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How to be sure of finding a root of a
complex polynomial using Newton’s method

Anthony Manning

Abstract. The trouble with Newton’s method for finding the roots of a complex polynomial
is knowing where to start the iteration. In this paper we apply the theory of rational maps
and some estimates based on distortion theorems for univalent functions to find lower bounds,
depending only on the degree d, for the size of regions from which the iteration will certainly
converge to a root. We can also bound the number of iterations required and we give a method
that works for every polynomial and takes at most some constant times d2(log d)? log(d®/ €)
iterations to find one root to within an accuracy of e.

1. Preliminaries
Assume d > 1 and consider the complex polynomial

p(z) = 29 -+ a,d_lzd_l +---+a1z2+ag = (Z == al)(z - az) teis (z = ad).

Our problem is to determine the d (not necessarily distinct) roots a;,... ,aq
when the coefficients a4_1, ... ,ap are given. By the theory of Galois there is
no general formula when d > 5. Let C denote the Riemann sphere, obtained
by compactifying the complex numbers C with the point co. Then Newton’s
method for finding the roots of p is to iterate the rational map N:€ — € given
by N(z) = z — p(2)/p'(2). The following properties of N are easy to check.

Proposition 1.1. (i) The degree of N is the number of distinct roots of p.
(i) N' = pp"/p".
(iii) N conjugated by an affine map z — az+ b is the Newton map for the
polynomial with roots {ac; +b:1 < 1 < d}.
(iv) The fixed points of N are oy,... ,aq and oco.
(v) oo is repelling with eigenvalue d/(d — 1).
(vi) A simple root o of p is ‘superattractive’ with N'(a) =0

and N"(a) = ;LI,'(%’}.
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(vii) A root o of p of multiplicity m is a sink with N'(a) = (m — 1)/m.

Assumptions. By (iii) we can make an initial affine change of coordinates so that
ag—1 = 0 and each coefficient has |a;| < 1. Having ag_; = O means that the
centre of mass of the roots is at the origin and this will help in Lemma 3.2. When
each |a;| < 1 each root oy has |e;| < 2 since, for |2| > 2, |2 > |p(2) — 29| It
will also be convenient for some of our estimates to assume that d > 10 although
this is not necessary to the theory.

We state our main result as an algorithm.

Theorem 1.2. There is a constant ¢ < 800 with the following property. Let
p be any complex polynomial p(z) = 2% + ag_22%"% + -+ + a1z + ao with
d > 10 for which each |a;| < 1 and let € > 0. Put

R (19.2dlbgd+ 2)r, w=exp(2ni/R)and p=1-27/R.
Define an array A of points
{p/dw*:0< j < —(R/2m)log(1 —d" ' —2d"%)+1, 0< k< R}

and consider the following algorithm.

For each (j,k) in turn evaluate successively w = N*(p?dw") for 1 <
¢ < [dlog(d®/€)]. If at any stage |w| > d go to the next value of (j,k). If
|w — N(w)| < €/d stop.

Then this algorithm does stop and, when it stops, w is within € of some
root of p. The number of times N has been evaluated is at most cd?(log d)*
log(d®/e). :

Definition. The immediate basin B(cy;) of a root o; is the component of
{z: N™(z) — a; as n — oo} containing o;.

Cayley asked in [3] about these basins and Peitgen and co-workers made some
interesting pictures of them, see [10] and [11]. There is some symbolic dynamics
for the Newton map of a real polynomial, see [1], [7] and [15]. ’

We wish to start iterating N at a point of the component B(c;) because in
the pictures the other components are much smaller. Choosing an initial point in
the Julia set J (V') would give an orbit that might be a periodic repellor or might
be ‘chaotic’ since N|J(N) is topologically transitive. In practice, however, such
an orbit might through accumulated errors be thrown off J(NV') into the basin of
a sink. More serious is the fact that N can have other non-fixed periodic sinks.
In Proposition 4 of [19] Smale gave the example that {0, 1} is a superattractive
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orbit of period 2 for the Newton map of the polynomial 23 — 2z + 2 and Hurley
shows in [6] that there can be as many as d — 2 such sinks.

In [18] Smale estimated the number of iterations of z — z — hp(z)/p'(2)
for appropriate h needed to solve a polynomial taken from a large class but
avoiding some awkward cases. In [19] with proofs in [16] and [17] Shub and
Smale obtained better results from a related algorithm in which A varies. Notice
that we are looking for a point within € of a root while they wanted |p(z)| < e.

Our purpose is not, of course, to recommend Newton’s method as a practical
way of finding roots but to use results from complex analysis and rational maps
to understand better the basins of attraction of the various roots and to show that
in a worst case analysis this method will find one root in a number of iterates
which is a reasonable order in d, lower order in fact than O(d®log(d/¢)) found
in [8] for an algorithm of PL homotopy type due to Kuhn. Renegar [14] shows
that, in the worst case, one cannot hope for an algorithm to do much better.

