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Dissipative vector fields on the plane
with infinitely many attracting
hyperbolic singularities

Carlos Gutierrez

Abstract. For any b > 0, there are dissipative analytic vector fields on R? which, when
restricted to R x (—b, b), have positive Jacobian and infinitely many (attracting) singularities.

1. Introduction
Let U,V and UUV be submanifolds of R? of dimension two. Let F: UUV — R?
be a vector field of class C1. We say that F satisfies property (d,t) on (U, V) if

(i) det(DF) >0on U

(ii) tr(DF) < OonV
where

DF(e) = (52 )
oz;
is the Jacobian matrix.

This article is related to the conjecture about global asymptotic stability which
claims that if a C! vector field F:R? — R? has a singularity p and satisfies
property (d,t) on (R?,R2), then the basin of attraction of p is the whole R%.
Here we prove that

Theorem A. If b > 0 is a real number and N =R x (—b,b), then there is a
C¥ vector field F = (f,g):R? — R® which satisfies property (d,t) on (N, R?)
(resp. property (d,t) on (R%,N)) but it has infinitely many singularities, all
of them contained in N, and therefore attracting hyperbolic.

We observe that property (d,t) may or may not persist by a change of coor-
dinates. The examples of this work must not be interpreted as indications against
the quoted conjecture. Actually we believe that the conjecture is true and we hope
that this paper contributes to a better understanding of the problem.
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The conjecture above has been solved affirmatively under additional conditions
since Krasovskii’s work [Kra]. Markus and Yamabe [M-Y] considered the case
where one of the partial derivatives of F' vanishes identically. Hartmann [Hr1]
solved the problem when DF(z) + DF(z)T is everywhere negative definite,
where T means transposition. Olech [Ole] proved the conjecture when there exist
constants § > 0 and R > O such that ||z|| > R implies that ||F(z)|| > 6. These
Olech’s arguments use the condition det(DF(z) > O only at the singularities
of F. The examples of this work show, for instance, that Olech’s arguments
do not work if the additional assumption is removed. By the work of Meisters
and Olech, the conjecture is true for polynomial vector fields [M-O]. There is a
rich literature on the subject; we suggest the reader [Mei] and [M-O] for further
references and history of the problem. Also Hartman’s book [Hr2] deals with
this question. Concerning very recent and important results we wish to mention
the works of Gasull, Llibre and Sotomayor [GLS], Gasull and Sotomayor [G-S],
and Gorni and Zampieri [G-Z].

Let F = (f,g) be a vector field as in Theorem A. The arguments used
to prove the result are such that the foliations induced by df and dg and the
set f~1(0) N g~1(0) (of the singularities of the vector field F) are very well
described. See in fig. 1 the foliation induced by df, where the arrows represent
—at their starting points— directions of the vector field grad(f) and the straight
line segments represent the connected components of f~1(0). See in fig. 2
the foliations induced by df (with dotted lines) and dg, where the small black
balls represent points of f~1(0) N g~1(0) and the arrows represent directions of
grad(g). It follows that the phase portrait of the vector field F must be as shown
in fig. 3.

The Lemma 1 and fig. 1 show the coordinate function f|y and the foliation
induced by df |, respectively. The rest of Section 2 is devoted to the construction
of the function g|n. The leaves of the foliation induced by dg|n are also integral
curves of the vector field Z which is defined immediately after Lemma 1.

2. The examples of Theorem A

First, we shall work in the smooth category. We shall use the following notation:
a > 2 will be a real number, M = R x (—a, —2), and the image and the domain
of definition of a function, say H, will be denoted by Im(H) and Dom(H),
respectively.
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Figure 3

Lemma 1. There exists a smooth submersion f:M — R satisfying the fol-
lowing
(1.a) the foliation induced by the 1-form df is that of fig. 1, where the
arrows are representing vectors of grad f = (%‘E, %5);
(1.b) f is invariant by a (rigid) translation T:R* — R? such that
T(M) =M,
(1.c) for all (u,v) € M, grad f(u,v) & {(z,y) €R?*/z >0,y < £},
(14 f ‘1(0) consists of infinitely many leaves of the foliation induced by
df; and
(Le) for all (s,t) € M, 10 > ||grad f(s,t)|| > 0.1 where ||(u,v)| =

Vu? 4+ v2,

Proof. Let p:R? — R given by p(z,y) = —zy(z — y)(z + y) = —23y + zy®.



