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Abundance of generic homoclinic tangencies
in real-analytic families of diffeomorphisms

Floris Takens

Abstract. We consider one-parameter families of two-dimensional diffeomorphisms with
homoclinic tangencies. Various authors considered the dynamical complexities due to such
tangencies satisfying certain nondegeneracy conditions. In this paper we provide methods to
actually verify, for real analytic families, that there are homoclinic tangencies which satisfy
these (generic) nondegeneracy generic conditions.

1. Introduction

We consider one-parameter families @, of 2-dimensional diffeomorphisms with
saddle point p, and stable and unstable separatrices W; and W /. A homoclinic
tangency is a tangency of W3 and Wy for some p = . Without loss of generality
we assume that the eigenvalues of dip,, at p, are positive (otherwise we consider
go?‘ instead of ¢, ). Also it will be convenient to restrict to just one branch of
each of the separatrices which, from now on, are denoted by W and W ;.

Under generic assumptions such a tangency leads to interesting dynamical
complications for p near p:

e formation of infinitely many periodic orbits [B,1935];

e period doubling sequences [YA,1983];

e persistent tangencies and infinitely many coexisting periodic attractors or re-
pellers [N,1979], [PT,1992];

e Hénon-like strange attractors or repellers [BC,1991],[MV,1991].

Although these generic conditions can sometimes be verified, usually this is
very hard, see [GH,1983]. In this paper we show that for real analytic systems
these generic conditions follow from seemingly much weaker conditions which
can be easily verified in concrete examples. In order to state our results we first

Received 10 November 1991.



192 FLORIS TAKENS

formulate the usual generic conditions and than our alternative conditions.

The Generic Conditions
There are three generic conditions for homoclinic tangencies, which are informally
denoted by:

e C3-linearizability;

e first order tangency (parabolic);

e positive speed.

They can be described more formally as follows. First, for a tangency of W ;
and W for p = pi we require that ¢, can be C3-linearized near p,, for p near
A This linearization must be C3 in both the two ‘space variables’ and p. If A(u)
and o (u) are the cigenvalues of dp, at p,, this means that we should avoid

a(p) = —Ino(p)/InA(p)

taking at iz values in some locally finite subset of R [S,1958].
At the tangency we construct u-dependent coordinates z and y such that

Wi ={y=0},
W ={y= M(z,p)},
for some function M. Assuming the tangency to be at £ = y = 0, we have that
M(0, ) = 0 and M’(0, &) = O (here and in what follows, M’ means the deriva-
tive of M with respect to its first variable). The condition of first order tangency

means that M" (0, iz) # 0 and positive speed means that dM/9u(0, ) # 0, i.e.
the speed of W* with respect to W*, when moving u, is nonzero.

Alternative Conditions
Here we also have three conditions: ’
e pu(z,y) is a real analytic function of z, y, and u;
e the function a(p) = —Ino(p)/In A(u), as defined before, is not constant;
e there is an inevitable tangency in the sense defined below. .
In order to define this notion of inevitable tangency, we consider an open disc
U c R? and values pj < py (or pg < p1). We say that {p,} has an inevitable
tangency in U between p; and uo if:
o there are arcs 73/ *, bounding in U open sets a,‘j/ ®, which are part of W,‘,‘/ %
& Vo= e, ~/* x {4} is a real analytic surface;
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Figure 1. Inevitable tangency.

It should be clear that if the above conditions are satisfied, then there has to
be some homoclinic tangency in U for some value of u between py and pg —
this explains the term ‘inevitable tangency’.

The first two conditions, analyticity and o not constant, are usually satisfied
for concrete systems (and easy to verify). The third condition may be harder to
verify, but if one cannot, one will in general not be able to show that there is any
tangency at all. Our main result now is the following:

Theorem. If the three alternative conditions are satisfied, then there are
tangencies where the three generic conditions are satisfied.

In the above notation, such generic tangencies will even occur in U for values
of u between p; and pg. The following sections are devoted to the proof of the
above theorem; in the remaining part of this introduction we give an example how
our result can be applied to a concrete equation.

We consider the Duffing equation

u=uv
v' = u—u® 4 ¢(ycos(wt) — 6v)
in combination with the analysis of it given in [GH,1983]. This analysis is based
on the Melnikov method; for references on this method we also refer to [GH,1983].
For 4 = 0 and € small, the quotient of the eigenvalues of the singularity at u = 0,
v = 0 is not constant as a function of 6.
For 4 # 0 we consider the Poincaré, or périod, map. This map is real analytic
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in u, v, and the parameters, and it has a saddle p near u = v = 0. For € # 0, 7,
and w # O fixed, there is a function «(§), associated with this saddle, as in the
second alternative condition. For 4y = 0, —c(§) is the quotient of the eigenvalues
of the singularity at (0,0) and hence not constant as function of §. So also for
small v # 0, «(§) is not constant.