We refer the reader to [2] for the theory of rational maps and to Chapter 2 of
[4] for univalent functions.

In order to take enough starting points for our iteration that we can be certain
some of their orbits will go to a root we shall estimate from below the size of
the immediate basins of the roots. This is best done near co. The features of the
rational dynamics specific to Newton’s method that we shall use are that there
is only one repelling fixed point, namely oo, and that the immediate basin of a
fixed sink accumulates there. For pictures of the way the basins approach oo look
where p' = 0 in Figure 4a in [10] or at Maps 61-66 or 75 in [11]. In the next
section we shall construct a model of part of B(c;) reaching to co. In §3 we
make our estimates of the width of B(a;) and the number of iterations required
and then use them to prove Theorem 1.2.

2. Constructing a Model
Let V denote the closed convex hull of the roots {cy,... ,aq} of p. By our
assumption that each |a;| < 1 we have V' C D(0,2). D(w,r) will denote the
disc with centre w and radius r.

Definition. A root « of p is said to be exposed if « is a vertex of the polygon
which is the frontier of V' and the angle subtended at o by V' is at most 7 (1—2/d).

Lemma 2.1. The polynomial p has at least one exposed root.
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Proof. The sum of the angles subtended at the ¢, say, distinct roots in the
frontier of V' is (¢ — 2). If no root is exposed then this sum is more than
gn(1—2/d) > qr —2x. O

Remark. We shall find it easier to study approach to an exposed root. If all the
roots are real only two of them are exposed. When the roots are not collinear it is
quite possible that V' is a triangle with three roots at the vertices and all the other
roots are ‘hidden inside’. Friedman [5] has found a lower bound for the area in
the basin of an exposed root by working outwards from the root.

Proposition 2.2. (Gauss-Lucas, see e.g. [9].) The roots of p' are contained
in the convex hull V of the roots of p.

Proof. If p'(8) = 0 then p'(8)/p(B) = f:_: 1/(B — o4) = 0 which is impossible

if B is outside V" for then {8 — o;:1 < ¢ < d} is in an open half-plane. O
We now investigate how points outside V' approach V' when we apply the
map N.

Proposition 2.3. If £ is a straight line with V\£ in only one component of
V\L (for example € is an edge of V'), z and V' are on opposite sides of £ and
t is the foot of the perpendicular from z to € then

Re{(N(2)-t)/(z—t)} <1-dL.

This proposition shows that if z and N(z) are both on the other side of £
from V' then N (z) is closer to £ than z is by a factor of at.worst 1 — d~1.

Proof. We have

d
N(z)-t=z-t-p(z)/p'() =2 —t - {D (¢~ )Y}

so that !

d
(N(:) =)/ =) = 1= (3201 - (s ~ )/ (= = )}
Now, for each 1,
Re{l - (s —t)/(2—1)} >1

SO

{(1- (e —t)/(z-t)}eCID (%%) .
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d
S{1 - (e — 8)/( — )} € C1D(d/2,d/2)
1
and
d
Re (Y (1~ (a5~ 8)/(z 1)1} 2 d?
1
which gives the desired inequality. O

Proposition 2.4. There is a branch of N~1, approximately wd/(d — 1)
for large w, that maps f:\V inside itself. Under iteration of this branch
(N~1)*(w) — oo for each w € €\V.

Proof. The inverse images of oo under N(z) = z — p(2)/p'(2) are the roots
of p', contained in V' by Proposition 2.2, and oo itself. Since N’ = pp" /p'? the
critical points of N are the simple roots of p and also the roots of p”, which are
all in V' by a further application of Proposition 2.2.

Thus the branch of N~! which is approximately wd/(d — 1) for large w can
be extended along any path in the simply-connected domain C\V provided we
do not meet a critical value of N—1, that is provided this branch of N~ does not
have N’ = 0 at N~(w) for any w in C\V. The following topological argument
shows that N=}(€\V') c €\V which suffices since N’ does not vanish outside
V. '

The quotient topological space @\V obtained from C by identifying the con-
vex set V' to a point is homeomorphic to the sphere. Define M: C\V — @\V
by M(V) = V,M(z) = V if the interval from z to N(z) meets V and
M(z) = N(z) otherwise.