We have that grad p(z,y) = (—3z%y + y®, —2° + 3zy?). We may observe the

following
(1.1) grad o(z,y) = (0,0) if and only if (z,y) = (0,0)
(1.2) ¢~1(0) consists of the union of the straight lines {z = 0}, {y = 0},

{z=y}and {z = -y}
(1.3) The foliation determined by d is that of fig. 4. The sectors where ¢ is
positive (resp. negative) are indicated by (+) (resp. by (—)).
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Figure 4

Given ¢ > O small, consider a smooth function A:R +— [0, 1] such that
A"1(1) = [~&,¢€], A71(0) = (—o0, —2€] U [26,00) and X'(¢t) # O for all t €
(—2¢,—€) U (¢,2¢). Let B = {(z,y) €R?/y € [~a,~Z] and y < = < —y}.
We define the function t: B — R by: |

¥(z,y) = (z—y)Az—y)+(z+Y)Az+y)+[1- Az —y) - Mz+y)]o(z, ).

See in fig. 5 the foliation induced by dy. There the arrows represent vectors of
grad .
Observe that p|p > 0 nearby {z = y} and that p|s < 0 nearby {z = —y}.
Therefore, we may easily check that: ]
@1 v 10)=Bn({z=y}u{z=-yu{z=0})
(2.2) If (z,y) € B and z < O (resp. z > 0), then ¢(z,y) > O (resp.

¥(z,y) < 0); and
(2.3) There exists a neighborhood of the segment {z = y} N B (resp. {z =
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—y} N B) such that the level curves of 4, in this neighborhood, are
straight line segments parallel to the segment {z = y} N B (resp. {z =
—y} N B). Moreover, in this neighborhood, grad ¢ = (1,—1) (resp.

grad ¢ = (1,1)).

yj

=-2

Figure 5

/

We claim that if € > 0 is small enough, then there exists p > 0 such that:
(3) For all (s,t) € B,grad¢(s,t) ¢ T = {z > 0 and |y| < 2} and

lgrad ¥(z,)| > p.

In fact, given (z,y) € B, weobserve thatif 0 < z—y <eor0>z+y> e
then ¢(z,y) = = — y or ¢(z,y) = = + y, respectively. Also, if (z,y) € B
and min{z — y, —z — y} > ¢, then ¢(z,y) = (z,y). therefore, as grad ¢ is
continuous, there exist 1 > p; > 0 and § > 0 such that
(4) Let (z,y) € B. ifeither min{z—y, —z—y} < e+6 or min{z—y, —z—y} >

2¢, then grad (z,y) ¢ T and 1/p1 > [lgrad (z, y)l| > 1.

When (z,y) € Band e + § < z — y < 2¢, the following is satisfied:

G.1) Y(z,y) = (z - y)A(z - y) + (1 - A(z ~ y)) (=, y);
(52 $E(z9) = a(z,9) + (1 - M=z - ¥)) FE(zy)
(53) 2(z,y) = —alz,y) + (1 - Az - 1)) 22(,v)
where a(z,y) = (z — y)N(z — y) + Az — y) — X(z — y)p(z,y).

Observe that the vector (a(z,y), —a(z,y) is a non-negative constant times
(1, —1). Moreover, if € > 0 is small, the vector (1— \(z,y)) grad ¢(z, y) points
to a direction very close to (1,—1). Also,
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(54) 2+ 32 = (1= A(=,9))[(y - 2)(= + 2+ V3)y) (= + (2 - V3)y)].

Therefore, there exist pa € (0, p1) such that
(6) If (z,y) € Band e +6 < z— y < 2¢, then grad¢(z,y) ¢ T and

1/p2 > ||grad ¢(z,y)|| = p2-

Proceeding as in (4) and (6), we may finish the proof of (3).

Observe that di induces a foliation in B. Therefore, we may consider B as a
foliated “tile” and use copies of it to fill up the band M = (—o0, 00) X [—a, —2]
by placing them as in fig. 1. Hence any “tile” B’ of X can be obtained, as
the image of B, by an orientation preserving rigid movement of R? that leaves
invariant M. Let 7 be the foliation in M induced by the 1-form dt. Certainly
7 is smooth.

We shall extend t: B — R to a smooth function f: M — R in the following
way. If B’ = T'(B) can be obtained as the image of B by a translation T': R? - R?
that leaves invariant M and ¥, then we define

flar =t oT .
g = T(B) can be obtained as the image of B by an orientation preserving
rigid movement that leaves invariant M and 7 but takes the line {z = —2} onto
the line {z = —a}, then we define

fIBI = —#)Oj;_l|al

Certainly f satisfies the desired conditions of the lemma. [

The vector field Z
By (l.c) of Lemma 1, given (s,t) € M there exists a unique § = 0(s,t) €
[x/10,2x — x/10] such that

1
inf) = ———— grad f(s,1).
(cos 8,sin ) ||gradf(s,t)||gr f(s,t)
Let
e L(s.4) = f..-f)
Z (s,t)—(—cos2, sin 3
and

il 0)
Z = (s1n§,—cos 2

we shall need of the following.
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Lemma 2. Let ¢ € (0,7/2) and K > W be a constant. If 6 € [, 27 — €]
then:

(2.a) det A > 2
(2.b) tr A < —1 where

cosf sin
A, K)=A=
—Kcos% —Ksin%

Proof. Observe that if 6 € [e, 27 — ¢] then sin(§) > sin(£). Therefore:
det A = K[—cos@ - sin(g) + cos(g) -sin 0]
0 0 0 0 0
= K[—{2cos?(=) — in — =Y - 2 . gin{=4): =
[—{2cos (2) 1} sin = +cos(2) 2 s1n(2) cos(2)]
= Ksin(-g) = o
This proves (2.a). Now,
TrA=cosf — Ksin(g)
6 0
— 277V AT X
= 2cos (2) 1 Ksm(2)
<1- Ksin(g)

1w Ksin(g)
<1-2=-1.
This proves (2.b). O

Remark 1. The following will be used in the proof of Proposition 1. By the
way that f has been defined, we may easily see that the vector field Z (defined
immediately after the statement of Lemma 1) when restricted to B, has its y-
coordinate equal to zero only at the segment B N {z = 0}. O

Lemma 3. Let p: [—1,1] — R be a smooth orientation preserving embedding.
Let s < t be points of [—1,1] and let k and K > 0 be real numbers. Given
6 € (0,58) and X € (0,00), there exists a smooth orientation preserving
embedding ¢ = 1:[—1,1] — R satisfying:
(B.2) for all u € [-1, 5], Y(u) = p(u)+k— (1), in particular, (—1) =
k’.
(3.b) for all u € [t,1], Y(u) = o(u) + A+ k — p(-1); and
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(3.) if ||@'|| > 2k, then there exists Ao > O such that, for all A > Xo,
43l 2 K.

Proof. Let 0 € R and #:[-1,1] — [0,1] be a smooth function such that
6-1(1) = [-1,s] U [¢t, 1] and 671(0) = [s + 6, — &].
Let ¢, = 0p' +0(1— 0)p".
By defining .
Y(u)=k+ ‘/~11,~ba(v)dv
we may easily see that ¢ satisfies (3.a) and (3.c) and that o can be chosen so that
(3.b) is satisfied. O

z(b)

z(a)

Figure 6

Lemma 4. Let a,b,k, K € R such that a < b and K > 0. Let Q ¢ R®
be a rectangle whose boundary is made up of four smooth embedded c%trves,
S c {y="5}, I c {y = a}, L and R. Suppose that the following is satisfied:

There is a smooth vector field X on Q, without singularities; whose phase
portrait is as infig. 6, and which has L and R as their trajectories. Moreove‘r,
there is a smooth map z:[a,b] — Q such that the segment @ N {y=c}is
tangent to X only at the point z(c).

Then, given € € (0, b—l‘Gﬁ . there exists a smooth map ®:Q(a,b—4¢) — R
such that: d®(X) =0, ®(LUR) = k, and ||grad || > K. Here Q(a, s), for
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s € [a, b], denotes the set
Q(a,5) =Qn{(z,y) eR*/a < y < s}.

Proof. To simplify matters, given s € [a, b], the foliation 7 |@(a,s) Will be denoted
by 7.

Let p: [-1,1] — @ be a smooth embedding transversal to 7 and such that if
Pt := p(t) then
(1) p-1 € L, p1 = 2(a) € I, the leaf of 7 passing through p, meets tangentially

S and, for ¢ € [a, b] close to a, z(c) € Im(p).

Let Ps, with s € [a,b], be the union of the leaves of 7, that meet Im(p).
By the compactness of P, and of Im(p), there exists a smooth map ¢: P, — R,
constant along leaves of 7, and such that.

2 ¢(p-1) = k and ||grad ¢|| > 2K.

Let p:[-1,1] — @ be a smooth embedding transversal to ¥ and such that if
Pe:= p(t) then
() p-1 € R, p1 = 2(a) € I, the leaf of 7 passing through pq is the same as

that which passes through po and, for ¢ € [a, ] close to a, z(c) € Im(p).

There exists a smooth holonomy diffeomorphism, induced by 7, between the
segments p((0, 1]) and p((0, 1]). Thus, by appropriately redefining p and , we
may assume that
@) if € € (0, bT‘Gﬂ) is small enough, then, for all t € [¢, 1], p; and §; belong to

the same leaf of 7.

Let P,, with s € [a,b], be the union of the leaves of 7, that meet Im(p).
By (4) and by the compactness of 131, and of Im(p), there exists a smooth map
P: Py — R, constant along leaves of 7, and such that:

(5) for all ¢ € [2¢,1], §(¢) = ©(pt), and ||grad §|| > K.