It follows from the Melnikov analysis, mentioned before, that for w 7 0 and
small € # 0 and ~ # O fixed, there is a value & for which there is a tangency of
the separatrices of p with order of contact one and which unfolds in an intersecting
way, see subsection (4.2). This implies that there is an inevitable tangency, so
that by our main result there are also tangencies satisfying the generic conditions,
implying all the above mentioned dynamical complications.

2. Local Properties of Tangencies
In this section we recall some notions associated with tangencies of real analytic
curves in the plane.

2.1 Order of tangency

Let [ and m be real analytic curves in R? which have a point of tangency. Then
there are local real analytic coordinates such that [ = {y = 0} and m = {y =
M(z)} with M(0) = M’'(0) = 0, assuming that z = y = 0 is the point of
tangency. We say hat the order of tangency is k if M) (0)=0fori=0,...,k
and M(¥+1)(0) # 0. In that situation we have

M(z) = ca**! + ho.t, so
M'(z)=c-(k+1)-zF + ho.t.

Hence we have that
|M ()| /| M (z)[*/(+)

!
has a non-zero limit for z — 0. This leads to the following ‘coordinate free’

property:
For a point gem let d(g) be the distance from ¢ to ! and let T'(q) be the angle
between Ty (m) and T (1), where ¢'el is the point in [ nearest to ¢. Then

T(q)/(d(g))* 1)

has a non-zero limit as q approaches the point of tangency (distances and angles
are defined with respect to the coordinate system). If we use different (but at least
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C?) coordinates, we get corresponding functions (~1(q) and T (g) such that, both

d(q)/d(q) and T(q)/T(q)

have a non-zero limit. This implies that also

T(q)/(d(q))¥/ +1)

has a non-zero limit as ¢ approaches the tangency.

2.2 Unfolding a tangency

We assume [, and m,, to be real analytic curves in R?, depending analytically on
p and such that, for u = 0, they have a tangency. We can choose p-dependent
coordinates z and y such that [, = {y = 0} and m, = {y = M(z,u)}, for
some function M. We may assume the tangency to be at z = y = 0. Also
we assume the order of the tangency to be odd so that locally mg is on one
side of I and vice versa. So we may assume that M(z,0) = —zF+! + ho.t
with k odd. We shall consider max, M (z, ), or rather the local maxima for z
near zero, as a function of u, which we assume not de be constant. In order to
analyze these local maxima we define the set C = {(z, p)|M'(z, u) = 0}. This,
being an analytic set, consists, near zero, of a finite number of analytic curves
(see the curve selection lemma [BC,1957]) which we denote by ¢y ,... , ¢ and
¢f,...,¢f with¢;, ¢f in {u < 0}, {1 > 0} respectively. Each of these curves
can be parameterized analytically by a root of yu, so along each of these curves
we have

Mt = d - || + ho

with az‘.i rational. The local maximum of M, as a function of z for fixed p must
be on one of these arcs. Let ¢; and cf be dominating arcs in the following sense:
e if df < O then all d} are negative and for all i we have o;f < of and if
of = of then df < df;
e if df > 0 then for all 4 such that &} > 0, of > of and if o} = of then
df < df.

(For ¢7 the conditions are analogous.) In this case we call af the positive
exponent of motion (of m,, with respect to [,,). The negative exponent of motion
is defined similarly as o . In this definition the analyticity is important. However,
once this exponent is defined, it makes sense for arbitrary coordinates z and 9
(which are at least C1) and has the same interpretation: if [, = {y = 0} and
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m, = {§ = M(%,p)} are our analytic curves, but now expressed with respect
to arbitrary C'-coordinates for which the tangency, at g = 0, is still in the origin,
and where M (%, 0) has a local maximum in zero, the positive exponent of motion
is the unique number « such that

max, M(%, u)/|u|*

is bounded and bounded away from zero as u approaches zero from above (if there
are no coordinates with respect to which I, and m, are analytic, this exponent
may not be defined).

We finally note that it can happen that max, M (z, u) is constant for g > 0
only, e.g. M(z,u) = (u® — z?)%. In that case the positive exponent is co.

3. Linearizations of saddle points and A-lemma type estimates.

3.1 Linearizations

We consider a C* or real analytic diffeomorphism ¢ : R? — R? of the form
e(z,y) = (oz,Ay) + ho.t. with 0 < A < 1 < 0. Linearizing ¢ means finding
coordinates Z and y (near the origin) with respect to which the higher order terms
‘h.o.t.” of ¢ vanish. It is important for our constructions that Z and ¥ have a high
degree of differentiability. According to [S,1958] there is, for each L, a locally
finite subset of R — {0} such that, whenever Ino/In A does not belong to this
subset, there are linearizing coordinates which are CL.