We claim that M is continuous. If M(2z1) = N(z1) then N(z;1) ¢ V and
continuity of N shows that N(z) ¢ V for z near z; so that M(z) = N(z)
and M is continuous at z. Now consider continuity at points of M~1(V). If
22 ¢ V,M(23) =V and V and z; are contained in a line then 1/(V — 22) =

d
{1/(v — 22):v € V'} is convex so that Y (a; — 2z2) "1 € d/(V — 22) and
1

d ‘
Nz)=2+{ (—2z)}en+(V-n)/d=(1-d)au+d'V
1

so that N (27) € V and continuity of N gives N (z) within any prescribed distance

of V for z sufficiently close to z;. Thus M(z) is either V or N(z) close ta V/,
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which proves that M is continuous at z;. If 23 ¢ V, M(23) = V and now V and
23 are not contained in a line then there are (not necessarily unique) roots ayg,
for which

arg(ae — 23) > arg(oy — z3) > arg(a, — z3) for 1< 5 < d

(with a choice of the function arg continuous except on a cut from 0 to oo that
does not meet V' — z3. Then, from

d
N(z3) = z3={D (o — 2z5)" 1},
1
it follows that

arg(ag — 23) > arg(N(z3) — z3) > arg(a, — 23)

so this same property holds with 23 replaced throughout by any sufficient close
z. If the interval from 23 to N(z3) meets V only at N(z3) then continuity of
N gives M(2) =V or M(z) = N(z) near V. If, however, the interior of the
interval from 23 to N(z3) meets V' then this continues to hold for z near zg and
M(z) = V. To prove continuity of M at the point V in €/V we observe that 2
near V in C/V either has M (z) = V or, like z3 above, has M (2) between 2 and
V or, like z; above, has M(z) again between z and V. Thus M is continuous
as claimed.

Now M has degree one as a map of the sphere to itself because M Yoo}y =
{oo}. The local degree of M is +1 everywhere except on M~1(V') because N’
cannot vanish in €\V. Thus every point of ¢ /V\{V'} has exactly one inverse
image under M. This gives N~1:C\V — €\V,.which for large d is near
wd/(d — 1).

If w ¢V and £ is any line separating w from V' then by Proposition 2.3 the
perpendicular distance of (N~1)"(w) from £ is at least (1 — d~1)~" times that
of w and this tends to co as required. [J i

The model for the immediate basin of a root o = a; will be developed from
the standard local model. There are two cases to consider: simple and multiple

(or repeated) roots.

Theorem 2.5. If « is an exposed simple root of p there are domains Q and
P containing o and 0 respectively and accumulating on co and 1 respectively
and a homeomorphism h:Q U {oo} — P U {1} with h(a) = 0,h(o0) = 1
and h|Q analytic satisfying hN and gh are defined and equal on Q where
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9(2) = 2%. Moreover, P subtends at the point 1 an angle which, when d > 10,
is not less than 0.948/log d.

Proof. The local theory, see for example Theorem 3.4 of [2], shows the existence
of a unique injective analytic map h defined on a neighbourhood of « satisfying
h(a) =0and AN = gh. In fact

H(e) = 3N"(o) = 57" (o) /o).

Notice that p'(«) and p”(a) are non-zero for the exposed root a by Proposition
2.2. Our aim is to extend this map h.

Let a3 be the root of p nearest to o and put 0 = | — az|. If |2 — a| = 6o
and § < 1/(2d) then

{z = N(2)}"' = p'(2)/p(2)
d—1

d
=(z-a) 1+ ZZ:(Z —) e D((z-a), 0(1—__5))

Thus z — N(2) € D(z — a,7) and |N(z) — a| < 7 where
r={lz=a|7 = (d-1)/(c(1- )} - |z - o
={6"lo7 -~ (d-1)o (1 - 6)"1} ! - b5
=60(1-86){(1-6)— (d—1)6}"' - 60
=60(1—6)(1—ds) ! - 6o
= 6o(d — 1)5(1 — d&) L.
That means
IN(2) — o < (d—1)§(1 — dé)|z — .
For § = 1/(2d) this ratio is (d — 1)/d < 1 so
IN™(2) — o] < {(d - 1)6/(1 —dé)}"|z — a| > 0 as n — co.
Thus D(a,0/(2d)) C B(c).

Claim. For z € D(a,0/(2d)) we claim that | N(a + t(z — a)) — o is a strictly
increasing function of ¢ for 0 < ¢ < 1. To prove the claim it is sufficient to show
that

Re{(z — a)N'(2)/(N(z) — @)} > 0for 0 < |z — o < o/(2d).
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Now, differentiating the product expression for p twice to obtain p", we have
(z—a)N'(2) _ (2= o)p(2)p"(2)/ (' (2))?
N(z) - o z—a—p(z)/p'(2)
p"(2)/p(2)
T EPHOHPE)/p() - (- ) )
_ 2 1cicjcalz — )~ (2 — a;)1 _ 2) 1<icj<d bibj
S - ) T - o)) (STB)(S50)
b adhban vorohed B
Tib  Tib X3
where we write b; for (z — ;) 1o {1 — 1/(2d)} and use

d d
2 ) b _2(21; Z,-)—(Zb,-)2—2b§.

