, with finite flux. (If it is a uniform flow on a hyperplane,
the problem is explicitly solvable.)

(c) In this paper we consider only free flows. Equation (NS) with a forcing
term f(t,z) on the right can be handled in the same way. The only modification
needed is to replace ug(t) with

up(t) = U(t)a-}-/: U(t—s)f(s, - )ds.

7. Decay

The global solutions given by Theorems II for small a decay for large ¢ according
t0 (6.5). In particular we have ||u(t)||., = O(t"/2). This rate could not be
improved without further assumptions. It is well known that the decay is faster
if @ has faster spatial decay. A typical case is that a € M(1,m) = Mo = M
(finite measures); then the decay rate will be O(t""/ ).

In this section we deal with continuous Z-valued functions on (0, co) which
are O(t") as t — 0 and O(t™*) as t — oco. Such a class will be denoted by
Chk(Z). We write Cp, x = Cpx(R). The associated norm may be defined by
(cf. (5.1))

1f; Zlllp . = sup t"(1+8)*"[|f(t); 2.
’ 0<t<oo
The following rules of calculus with these classes are easy to verify.

f € Cri(Z) if and only if ||f( - ); Z|| € Ch, with the same norm, (7.1)

Cup(Z) C Cop(Z)if h < B and k > K, (71.2)
ChiCr gt C Chint kt+k's (7.3)
Ch,k * ChI’kI G Ch+h'—1,£ if max{h,h'} < 1; (7.4)

where * denotes convolution on the half-line (0, 00), and where £ = min{k, &'}
if max{k,k'} > 1, £=k+k —1if max{k,k'} <l,and £=k+ k' —1—¢
for any € > 0 if max{k,k'} = 1.

The main result of this section is given by



148 TOSIO KATO

Theorem IIL Let a € M(Ao) N M(By), where Ao = (1/p,1) € 4, By =
(1/q,B) € 4, 1 < B < m, with the case p = q = 1 excluded. If ||a; Aol| +
||a; Bo|| is sufficiently small, the global solution u given by Theorem Il satisfies
lu@)|l,, = O@P/?) as t — co. Moreover, u € BC((O o); M(By)) if
g > 1. (Note that M(Ao) = M, ), M(Bo) = My,, with A = m — p,
u=m — Bq. The largest (8 is m, which occurs for ¢q =1, p =0.)

For the proof, we solve (INT) once more in a different class of functions than
before. If a is sufficiently small, the solution obtained should be identical with
that in Theorem II, by the uniqueness result.

In 4, By is higher than Ag because § > 1, and the open segment | By Ag|
does not meet the line z = 1, since p = ¢ = 1 is excluded. We assume, without
loss of generality, that Ag is on or to the right of the segment [0 By; otherwise
we can move Ag horizontally toward the right without affecting the assumption
that @ € M(Ao) (see property (I)). We introduce two more points A and Q.
A = (1/2p,1/2) is the middle point of [OAp]. Q is on the open segment
JAoBo|, below By vertically by an amount &, where 0 < ¢ < min{8 — 1,1 /2}
(see Fig. 2).

(M)m

Figure 2
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Lemma 7.1. The operator valued function W (t)I1 = 9etA11 satisfies
WIL € C3/41/2+(p—e)/2(B(M(A) N M(Q); M(0)))
N C1/2,1/4+(p-e)/2(B(M(A) N M(Q); M(A))) (7.5)
N Cuy2,1/2(B(M(Q); M(Q)))-
Proof. Since z(A) < 1, z(Q) < 1, we may disregard the factor IT (cf. proof
of Lemma 4.3). Set g(¢t) = W (t)¢. We have ||g(t); A|| < ct~%/2||¢; A|| and
llg(2); 4] < ct~1/4-(B-¢)/2 ||$; Q||, by Lemma 2.1; note that A is to the right

of [0Q)], y(A) = 1/2, and that B — & > 1. Hence we obtain the second part of
(7.5). The first part can be proved in the same way. The last one is trivial.