In order to find such # and §, one first considers the formal problem: find
Taylor expansions for £ and y which make the higher order terms zero up to
a certain order. This is achieved by induction: if in the higher order terms all
summands up to order ¢+ 5 — 1 are removed, then, in order to remove a term z*y”
in the first, respectively second, component of ¢, we need (1 —1)-lno+7-1n A,
respectively ¢ - Ino + (5 — 1) - In ), to be nonzero. In order to obtain a CZ-
linearization one needs to do the formal linearization up to order L(L,Ino/In X),
where [ is continuous in the second variable. So the set of ratio’s In o /In X\ which
have to be excluded is indeed locally finite.

For our constructions we need a slightly stronger result: we need a CL-
linearization whose L-jets are C* along the unstable separatrix (or along the
stable separatrix or along both, in which cases there are similar arguments). On
the formal level this means that we have to remove the terms z*y?, with j < L
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and all ¢, in . For this we need ¢ -Ino + 7 -In XA # 0 for § < L and all ; this
still corresponds with a locally finite subset of R — {0}. Combining this with the
methods of proof in [S,1958] and [T,1971], we obtain the following:

Proposition. For each L there is a locally finite subset Sy, ¢ R — {0} such
that for ¢ : R® — R? as above and In o/In\ & Si, there are CL-linearizing
coordinates whose L-jets are C* along the unstable separatrix. Moreover,
when o, A, and o depend on a parameter p and Ino(f)/In A(z) & Si, then
the linearizing coordinates are CX-functions of x, y, and u whose L-jets are
C along U, W} x {u} for p near p.

3.2 A-lemma type estimates

We consider a linear map ¢ : R? — R? defined by ¢(z,y) = (0z, Ay), with
0 < A <1 < 05 we define as before « = —Ino/IlnX € Ry. Let W =
{y = f(=)} be a smooth curve intersecting W * at (0, f(0)), with f(0) > 0.
We shall consider the curves ©™(W) = {y = (P"f)(z)} where P is the ‘graph
transform’. According to the A-lemma [P,1969] these curves converge, in the
C'-sense to the unstable separatrix, i.e. to the z-axis. Here we also describe the
convergence of the higher derivatives.

b

ﬁ\-
W=gr(f)

Y

ay

Figure 2. Curve W intersecting W ¢.

We want to estimate the derivatives of P"f for n — oo. It is easy to see
that if ¢~"(z,0) = (&, 0), then

(Pnf)(:)(z) — X8 W f(c)(i_) — ’\n(1+ai) . f(')(a‘c),

where we used ¢~1 = A%, For { = 0 this gives (P"f)(z) = A" - f(z). Using
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that for n — oo, T converges to zero, we find
Jim (P 1)O@)/(P 1) @) = 100)/ ()

Let now % and § be another coordinate system, with respect to which ¢ is
not linear, and let f,, be the functions such that o™(W) = {§ = fa(&)}. If we
assume that for some K, the K-jets of (z — %) and of (y — §) are zero along the
r-axis, i.e., along the local unstable separatrix, then it is clear that the [-jets of ?n
and P"f in z differ at most by a term of the order ((P"f)(z))®¥~!, uniformly
in n. So for K > 1+ {(1+ a), the above estimate implies that

Tlim F9(2)/(Fa(2))' > = £9(0)/(£(0))*.

We can sce from this that the higher derivatives of }n converge faster to zero than
the lower derivatives. This will play an important role in later arguments.

3.3 \-lemma type estimates — singular case

We assume ¢ to be as before, i.e. ¢(z,y) = (oz,Ay). Let [ and m be curves,
tangent to W* and W respectively in (0,y) and (z,0) with Z,§ > 0, and let
L and M be the respective orders of tangency as defined before. The order of
tangency is only defined for analytic curves, so we assume [ and m to be analytic,
but we allow our linearizing coordinates z and y to be only C?, in which case
the order of tangency is defined by the ‘coordinate free’ property in subsection
(2,1). We want to prove that for N sufficiently big, o () and m have transversal

intersections. ”

Ay '

S

Figure 3. The curves / and m.

We represent [ as the graph of a continuous function f : [0,€) — R4 which is
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C? on (0, ¢). Due to the order of tangency, f'(z), for positive z near zero, is of
the order z~L/(L+1), Let P"f, as before, be such that o™ (gr(f)) = gr(P"f).
Near z we then have:

P™f is of the order A™;

(P"f)" is of the order A™ - g~ - (¢~ ")~ L/(L+1),

Using A* = o1, this last expression becomes (A™)1+®/(L+1)  This means
that (P™(f))'/P"™(f), for z near Z, converges to zero as N tends to infinity. On
the other hand, if we write m as the graph m = {y = g(z)} of g, then, for
z — Z, ¢'(z)/g(z) tends to infinite, because the tangency of m and W* is of
finite and positive order, see subsection (2,1). This implies that for n sufficiently
big, the graphs of g and P™ f intersect transversally near Z.