1<i<j<d

Note that |b;| > 2d — 1 while |b;] < 1 for 2 < j < d and that it will suffice to
prove

d d
by < (sz- (1)
3 1
and
d d
Db <D b (2)
2 1
Now

d

>

1

Db

2

> |by] -

d :
>2d-1-) |bj|>2d-1-(d-1)=d
2

while

uMn.

d
b < S lbsl <d-1 ,
2

which gives (1). Also

d d
< 3[H] =3 < Sl
2 2

The complex numbers b;,2 < 5 < d, lie in a wedge with vertex O which,
like the wedge with vertex z (see Figure 1) containing {a;:2 < j < d}, has half
its vertex angle to be at most 83 = 7 /2 — x/d + arcsin (1/(2d)).
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The components of the b; along the bisector of their wedge are all positive
and thus

d d
ij > Z |b;] cos 84.
2 2

The desired inequality (2) follows now since dcosf; > 1 for d > 2, so the claim
is proved.

<T/2-T/d

0 /(2d)

—~—
-
-

Figure 1

Let Yy denote D(a, {(d — 1)/d}*o/(2d)) for k = 0,1,2,.... We have
shown that N maps Y}, inside Y}, that N maps rays from « in Yy to curves
whose distance from « is strictly increasing and consequently that N maps each
circle centre o in Yp to a curve in ¥; along which arg increases by 4. Thus
the Riemann surface of N|D(a,o0/(2d)) has two sheets branched only at a.
The conjugacy h is already defined as a univalent map on Y for some large
k and satisfies AN = gh there. Thus h can be lifted to a univalent map h
from a neighbourhood of ¢ in the Riemann surface of N|D(e, o /(2d)) onto a
neighbourhood of 0 in the Riemann surface of g (branched over 0 and oo) for
which h = ¢g=1hN on Yj. (Here g~ is univalent and we reject the choice of
h that gives h = —g~1hN.) Now define h on Y;_; to be ¢~ 1AN, notice that
it is univalent and lift it to a univalent extension A of the map between Riemann
surfaces. Continuing this construction inductively we obtain a umvalent map h
from Yy into D(0, 1) satisfying AN = gh.

In order to estimate hY; from inside independently of the distance o from «
to the nearest root az we shall establish the estimate (3) below for |h'(c)|. We

obtain
d

W(a) = 3N"(0) = 57"(a) /p/(e) = (o~ )"

2
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from twice differentiating the product expression for p. Let £; be the edge of
V through o further from . Considering only the component of (o — ;)71
perpendicular to {(a — z)~!:2 € £;} because components parallel to it might
cancel out in the sum and then ignoring contributions for j # 2 we obtain

d
22:(0‘ — ;)7
> |o — oz ' sin(27/d)
= o~ lsin(27/d).

#()] =

(3)

Before extending h further consider hD(c, ro/(2d)) = hQ', say, where r is
to be chosen with 0 < r < 1. By the Growth Theorem, Theorem 2.6 of [4], hQ'
certainly contains D(0, ), which we denote by P;, where

=r(1+r)72|W (a)|o/(2d) > r(1 + r)~2sin(2r/d)/(2d).

With £ denoting the bisector of the exterior angle V' makes at o we use Q"
to denote the component of @'\£ that is disjoint from V. We claim that hQ"
contains all the positive reals in P;. For this claim notice that

(k| D(e,0/(2d)))"*{t € R:t > 0}

is a real analytic curve, p say, starting at « and invariant under N. Its tangent

vector at o is
(h'())” {Z(a ST B

and this points into Q" since it is obtamed from the vectors a — «; which each,
if translated to ¢, point into @"”. By Proposition 2.3 applied to the edges of V'
through o, N moves points of £\{a} towards V so N*¥(£) N Q" = ¢ for k > 0
and £ cannot meet p except at o, which proves the claim. ;

The curve h(€N D(a,0/(2d))) is the univalent image of a diameter and
its direction satisfics the Rotation Theorem (Theorem 3.7 in [4] which does not
require h'(a) = 1) that - otni

‘arg h'(a+ reffo/(2d)) — arg h'(a)' < 4arcsin r

when r < 1/4/2. If 0 is an argument of the direction of £ chosen so that the
argument 8 +arg h'() of the tangent vector to h(£) at 0 lies in the interval (0, )
then the argument of tangent vectors to h(£) in Py differs from this by at most
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4 arcsin r. Thus h(Q") D P{ defined by

P = {s€'?:7* < s < 7,min(0,0 + arg h'(a) — 7 + 4 arcsin r)

< ¢ < max(0,0 + arg h'(a) — 4 arcsin r)}.