By the compactness of }325 and by Lemma 3 applied to the curves p and p,
we way redefine ¢ and ¢ in the segments Im(p) and Im(), respectively, in such
a way that there exists a smooth extension ®: Q(a,b — 4¢) — R, of these newly
redefined ¢ and {, that satisfies the conditions of this lemma. The parameter A,
of Lemma 3, makes possible to find these new definitions, of ¢ and @, that are
compatible. (]

Proposition 1. Let a > 0 be a real number. There exists a smooth vector
field F = (f,9):R x (—a,a) — R? which satisfies property (d,t) on (M, M)
but it has infinitely many (attracting) singularities.
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Proof. As property (d,t) is invariant under translations z — z + v of RZ, we
shall prove that, for a > 2, there are smooth vector fields F = (f,g): M =
R x (—a,—2) — R? as claimed in this proposition.

Let f:M — R be the smooth function of Lemma 1, B = {(z,y) € R*/
—a<y< -2 y<z< -y} and 7 be the foliation induced by the 1-form
df.

Let A C B be a rectangle whose boundary consists of four smooth curves:
S c {y = -2}, I c {y = —a}, and two integral curves L C f~!(0,00) and
R C f~1(—00,0) of the vector field Z. Observe that L is contained in {z < 0}
and R is contained in {z > 0}.

By remark 1, we may use Lemma 4 to conclude that there exists a smooth
function §: A — [—1, 00| such that:

d3(Z)=0, G(LUR)=-1 and
16 20 1
llgrad g|| > Sn(0D)’

Under these conditions, it follows from (1,¢) and (1.e) of Lemma 1 and Lemma
2 that:

() F =(f,§): A — R? satisfies conditions (d,t) on (£, 4).

Let T'; be the sct of rectangles B C M such that, for some translation
T:R? — R? that leaves invariant ¥ and M, we have that T'(4) = B.

Let T'; be the set of rectangles B € M such that T'(4) = B, where T:R? —
R? is a rigid movement that leaves invariant M and 7, that preserves orientation,
and that takes the line {y = —2} onto the line {y = —a}.

Let T's be the sct of rectangles B C M that are the closure of connected
components of M — U{B/B € T'1 UT3}.

We extend § to U{B/B € I'1} in the following way; If B € T'y and T:R? —
R? is the translation such that T'(B) = 4, then we define §: B — R* by
jlp:=GoTls. |

Certainly, by (2), F = (f,§): U{B/B € I'1} — R? satisfies condition (d, t)
on (Dom(F), Dom(F)). :

By construction, there is a translation S:R? — R? and there are elements
Bs, B; € T's, By € Ty distributed as in fig. 7 and whose union forms a connected
set (a rectangle) B which meets A and S(A)

By the same arguments used to prove Lemma 4 and by (1), we may extend §
to BsU Bj and then to By in such a way that the resulting extension, still denoted
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by g, satisfies
(3) dj(2) =0 and ||grad gl > {5y
Therefore, by (1,c) and (1,e) of Lemma 1 and Lemma 2,
@ F = (f,§)|s: B — R? satisfies condition (d,t) on (Dom(F), Dom(F)).

A

Figure 7

Now, given p € M — U{B/B € T'1}, there exists n € N such that S™(p)
belongs to the interior of B. We extend § to p by defining §(p): = §o S™(p). The
resulting extension, denoted by g, is well defined and invariant under S. Using
(4) we conclude that
(5) F =(f,§): M — R? satisfies condition (d,t) on (Dom(F), Dom(F)).

Finally, as f~1(0) meets B, we may find an appropriate constant ¢ € R such
that if g = g + ¢ then
(6) F = (f,9): M — R? satisfies not only (d,t) on (M, M) but it has also

infinitely many singularities.

This proves the proposition. [

Proof of Theorem A. By using a Grauert’s approximation result [Gra] we only
need to prove the existence of the required vector fields in the smooth category.

Let B:(—b— 1,6+ 1) — R be a smooth diffeomorphism such that, for all
t € [-b,b], B(t) = t. Define H:R x (—b—1,b+1) — R? by H(s,t) =
((B'(t))~1) - s, B(t)). It is easy to sec that

(1.1) H is a diffeomorphism,

(1.2) det(DH) = 1 everywhere, and

(1.3) for all (s,t) € R x (=b,b), H(s,t) = (s,1).

Let suppose that b > 2 and let F:R x (=b—1,b+1) — R? be a vector field
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as in Proposition 1. It follows by (1.2) that the vector field F = H, F, that is the
pull back of F via H, satisfies condition (d,t) on (N, R?), and that the vector
field G = F o H~! satisfies condition (d,t) on (R?,N). O
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