3.4 Angle of crossing W?*

We consider again a C* diffeomorphism ¢ : RZ — R? such that (z,y) —
(0z,Ay) + h.o.t., with 0 < A < 1 < ¢. When applying the A-lemma type
estimates in combination with linearizations, we need a consistent way of measur-
ing, or rather comparing, the angles of crossing W* for curves W intersecting
W?* transversally. We want this definition of angle of crossing to be such that
W and ¢(W) have the same angle of crossing W* (this means that for curves
intersecting W* at the origin, the angle of crossing is not defined).

_/w

Ay

QY

Figure 4. W intersecting W?°.

Let £ = {(p,L)|peW*, L C T,(R?) a one dimensional subspace } and let
® : L — L be the map induced by dp. At the fixed point (0,To(W*)), d®
has eigenvalues A and A - 0~1. Assuming that X - ¢~ is not a power of A, or
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that —Ino/In X is not an integer, there is a unique ®-invariant curve, which is
C®, and which is tangent to the eigenvector with eigenvalue A. This invariant
curve defines a unique C'*-field of transverse directions to W*°. We denote the
transverse direction at peW ® by Ly; if W intersects W * at p and is tangent to Ly,
we shall define its angle of crossing to be zero. Note that the present conditions
on XA and o are satisfied whenever there are C! linearizing coordinates whose
1-jets are C'* along the stable separatrix, see (3.1).

Next we consider the space X' = {(p, X)|XeL,} and the map on X induced
by o~ - dp. This map has a line of fixed points, consisting of the vectors X in
L(0,0), each with a 1-dimensional smooth stable separatrix. Each of these stable
separatrices corresponds to a smooth vector field along W*, which is multiplied
by o when applying dp and which is contained in the transverse directions L.
For each peW?, each XeL, can be uniquely extended to a smooth vector field
along W, corresponding to such a separatrix; we denote such vector field by X.
If y is a coordinate along W ¢ which linearizes o|W*, then we get a dyp-invariant
vector field along W* by putting X(§) = §~* - X(§). Also we can construct
a vector field Y along W*, which is tangent to W* and which is de-invariant.
Again we can fix Y in one point but in this case there is a canonical choice: we
take Y so that the time one map of Y is the restriction of ¢ to W*.

For X and Y as above we define the angle of crossing of a curve W tangent
vector Z = a - X, + b+ Y,, where (0,0) # peW?, ZeT,(W*), and where X,
and ¥, denote the values of X and ¥ in p, as arctan(—b/a). (So the angle of
crossing is indeed zero for a curve which is tangent to Ly.)

For later use we make the above definition explicit for the case where we have
linearizing coordinates whose 1-jets are C* along the stable separatrix. We then
have p(z,y) = (0z, Ay). The vector field Y is In -y - 8,. A vector field along
W* like X, as defined above, is then a constant vector field in the z-direction.
Now we choose X so that in (0,1), X and ¥ have the same length. This means
that X(0,y) =InX-y~*-9,, where « = —Ino/In X. From this it follows that
the angle of crossing for a curve W, given in these linearizing coordinates as the
graph of f, is f(1(0)/(f(0))**®. This should be compared with the formulas
in (3.2).

4. Approximating Tangencies
It is known that in a one-parameter family of diffeomorphisms a homoclinic tan-
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gency is usually approximated by other homoclinic tangencies, e.g. see [PT,1992].
This will play an important role in the proof of our main theorem. In the present
section we analyze this phenomenon of approximating tangencies. For this we first
need to distinguish various types of homoclinic tangencies and their unfoldings.

4.1 Homoclinic Tangencies of Type A, B, C, and D

Let o, be a one-parameter family of diffeomorphisms in R? as in the introduction,
i.e. real analytic, with a saddle point pu and a homoclinic tangency for u = p.
We assume the point of tangency to be isolated and the tangency to be of odd
order, see (2.2). This means that near the tangency W* is locally on one side
of W* and vice versa. Now we consider two points on the orbit of tangency
near the saddle point pg, one on the local stable and one on the local unstable
separatrix, which we denote by ¢ and r. We have a tangency of type A, B, C, or
D depending on whether W, near ¢, is on the side of r or not and depending
on whether W#, near r, is on the side of ¢ or not. The complete convention is
indicated in figure 5.

Preferred sides of

L1 w

Figure 5. The types A, B, C, and D as defined near pp and as defined with
preferred sides.
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In some situations it is more convenient to use a different but equivalent
definition in terms of preferred sides. As indicated in the figure the preferred
side of W is the side which is, near p, in the direction of W* and vice versa
(remember, W* and W* are each only one branch of the stable and unstable
separatrices). Having these preferred sides, the types A, B, C, and D can also be
distinguished according to whether, at the tangency, the preferred side of W* is
in the direction of W* or not and vice versa. This is also indicated in figure 5.