Figure 2

Now define P, by

: 1
Py = {exp(tlogr +itp):0 <t <1, = min (0,8 + arg h'(c)—
: 1
—m +4aresin r) < p < 5 max(0, 0 + arg h'(a) — 4 arcsin r)}.

Notice that P = P; U P, is an open subset of D(0, 1) which is forward invariant
for g and that every point of P has just one point of its forward orbit in Pj. Put

Q1= h"1P, and P{ = PyNgP;,. Define h from Q4 = G N-"h~1PJ' (where
n=1

N~1is the branch spemﬁed in Proposition 2.4 which can be applied because
RIPINV =¢)to P, = U g " P} (where g~ is the branch that maps the

real interval (0, 1) to itself) as follows On each N~"h~1P}' set h = g~"hN".
Then h from Q = Q1 U Q2 fo P is analytic because on each N~"h~1P}' it is
a branch of g~ ("*UaN"*1, Also h: Q — P is univalent because it is univalent
on Q; and on each N~"h~1P}' with disjoint images.

Now N ~™ converges uniformly on A~1 P} to co and g~™ converges uniformly
on Py’ to 1 so putting h(co) = 1 makes h a homeomorphism from Q U {0} to
Pu{l}.

The angle P subtends at 1 is the angle that log P, subtends at 0 which is at
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least
m — 8arcsin r m — 8arcsin r

AN T A e+ )T sin(2n/ ) (20}

and, if we choose r = 0.050 this is at least 0.948/logd, for d > 10, as
required.]

Theorem 2.6. Suppose o is an exposed root of p of multiplicity m > 1, set
a=1-1/m and define f:C — C by f(z) = 2(z + a)/(1 + a2). Then there
is an open subset P of D(0,1) homeomorphic to D(0,1) containing 0 and
1 in its closure and subtending an angle of at least 0.124 radians at 1 for
which fP = P. Also there is Q open in C and an univalent map h from
Q to P extending to a homeomorphism from Q U {a, 00} to P U {0,1} with
h(e) = 0, h(c0) = 1 and satisfying hN = fh.

Proof. Notice that fD(0,1) = D(0,1) and 0 and 1 are fixed points of f with
f'(0) =aand f'(1) =2/(1+a). Set E = D(0,1)N{z:Re z > 0}. We claim
that f|E: E — f(E) is univalent and f(E) D E and then define P as the nested

intersection of topological discs () f~™(E). See Figure 3.
n=1

Figure 3

For this claim observe that f is a double cover as a map from the unit circle
to itself. Now f[0,1] = [0,1],f' = Oat 2z = -m+t+v2m—1s0 f'|E is
nowhere zero and f(E) is a subset of D(0,1) symmetrical about the real axis
and enclosed by part of the unit circle and f{iy: —1 < y < 1}. Also

fliy) = —(1 — a®)y?/(1 + a®y?) +iay(1+ a?)/(1 + a®y?)
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so that

(8/0y)f(iy) = (1 + a®y*) 72 {~2(1 - a®)y + ia(1 + a?)(1 — a?y?)}
which has negative real part and positive imaginary part for 0 < y < 1 since
0<a <1 Thus f(E) D E and f|E is univalent as claimed.

Now, since N'(a) = (m — 1)/m = a = f(0), there is an analytic con-
jugacy ho from N to f with ho(a) = O defined on a neighbourhood of o
according to the local theory, see e.g. Theorem 3.3 of [2]. There is one complex
parameter hj(«) available in the choice of ho and we choose the argument of
this so that the line £ (which as in Theorem 2.5 is the external bisector of the
angle V' makes at o) has its image tangent at O to the imaginary axis. Then,
at least for small enough €,Q. = {2:|z — | < ¢,Re h(2) > 0} lies in the
complement of V' where the branch N~! was defined in Proposition 2.4. For
0 < 2] < 1 we have |f(2)| < |2| so f*(z) — O for each z € P. For
z € N7"Qc put hn(2z) = (f|E) "hoN"(z). This is univalent being a com-
position of univalent maps. If z € N""Q. N N~"Q, with r > n then, by
the properties of ho, hoN™(2) = (f|E)~"*"hoN"(2) 50 h,(2) = hn(2). Thus
deﬁmng h(z) as hn(2) whenever z € N~"Q, gives a univalent map h from
Q= U n N~™"Q with image P. Since N="|(Q\D(«, ¢/3)) converges uni-

r=0n=r

formly to co and f~"|(P\D(0, €)) converges uniformly to 1, putting h(c0) = 1
and h(cr) = 0 gives a homeomorphism h: Q U {a, 00} — P U {0,1}.