We now set ¥ = M (0) N M(A) N M(Q) and define Ex C C((o, oo) Y)
as the set of u satisfying the conditions

u € Ci/2,6/2(M(0)) N Cuyapj2-1/4(M(A)) N Coef2(M(Q)),  (7.6)

with the associated norm < K. We note that ug = U (t)a satisfies (7.6) with norm
Ko < c(|la; Ao|| + ||a; Bol|), as is seen from Lemma 2.1; note that a € M(Q)
by property (III). We choose K > Ky, so that ug € Ex.

Lemma 7.2. If u € Ek, then
uQuE 01/2,(,3+c)/2(M(Q)) N C3/4,(ﬁ+€)/2(M(A) NnM(Q)), 1.7
with norm < c¢K?2.

Proof. Since |lu ® u(t); Q|| < ||u(t); O|| ||u(t); Q||, (7.6) implies the first part
of (7.7), by (7.3). Similarly, we obtain u ® u € Cs/45_1/4(M(A)) from

[[u® u(?); All < [[u(®); Ol [lu(®); All

These together imply the second part of (7.7) by (7.2); note that § — 1/4 >
(B +¢€)/2 because B — € > 1.

Lemma 7.3. If u € Ex, then G(u, u) € Ex wzth norm < cK?2.
Proof. We have

1G(u,u)(8); 0| <
t
< [ 17 (e - o) B(M(4) 0 M(Q); MO 1w @ u(s); M(4) 1 M(Q)]| ds,
which may be written in a short-hand notation

G (u,u); Ol < [W; ANQ = Of| ¥ [u@u; AN Q]|
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Similarly we have
|G (u,u); Al| < [[W;ANQ — Al x[u® w; AN Q|

16 () QI < IW;Q — @Il * [lu® u; Q|-
In view of (7.5), (7.7) and the rule (7.1), therefore, it suffices to prove that
Cs/1,1/24(p—c)/2 * C3/4,(8+¢)/2 © C1/2,8/2>
C1/2,1/4+(p-€)/2 * C3/4,(p+¢)/2 € C1/4,8/2-1/4>
Ci/2,1/2 * C1/2,8+¢)/2 C Co,e/2-

But these follow from (7.4); recall that 8 —e > 1,0<e < 1 / 2. (We note that
the proof works even for € = 0 if z(Bp) < 1.)

Completion of the proof of Theorem IIL The remaining arguments are similar
to those given in section 5. We prove that ® is a contraction map of Eg into itself.
The fixed point u of ® solves (INT), and hence (NS); it satisfies the required decay
rate because u € Ex. The identity of u with the solution given by Theorem II
follows from the uniqueness result, since (7.6) implies that ||u(t); A|| < Kt~1/4.

To prove the last assertion in Theorem III, we note that if ¢ > 1 we can take
Q = By (so that € = 0) in the proof above, and (7.6) shows that ||u(t); Bo|| < K.

Remark 7.4. Theorem III gives the decay only for the L*-norm. Other L"-
norms need not exist in general. If ¢ > 1 and p = 0, however, then M (By) = L?
and we have the decay

[ut)]l, < Kt12-B* = ggm/Ir=m{2a ¢ oo, (7.8)

for ¢ < r < oo, ¥ = m/r. Indeed, Theorem III shows that (7.8) is true for
r = oo and r = ¢, hence for all r in between. We do not know if (7.8) holds
when ¢ = 1. Butitdoes if a € LN L™ (which corresponds to the case p = m,
g = 1, # = m, u = 0 in Theorem III), at least for 1 < r < oo. I’n this case
By, Ao, Q, A are all on the hypotenuse of 4. If we choose € = 1/2, we see
from (7.6) that (7.8) holds for 2m/(2m — 1) < r < oo. Using the fact that
Bo = Q + A (which is special in this case), we can then use Lemma 5.1 to

extend this range to 1 < r < oo.