In this whole description we assume that we have a tangency of odd order.
We now indicate why there are such tangencies whenever there is an inevitable
tangency. Using the notation of the introduction, indicated in figure 1, and assum-
ing p1 < pa, we consider the lowest value of u such that @ and af have a point
in common. It is clear that for this value of u we have a tangency and that W*°
and W* don’t cross each other. The order of tangency has to be finite because
otherwise «y;, and ~,; would coincide, which would contradict the condition that
i o ﬂEE is empty, so it is a tangency of odd order. We note that we have also
such a tangency of odd order if we take the infimum of the p values for which
the intersection of the interiors or aj, and aj, is not empty. These two tangencies

may coincide.

4.2 Types of Unfoldings of Tangencies

For a tangency as in the preceding subsection in a one parameter family of dif-
feomorphisms we can construct real analytic p-dependent coordinates such that
W4 = {y=0}and W* = {y = M(z,u)} for some function M. Assuming that
the tangency occurs for p = pat z = y = 0, we have M (0, 2) = M'(0,) = 0.
Since we are assuming the tangency to be one-sided we may assume that, for
some odd k

M(z, i) = —z**1 + h.o.t..

A
See also (2.2). We denote the local maximum of M, as a function of z for u

fixed, by m(u). As we saw in (2.2), for p > @ near & we have m(u) either
constant, increasing, or decreasing. In the case m(u) is decreasing, respectively
increasing, for 4 > p, we say that the tangency positively unfolds in a detaching,
respectively intersecting, way. In the same way one defines the way it unfolds
negatively which depends on m(u) for p < p.

At the end of the previous subsection we indicated how an inevitable tangency
leads to two tangencies (which might coincide). From the above description and
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the present definitions it is clear that the first unfolds negatively in a detaching
way and that the second unfolds positively in an intersecting way.

4.3 Approximating Tangencies — First Approach

We assume first that ¢z has a homoclinic tangency of type A which positively
unfolds in an intersecting way. It is easy to see that there are other tangencies for
nearby values of u: the piece «y of W ® near r, see figure 6, comes, for u > fi above
the local unstable manifold. The iterates of 4 under <p;1 accumulate on the stable
separatrix and intersect near g the local picce of W*, which penetrates the region
to the right of W*. Let u, denote the u-value for which we have the first contact
of the piece of W* near ¢ and the image of + under ©u". Also let fi,, denote
the infimum of the u-values for which there is a crossing of the above two pieces
of W* and W*. Then clearly we have that lim,— o ftn = limp— o0 fin = J3; for
M = pn we have a homoclinic tangency which negatively unfolds in a detaching
way, and for u = fi,, we have a homoclinic tangency which positively unfolds in
an intersecting way. In both cases the new tangencies are again of type A; this
follows from a simple analysis of preferred sides as indicated in figure 6.

\\Q

)

S~

—

———

llllIIllll\lYlv L)
-/
=
>y
\ a8

L N S B B g

Figure 6. Approximating tangencies near a type A tangency.

Taking into account which of the eigenvalues of dp at the saddle point is
dominant, we can show the existence of more approximating tangencies. We as-
sume for the moment that for u near f the contracting eigenvalue A is dominating
in the sense that A - 0 < 1. Under this assumption we have, as in figure 6, that
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the maximal value of z on ¢, () is much higher than the z-coordinate of gq.
This means that the above arguments can be applied to the part of « to the left of
the ‘maximum’ and to the part of « to the right of the ‘maximum’ (to make this
point more precise we refer to (2.2): for a description of W* and W* near r with
a function M (z, 1) we choose a dominating arc of local maxima, as in (2.2), and
use this as an approximation of the real maximum). In this way we obtain not
only tangencies of type A but also of type C; this follows from the positions of
the preferred sides as indicated in figure 6. Among these new tangencies there are
again ones unfolding negatively in a detaching way and also ones (not necessarily
different ones) unfolding positively in an intersecting way.

If, in the beginning of this subsection, we would have taken a type A tangency
negatively unfolding in an intersecting way, then we would have to interchange
in the conclusions positive and negative and also < g and > . All the above
arguments can also be applied to tangencies of the other types. In each case we
get for the new tangencies one who is unfolding in a detaching way and one who
is unfolding in an intersecting way (we omit the information on whether we have
positively or negatively unfolding tangencies). The results for all the different
types of tangencies is given in the table below.