It remains to prove that P subtends an angle of at least 0.124 radians at 1.
For this consider an f-orbit in (0,1) from some u near 1 to f"(u) near O for
some large n. Now (f|E)~"|D(f™(u), f*(v)) is univalent so, by the Koebe 1/4
Theorem (Theorem 2.3 in [4]) we have

D(u, f™*(u)/(4(f")'(w)) € f7"D(f"(u), f*(v)) € f~"(E).
Since f~"D(f"(u), f"(u)) is symmetric about the real axis an improvement on
the Koebe 1/4 Theorem (obtained by applying it to the composition of the function

f~™ with a Mobius transformation that fixes the line Re z = u and the point u,
see Exercise 32 of Chapter 2 of [4] gives

{utiv:lo] < 2/"W)/(/) (W)} € S DU (), f2(w)) € f-(E).

Thus if we can find x with

(1= u < 37"(w)/ (/" (w)
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for each positive n then
{u+iv:|v] < (1 —u)s} C P.
Such x must satisfy
n—1 )
< (/1= () (@) = 5o/~ 1) T a(7°()
where
9(2) = {f(@)/(=f' (@) H(1- £(2)/(1-2)} = (z+0)(1+2)/(e2” +22+a)
on the interval 0 < z < 1 and g(0) = g(1) = 1. To estimate the product of g
along an orbit observe that, for 0 < z <1,
1/9(z) - 1= (1 - a)z(1 - 2)/{(z + a)(1 +2)}
< 2(1-a)z(1 - z)/(1 + az) = 2(z — f(z))

where this inequality uses a > —.1;

Thus
~logg(f*(w)) < 1/g(f () — 1 < 2(f*(v) = F(w))
and Rl
= 2 logg(fi(u)) < 2(u~f(u)) <2
so that s

ﬁg(fi(u)) >e 2> 0.135
1=0

and we can take k = 0.135 for any u in (0,1). Finally the intervals {u+1v: |v| <
k(1 — u)} contained in P subtend, for u near 1, an angle at 1 of at least 0.124

radians or over 7 degrees. [

Remarks. Computer calculations of the shape of P suggest that it subtefnds an
angle at 1 of about 74° for m = 2 and a slightly larger angle for larger m. When
two simple roots of p coalesce the degree of N drops by one and it would seem
that the basins merge while the piece of Julia set and the small components of
the domain of cquicontinuity that scparated them disappear.

3. Estimating the Width of the Basin near co
For both simple and multiple exposed roots « we have constructed in Theorems
2.5 and 2.6 a homeomorphism h from a simply connected domain @ C B(a)
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to P c D(0,1). In cach case Q accumulates on the fixed repellor co and P
accumulates on the fixed repellor 1. However, the conjugacy h was not defined
on a neighbourhood of co. Since N'(c0) = d/(d — 1) while ¢'(1) = 2 or,
to model a multiple root, f'(1) = 2m/(2m — 1) there cannot be an analytic
conjugacy from a neighbourhood of oo to a neighbourhood of 1. We shall first
linearise N and g around their repelling fixed points, then observe that taking the
log 2/log{d/(d — 1)} power conjugates the linear repulsions and then estimate
how near our conjugacy h must be to this map. _
The map log, defined on the right half-plane, conjugates g(z) = 2% with
fixed repellor 1 to multiplication by 2 with fixed repellor 0. There is also (see
e.g. Theorem 3.3 of [2] for N~!) a unique analytic map L tangent to the identity
at oo that conjugates N on a (large) neighbourhood of co to its linear part,
multiplication by (d — 1)/d. The map M defined on the left half-plane by

M(Z) =ih pzlog(l-—l/d)/log2’

for some constant p, sends 0 to oo and conjugates multiplication by 2 to multi-
plication by (d — 1)/d. Thus we have a commutative diagram.

5 L h log M A
C,o0 «—— Q,00 — P,1 » C,0 » C,00
X(d—l)/dl lN lg le lx(d—l)/d
C,00 ¢&—— Q,00 — P,1 ¥ 'E50 > €, 00
L h log M

We shall study the width of @ using LQ. Recall that LQ is a simply-connected
domain accumulating on oo invariant under multiplication by (d — 1) /d. Now the
open cone M log P subtends an angle at its vertex oo which is at least

(0.948/log d) x log{d/(d — 1)}/log2 > 1.36/(dlog d)

using Theorem 2.5. (
In the case of Theorem 2.6 where we modelled the basin of a root of multi-
plicity m > 1 by f: D(0,1) — D(0,1) with
f(l)=1 and f'(1) =2m/(2m - 1)
we had a cone in P subtending 0.124 radians. We replace log by a map L; that

linearises f around 1 and replace M by M; where

M, (z) e pzlog(l—l/d)/log{2m/(2m—1)} )
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Thus the open cone M log P is replaced by MiL1P containing an open cone
which subtends an angle at oo of at least

0.124log{d/(d — 1)}/ log{2m/(2m — 1)} > 0.124(2m — 1)/d > 0.372/d.
Now, for d > 10, we have 0.372/d > 0.856/(dlog d) so this proves

Lemma 3.1. If P is the subset of the unit disc used in Theorem 2.5 (2.6) to
model part of the basin of an exposed simple (multiple) root then
M log P(M, Ly P) subtends at oo an angle of at least 0.856 /(dlog d) radians.