8. Regularity
Theorem II does not exhibit much regularity of the solutions u of (NS). Actually
they are smooth for ¢ > 0. More precisely, we have
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Theorem IV. Let u be the solution given by Theorem II. Then
akaru e C((0,T); M(A")) for A' € [OAo], k,n=0,1,2,..., (8.1)

with A' = Ag excluded if p = 1. Moreover, (8.1) is true if A’ is replaced by
any A" D A’ (see (I), section 1). (3™ denotes the generic space derivative of
order n. We do not consider the degrees of singularities of 3¥8™u at t = 0).
Proof. 1. First we prove (8.1) for k = 0 and for the special point A’ = A =
Ap/2, by induction on n. As is shown by Theorem II, it is true for n = 0.
Assuming it for n < N — 1, we shall prove the same for n = N. (In this process
only the values ¢ > 0 are involved; therefore we may take any o > O and prove
the results for ¢t > ¢.)

To this end we solve (INT) in another space of functions on (o, T') with a
small T' — o > 0. Since the method is similar to the previous ones, we may be
brief but note that the initial value a = u(c) is known to be in M(A) N M(A).
This will give us stronger results than in the case o = 0.

For simplicity we write u™ = 9™u. We define the set Ex of functions u such
that 3

u" € C([o,T); M(A)) forn=0,1,... ,N -1 and
u € Cyy5((0,T); M(4)),
with norms not exceeding K, with T and K yet to be determined. Note that
up = U(t)a € Ex if K is chosen appropriately, since a® € M (A) for n =
0,1,...,N — 1 by induction hypothesis (see Lemma 2.1 again).

As before, we have to show that u € Ex implies G(u,u) € Eg. A straight-

forward computation gives

8.2)

"G(u,u) = Gno(u,u™) + Gna(u!,u™ 1) + -+ Gppn(u®u), (8.3)

where the G, ; are bilinear integral operators on functions on (o, T'), with the
same properties as G(u,u). Using (8.2) and Lemma 5.1, it is easy to see that
G (u,u) satisfies (8.2); in fact G (u,u) is better behaved in the sense that the C
for n < N — 1 may be replaced by C_1/4 and the Cyj, for n = N by C1/a
This means that the norm of G(u,u) in Ex has a factor (T — o)'/4, which is
small with T' — o. By taking K as above and then choosing T — ¢ small, we can
thus achieve that ® maps Ex into itself. Since it can be shown that ® is also a
contraction, we have a fixed point u of ® in E}j, which is a solution of (INT).
This u is identical with the original one, due to the uniqueness result in Theorem
II, which is trivially applicable to the present case because a € M (A).
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We have thus proved that u satisfies (8.2). Since (8.2) implies that u" €
C((o,T); M(A)) for n < N, this completes the induction; recall that o > 0
was arbitrary.

2. Next we extend the results to other A’ than A. This is easily done by applying
Lemma 5.1 to (8.3), again with initial time ¢t = ¢ > 0. We thus obtain (8.1) for
A’ €]OAy), and another application extends it to A’ € [OAg], completing the
proof of (8.1) for k = 0. (If p = 1, exclude A’ = A,.)

3. Finally we prove (8.1) for k > 1, in two steps. First we prove (8.1) with
A’ = O excluded, again by mducuon. Suppose that it has been proved for all the
derivatives involving d; no more than N — 1 times. Differentiation of (NS) shows
that a derivative involving 8} is the sum of a derivative of u and the images under
IT of the products of two derivatives of u, all involving d; no more than N — 1
times. But these functions belong to all C((0,T'); M(A')) for A’ €]0O, Ay}, by
the induction hypothesis, and the same is true of their products by property (II).
Since IT maps each M (A') into itself, the induction is complete. (Here A’ = Ag
is excluded if p = 1.)

To extend the result to include A' = 0, we use the integral expression. Ap-
plying a differential operator D = 8¥o™ to (NS) gives 9;Du = ADu + IIf,
where f is the sum of products of two space-time derivatives of u, so that f
belongs to the class (8.1) with A’ = O excluded. Integration of this differential
equation then gives

Du(t) = U(t— #)Dufo) + /a Ut - o)T1f(s)ds

for any ¢ > 0. Another application of Lemmas 2.1 and 5.1 then shows that
Du(t) € L = M(O) for t > 0.