Type: Required Unfolding: Dominating Eigenvalue: New Types:

A intersecting contracting A and C

intersecting expanding A and B
B intersecting irrelevant . B and D
C intersecting irrelevant C and D
D detaching contracting C and D
D detaching expanding B and D

4.4 Transversal Intersections

Making approximating tangencies as in the preceding subsection we also obtain
new (transversal) intersections of W* and W¥. In this subsection we investigate
transversality, and angles of crossing of these intersections and also discuss the
compatibility of preferred sides. We restrict ourselves to the cases where we have
tangencies of type A, B, or C: the case D is different and in the final arguments
it is not needed.

m1 O D.__ 34_. Y71 AA AT. A 1nnn
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We first consider in detail the case where we have for u = i a tangency of
type A positively unfolding in an intersecting way. For u — i > 0 small we
have intersections of W* and W* near r and ¢. We want to show that for any
such value of p there are transversal intersections of W and W*. Suppose that
for some value of u all the intersections of W* and W* near ¢ and r are non-
transversal. We shall derive a contradiction from this using (3.3): ‘A-lemma type
estimates — singular case’. Indeed, since W* and W* cross each other near both
q and r, W*, respectively W, contains an arc near g, respectively r, like the
curve [, respectively m, in figure 3. As explained in that section this immediately
implies a transversal intersections of W* and W* near ¢ and r. It is easy to see
that in the cases B and C the same arguments apply.

We know that whenecver there is a transversal intersection of W* and W4,
both W? and W* accumulate on themselves. In the previous section we defined
preferred sides; in this accumulation it may happen that these preferred sides
agree in the sense that, restricting to W#, if {W;} are arcs in W* converging
to an arc W in W, then the limit of the preferred sides of W; is the preferred
side of W. While it is easy to give examples where the preferred sides are not
always compatible with this accumulation, we can choose, for any arc W in W?,
accumulating arcs W; in W* such that the limit of the preferred sides of W; is the
preferred side of W. For this we only need to observe that if not all accumulation
is consistent with the preferred sides, then any arc W' in W ® can arbitrarily closely
be approximated by an arc W" in W* with opposite preferred side; in this way,
namely replacing arcs in W* by nearby arcs with opposite preferred sides, any
accumulating sequence can be modified to an accumulating sequence which is
consistent with the preferred sides.

Finally we have to discuss the angles of crossing. In the proof of our main
result we need to have a homoclinic tangency of W?* and W* with, at the same
time, two orbits of transversal intersection of W* and W* with different angles
of crossing as defined in (3,4). For this purpose we consider here a homoclinic
tangency of type A, B, or C for 4 = & which is unfolding in an intersecting way
and such that for p = [ there are also transversal intersections of W* and W*.
Let, as before, ¢ and r be points on the orbit of tangency near p. Due to the
transversal intersection, the local unstable separatrix near r is approximated by
arcs in the unstable separatrix; as we saw before, these approximating arcs can
be chosen to have their preferred side in the same direction as the local unstable
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separatrix. We use these approximating arcs to make, by slightly increasing u,
approximating tangencies with the piece of W* near r which we again denote by
~. Due to the consistency of preferred sides, these new tangencies have the same
type as the tangency with which we started. Now we claim that choosing such an
approximating tangency for a value of g which is very close to ji, we get a new
orbit of transversal intersection for which the angle of crossing is arbitrarily close
to a right angle, i.e. which is almost a tangency (in this way we produce two orbits
with different angles of crossing). To see this, we consider the intersection of ~
with the local unstable separatrix. For u very close to f these intersections are
tangencies or almost tangencies. In the case of an almost tangency we are done. If
we only have tangencies we proceed as follows. Let r' be such a tangency where
W# crosses W* (there must be such tangencies since « has points on both sides
of the local unstable separatrix). Now we use the fact that W* is accumulating
on itself so that there are arcs W; in W* tending to the local unstable separatrix
in the C?! sense. From the formulas in (2.1), relating the tangent directions of
~ and the local unstable separatrix near the tangency r', and (3.2), relating the
tangent directions of the local unstable separatrix and W, it follows that for ¢
sufficiently big, there is a transversal intersection of W; with « as indicated in the
figure. (The validity of the estimates in (3.2) follows from the fact that there are
always C' lincarizing coordinates near a two-dimensional saddle, see [H,1960]).

7

— local unstable

/ separatrix

Figure 7. Almost tangencies near a tangency with crossing!

5. Proof of the Main Theorem ,

Under the assumptions of the main theorem we show first that there are many
values of p for which there is a homoclinic tangency of W* and W* having a
series of extra properties, the so-called special tangencies. Then we show that
among these special tangencies there is a dense subset of tangencies which satisfy
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the three generic conditions. The condition of linearizability is automatically
satisfied, but the conditions of first order contact and positive speed need special

arguments.

5.1 Special Tangencies

Let H; denote the set of u-values between pj; and pg for which W* and W
have a tangency of type A, B, or C which unfolds in an intersecting way or which
have a tangency of type D which unfolds in a detaching way (either positively or
negatively). As we observed in the previous section, Hy is not empty and even
every point of it is an accumulation point (due to the approximating tangencies).
For the following arguments it is important that every dense subset of H; has
again the same properties: not empty and each of its points is an accumulation
point. Besides H; we also consider the set ¥; of pairs (u, z) with p in H; and
z on a corresponding orbit of tangency.