The idea of studying the angle subtended by these basins at co arose after the
author investigated experimentally the quartic polynomial with roots =+ exp (£10)
for 0 < < x/2 and observed that the angle on a circle such as |z| = 4 occupied
by each basin was 73+ 2° independent of 6 although the ‘junk’ surrounding the
real and imaginary axes varied in width with 6!

Now take some w of large modulus on the line bisecting the cone Mlog P.
By an appropriate choice of p we can ensure that the map S defined near oo as
the composition Lh~! exp M~ fixes w. Notice that S is analytic and univalent
from M log P to LQ. Since S commutes with multiplication by (d— 1)/d it fixes
the orbit of w under that map. Consider the restriction of |S| to the straight line
joining (d — 1)w/d to w. There is some zo in this interval with |S(20)| = |20
and |S"(z0)| > |S|'(20) > 1. This implies that LQ contains a certain sized disc
centre S(2o). (In the case where a is an exposed multiple root we make a similar
construction of zp.) Before estimating the size of such a disc in Proposition 3.4
we shall bring it in from near oo to a moderate distance from O so first we study
the distortion caused by iterating N.

Lemma 3.2. |N'(2)z/N(2)| > (1 — 2.2|2|*)? provided |2| > 10.

Proof. If z denotes || then

N'(z) | _ l zp(2)p"(2)

N(z)/zl |9 (2){zp'(z) - p(2)}

{14 ag_gz?+--- Y1+ aa_a((d - 2)([d - 3)/(d(d—1)))z"* +---} ‘

(1 + ag2((d—2)/d)z 2+ Hl +ag2((d—3)/(d - 1))z7* +---}

>(-zt—28—- )1+t +2*+-00)

={(1-z-2})/(1-z+ 22} > (1-2.27%)%. O

Lemma 3.3. If |2| is large and n is the least number with |N™(2)| < d while
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d > 10 then |(N™)'(2)z/N"(z)| > 0.69.
Proof. If, in Proposition 2.3, we use for £ the tangent to the circle with centre 0
and radius 2 at 2N™"1(2)/|N"1(z)| we obtain

Ni(z)| - 22 (@-2)1 - a1y~ for 0 < i < m.

The last Lemma now gives
(V) (2)2/N™(3)] = ] |V (N ()N (/N ()|
=0
>[I0 - 22| )

n—1
>exp2 Y log(l—22{2+ (d—2)(1-d 1)~}
1=0
n—1
> exp(-2x 1.02x 22 {2+ (d-2)(1 - d1)~(>"V}F)
i=0

> exp (—4.488(d — 2)"2/{1 - (1 —d™")*})
> exp(—4.488/12.16) > 0.69

where we have used d > 10. O

Proposition 3.4. There is a point t with |t| < d and |N7*(t)| > d for which
Q contains a disc with centre t and radius 0.0738|t|/(dlog d).

Proof. We putt = N nL-1S(z) where zo, large enough for us to have
(L)' very near 1, was found earlier in this section with |S’(20)] > 1 and
n gives the first iterate for which |t| < d. Now the disc centre 2o and radius
|20| sin(0.856/(2d log d)) is contained in the cone M log P or in M; L, P where
S is defined. The restriction of N™L~1S to this disc is a univalent map so, by the
Koebe 1/4 Theorem (Theorem 2.3 of [4]), Q contains a disc centre t and radius

(1) 20l in )| (v (725 z0)| > 1/4x 069 sin( g7 )

0
dlogd
> 0.0738t|/(dlogd). O

Next we shall bound the number of iterates required to bring a point found in
Q in this way to within some prescribed distance € of our root a.