9. Vorticity :
The vorticity ¢ is a skew symmetric tensor given by

¢ =0/ u, oOr g;,-:&.-uj—a,-u,-., 9.1)

Since u constructed above is smooth for ¢ > 0, the existence of ¢ is trivial; the
main interest is in its behavior at ¢ = 0 and ¢ = oo (if applicable). Usually ¢ is
constructed by solving the vorticity equation, which is obtained by taking the curl
of (NS). But we shall rather regard the problem as a form of regularity theorem
for (NS), which claims that @ A u(t) exists in some Morrey spaces if 3 A a does.
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A divergence free vector field a € §' is recovered from w = d A a by a
formula a = S *w, where S is a potential operator of the form 4.1)withé =1
(see Remark 6.3(a)). Thus it is natural to assume that w € M (Vo) with y(Vp) = 2,
which implies @ = S *w € M(Ao) with y(4o) = 1 and z(Ao) > z(Vo) — 1/m
(replace > with > if z(Vp) = 1), by Lemma 4.1. For simplicity, here we consider
only the case that w is a measure, so that V, = (1,2). (See Fig. 3).

(M)m

Figure 3

Theorem V. Let a € M(Ag), d Aa=we M (Vo) (tensor valued), where
Vo = (1,2) and Ao = (1/p,1) with 1 < p < m/(m — 1). If the seminorm
| w; Vo | is sufficiently small, there is T > 0 and a unique solution u of (NS)
satisfying (6.4), (6.5) and

8 A uwe BC((0,T); M(Vo)) nBC([0,T);K),

9
K= K”‘k, for k>m -2, G2

0 A u€Cp(0,T); M(B')) for B €OV,
K =1-y(B')/2.

If the norm ||w; Vo|| is sufficiently small, we have a global solution (T = o),

9.3)
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which decays according to (9.3).

Remark 9.1. Theorem V recovers the main results of [3] with measures as
initial vorticity. (9.2) shows that ¢ = A wu is better behaved compared with the
velocity u when u(0) = a is a measure, inasmuch as ¢(t) stays (and is bounded)
in M(V;). In particular, (9.2) implies that ¢(0) = w holds in the weak™ topology
of measures (cf. Remark 6.2,(a)). On the other hand, we have no estimates for
lls(®)loo-
Proof. We solve (INT) by the familiar method using another space of functions.
We set A = Ap/3, and define the set Ef,z, of functions u such that
u € Cy2(M(0)) N Cyy5(M(A4)),
d A ue Co(M(Vy)) = BC(M(Vo)),
where the interval (0,7') is understood, with the norms of u and 8 A u majorized
by K, L, respectively.

As before, we want to show that & maps Eg 7 into itself. By virtue of
the assumptions and Lemma 2.1, the free term ug = U(t)a satisfies (9.4) with
certain norms Ko, Lo. For the term G(u,u), the conditions on u in (9.4) are
easily verified using Lemma 5.1; here we use P = Q = A, R = O and then
P =Q = R = A. To verify the condition on du, we use the relation

3 A G(u,u)(t) =G'(uv,d A u)(t)

4

4 9.5)
E/O 3 AU(t—s)(u-d A u)(s)ds,
which follows by a simple algebra. Note that theprojection 11 does not occur
in (9.5), since IT — 1, which maps into gradients, has been annihilated by 9 A;
otherwise G’ is a bilinear operator similar to G. Application of Lemma 5.1 with
P =0, Q = R = V) then verifies the condition in (9.4) for d A G(u,u).

Thus the proof proceeds in the same way as in the foregoing theorems. After
finding a fixed point of ®, we use Lemma 5.1 again to cover the segment |OVq|
in (9.3).

Here we may add the following remarks. First, due to the absence of II
in (9.5), the integral operator involved is bounded on M (V) into itself, which
makes it possible to apply Lemma 5.1 on M (V;) even though z(Vp) = 1. (This
is responsible for the better behavior of ¢ stated in Remark 9.1.) Second, a small
| w; Vo | [resp. ||w; Vo|| 1 implies a small | a; Ao | [ resp. ||a; Ao ] (see Remark
6.3,(a)).
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