The first dense subset of H; which we consider is the set of those values of
u in H; for which the product of the eigenvalues of dy at the saddle point is
different from 1. This subset is denoted by Hg, the corresponding subset of X3
is denoted by ¥,. This subset is dense because, by assumption the ratio of the
logarithms of the eigenvalues is not constant and hence, by analyticity, nowhere
locally constant. For tangencies belonging to this set the dominating eigenvalue
is well defined.

The next dense subset which we consider is the set of those values peHs
for which the tangency is of type A, B, or C and unfolds in an intersecting way.
This subset is denoted by Hs. It is dense in Hy because, as we saw in (4.3),
any tangency of type D which unfolds in a detaching way is approximated by
tangencies of type B or C which unfold in an intersecting way.

Next the dense subset Hy in Hj is obtained by requiring that for the values
of p in Hy the angle of crossing of W* can be defined as in (3.4) and for which
there is a C3-lincarization in a neighbourhood of the saddle. Here we only have
to exclude a(p) = —Ino(p)/InA(p) to belong to a locally finite subset of
R — {0}. So the fact that Hy is dense in H3 follows as above for Hy.

Finally the dense subset Hs of Hy consists of those values of pu in Hy for
which there are, besides the orbit of tangency, at least two orbits of transversal
intersection of W* and W* so that the angles with which W* is crossing (in the
sense of (3.4)) W* are different. The denseness follows here by combining the
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various arguments in the previous section.
The definition of the corresponding spaces ¥s to X5 is now obvious. It is
easy to see from the results in the previous sections that they are all dense in X;.

5.2 Tangencies of Order One

We continue with the set Hy as constructed in the previous subsection. In this set,
H é‘ denotes the set of u-values for which the tangency has order of contact at most
k. We first observe that each point of H¥ is an accumulation point of this set.
This follows from the arguments in (4.4). Indeed, for tangencies corresponding
to u-values in Hp there are also transversal intersections of W?* and W, so
that W* accumulates on itself. The way in which arcs in W* converge to the
local unstable separatrix also implies convergence of the (k+ 1)-jets; this follows
from the C"-section theorem in [HPS,1977]. Now, for a tangency with order of
contact at most k, the (k + 1)-jets of W* and W, at the point of tangency are
different. This means that if we make approximating tangencies as in (4.4), using
the accumulation of W* on itself, also for the new tangencies the (k + 1)-jet of
W* and W* must be different. So these approximating tangencies correspond
also to elements of H¥. Now we fix k as the smallest integer for which Hf is not
empty. We assume this value of k to be bigger than 1 and derive a contradiction.
This contradiction also shows that H}, or ¥} is dense: just assume that there is
a neighbourhood in X5 which contains no points of ¥& and the same reasoning
gives a contradiction.

First we take another dense subset H of H, ;‘ by restricting to those u-values
for which there is a local C¥ linearization in a peighbourhood of the saddle point
whose K -jets are C™ along W*, where K = 2+k-(1+a)and a = —lno/In A,
see (3.2). Let now g be an element of H. We shall construct the required
contradiction by showing that near this tangency there have to be tangencies of
order lower than k. !

Let %, § be p-dependent CX linearizing coordinates, whose K-jets are C*®
along W*, defined for u near zi. Let z, y be C*-coordinates which have, along
WY, the same K-jets as #, and §. We assume, as usual, that the local unstable
separatrix is the Z-axis and that the local stable separatrix is the y-axis. We also
assume that (Z = z,y = 0) is a point of the orbit of tangency. Then we can
describe, locally near the tangency, the stable and unstable separatrix as follows:

w* = {g =0} ={y =0}
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We={Z==z0+s §= M(s,u)}
{z==z0+s, y=M(s,u)}.
Without loss of generality we may assume that
M(s,p) = —s**! 4 ho.t. and
max, M(s,u) ~ (u— i)’ for u > .

By the construction of X5 there are two arcs v and 4 in W, intersecting W *
with different angles of crossing and such that ¢"() and " (') accumulate on
the local unstable separatrix in such a way that the preferred sides are all on the
same side. Let u; be such that ‘PL,- (7v) and the part of W* near (z = zq,y = 0)
have a tangency belorlging to ¥s and such that W* is locally below 902.' (v):

Let f;(s,p) and f;(s,p) be such that

(p;t('Y) = {Z =20+ 8,yY= fl'(saﬂ)} = {5: =xo+ 3,37 — ?{(S,ll:)}-
Let s; and §; be such that the point of tangency is
(z =20+ 8i,y = fi(si, ) = M(s4,5)) =
(& = 2o + 8i,§ = fi(Be, ) = M(5:, ).
Since the exponent of motion, see (2,2), is I, both M(s;,u;)/(pi — &) and

M(3;, i)/ (ps — B) go to the same non-zero limit L. At the tangency, the k-jets
of M and f; have to be equal. So from (3.2) we know that

M) (i, )] < Cul(ws — )Y+

(as before we use here (k) for the k-fold differentiation with respect to the first
variable). Since (u; — p)‘ is proportional to the distance of the tangency to the
local unstable separatrix, since the K-jets of z, y and Z, y are the same along the
local unstable separatrix and since K = 2+ k- (1 + «), the above estimate also
holds for M:
|M®) (53, )| < Ca((ws — B))H

(maybe after adapting the constant C1).