Proposition 3.5. If u€ Q = h™'P and |u| < d then |[N™!(u) — N™(u)| <
¢/d when m = [dlog(d®/€)] + 1.
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Proof. When « is a simple exposed root we treat separately the two cases where
the point AN™(u) in P belongs to P, = P\ Py, the exponential of a cone, or to
the small disc P;. Let £; and £; denote the edges of V' that meet at o and let £
denote the b'isector of the exterior angle £; and £; make there. In the first case
the orbit N7 (u) for 0 < 7 < m does not cross £ and so either does not cross
the extended edge ¢; or £,, say the former. (See Figure 2.) We use the statement
in Proposition 2.3 that N reduces perpendicular distance from #; and from £2 by
a factor of at least 1 — d~1. For u this perpendicular distance is at most d so
N™=1(u) is at most

d(1 — d~1)[4ee /)] = gexp {log(1 — d~1)[dlog(d®/e)]}
< dexp {—d 'dlog(2d?/(esin(r/d)))} = ¢/(2d) sin(7/d)

beyond £; and the same for £;. Since 7 /d is a lower bound for the angle £ makes
with £; and £, we have [N™1(u) — a| < €/(2d). A similar calculation shows
that [N™(u) — o] < €/(2d) and so [N™1(u) — N™(u)| < ¢/d as required.
In the second case let k denote the least number with AN*(u) € P;. By the
construction of P, (see Figure 2) we have N "(u) on the other side of £ from V'
and hence on the other side of either £; or £y, say the former. Since £ makes an
angle of at least 7 /d with £; we have IN"(u) - al at most 1/sin(r /d) times
the perpendicular distance from N*(u) to £; and that perpendicular distance is
at most d(1 — d~1)¥. From time k to time m — 1 the orbit of u is modelled by a
g-orbit that lies in P;. Since P; was constructed as 0.05 times the size of a disc
in D(0,1), distance to 0 in D(0,1) is reduced there by each application of the
map g by a factor of at most 0.05. Moreover, distance to 0 in Pj is proportional
to distance 10 o in A~1P; to within a factor that, according to Theorem 2.6 of
[4], can only vary between (1 — r)?/(1 + r)? and its inverse where r = 0.05.
Thus distance to o in h=1 P is certainly reduced by a factor 1 — d—! with each
application of N and so v

INm_l(u) - Oll <d(1- d_l)k(sin(ﬂ'/d))‘l(l 1% d—l)m—l—k < ¢/(2d).

Now N™(u) is closer still to « and so |[N™~1(u) — N™(u)| < ¢/d as required.

There is a further case, where o is a multiple root. But here the f-orbit in
D(0,1) always has positive real part as in Figure 3 and the N-orbit in Q stays
on the other side of £ from V so the calculations in the first case above apply
again. O
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In [20] Sutherland was able to model the immediate basins of all roots but
not to bound the number of iterates required to approach them.

Proposition 3.6. If |N(z) — z| < ¢/d then, for some root aj, we have

|z — o] < e

Proof. d/e < |N(z) - 2" = |B| = =i - o) | < Tflz - s0

certainly 1/e < |z — o] for some j and then |z — a;| < € as required. [
The case p(z) = 2% shows that this estimate is sharp.

Lemma 3.7. The image under N of the circle with centre 0 and radius d is
outside the circle of radius d — 1 —2/d.
Proof. z— N(z) = {Z(z —aj) '} 1 € {2(D(2,2))"1} 1 =d1D(2,2) =
D(z/d,2/d) and so has modulus at most 1 + 2/d when |z| =d. O

We can now prove our main result. -

Proof of Theorem 1.2. The algorithm iterates N up to [dlog(d®/¢)] + 1 times,
the number required in Proposition 3.5, on an array A of points in the annulus
d—1-2d"1 < |z| < d. According to Lemma 3.7 the point ¢ found in Proposition
3.4 lies in this annulus. We claim that at least one point, p? dw® say, in the array
lies in the disc centre ¢ and radius 0.0738]t|/(dlog d) which is contained in the
domain Q in the basin B(a) of our chosen exposed root c. For this claim it is
sufficient to consider the case where pd < |¢| < dand 0 < argt < 27 /R. Three
sides of this region have length 2x/R and the fourth is shorter. Thus one of the
four vertices will be in the disc centre ¢ provided the radius of this disc is at least
the circumradius wdv/2/R of a square with sides of length 2x/R. But

|t| > d(1 - 27/R) and R > (19.2dlogd + 2)7

SO
0.0738|t|/(dlog d) > 7dv/2/R

as required.
As we consider successively the iterates w = N*(p? dw¥) of p7 dw® we

have |w — N(w)| < €/d for some £ < m — 1 by Proposition 3.5 so the algorithm
stops with this value of w. Then, by Proposition 3.6, w is within e of some root
of p as required. Along this orbit, as we found in Proposition 3.5, the iterates
approach and then remain near V. Thus if at some stage in the algorithm |w| > d
we are not on the orbit of p?dwX and can safely proceed to the next point of
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the array. By this device we avoid the awkward possibility than an iterate could
prove too large for the computer to handle.

The number of times NV is evaluated in this algorithm is at most [dlog(d® /e)+
1] at each of the R{~R/(2x) log(1—d~'—2d~2)+1} points in A and, provided
d > 10, this is less than 800d?(log d)? log(d®/¢). O
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