Since the order of tangency is exactly k, there is a constant Cy such that, for
(s, 1) near (0, ), |M*+1 (s, u)| > Cz. Then it follows that there are ; such
that M*)(5;, u;) = 0 and

|si — 3| < Cs((pi — B)")Mer.
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For the first derivative of f;, and hence M, at (s;, pi) we have

lim MO (s, )/ (M55, )T =

lim (0, 1)/ (fo(0, i)™+ = Jim Dy (1),

where Do (p;) is the angle of crossing W* of the curve v for p = u;, see (3.4).
This means that

MO)(s5, 15) = Do) - (M50, 1)) + o (M(s3, 1)) +%) =

Dy(B) - (L (s — B))™*= +hou.,

where h.o.t. stands for terms which are, as functions of (u; — &), of order bigger
than I(1 + a). Because |s; — 5| < Cs((ui — B)")+** and because M?)(s, )
is bounded near (0, i), we also have

MW (3;, 1) = Dy(B) - (L (s — 8)")0F) + hot.

The above considerations, referring to =, also apply to ', which yields D #
D,, s, 5; and p; (the constant L remains the same), so that

M®)(5}, ) = 0 and

M(3}, p) = Dy - (L} — B

Now we observe that

)Yt + hot.

I = {(s, )| M®) (s, ) = 0}

is a C*®-curve: this follows from the implicit function theorem, the fact that we
have a tangency of order exactly k (so that M ("H)(s u) is bounded away from
zero near (0, z2)) and the fact that we use C'*°-coordinates. This curve contains
the points (3;, ;) and (8}, u;). We consider the function M (1) along 'the curve
T as a function of u. We derive a contradiction by showing that this function
cannot be C*.

Without loss of generality we may assume that D, < D,. We choose D_
and Dy so that Dy < D_ < Dy < D,. Then, for ¢ sufficiently big:

MW (s, uf) < D_(L(pi — B)')'+*

MW (35, p5) > Dy (L(ui — B)')H+2.
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We observe that both u; and u; converge to i and that, for ¢ sufficiently big,
between each p; and piqq there is some u;, .. For M (1), restricted to T, this
means that:
o as a function of (u — &), MM|T is of the order (1 + ), so if M) is
sufficiently differentiable then /(1 + «) is an integer;
e the /(14 a)th derivative of M()|T cannot be continuous at zero: it oscillates
at least between D_ and D, in any neighbourhood of .
This proves that M(1)|T cannot be C* and we have the required contradiction.
The overall conclusion of this subsection is that k, the smallest integer for
which HF is not empty, is one. It even follows that H} is dense in Hy. Conse-
quently also H and the corresponding set ¥, which were obtained by requiring
CX linearizability, are also dense in Hj, respectively ¥;. These tangencies in ¥
form the starting point for the considerations in the next subsection, except that
we now have to require the linearization to be at least Cc3tle] (this does of course
not influence the denseness).

5.3 Reducing the exponent of motion

Finally we have to prove in this subsection that there are tangencies in H, or in ¥,
with exponent of motion equal to one, see (2.2). We shall assume all exponents
of motion to be bigger than one and derive a contradiction from this. As before,
the same arguments can be used to show that the tangencies in ¥ with exponent
of motion one are dense.

Let i be in H and let, as in the previous section,  and § be C¥ linearizing
coordinates near the saddle of ¢ whose K-jets are C* along the local unstable
separatrix, where K is now 3 + [a]. As before, the Z, respectively g, axis is
the local unstable, respectively local stable, separatrix, the eigenvalues of dyp are
0<o<l<Aand a=—Ino/InA We assume (£ = zo,§ = 0) to be a
point on the orbit of tangency. Near this point we have the usual representation:

W= {5 =0)

={E==z0+s, § = M(s,n)}

Without loss of generality we may assume that M (s,u) = —s® + ho.t. and
that max, M (s,u) > 0 for pu > f: in the other cases one can proceed similarly.

Let 4 be an arc in W* intersecting W ¢ transversally and such that ©™(7)
accumulates on the local unstable separatrix in such a way that the preferred sides
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are all in the same direction. We write:
v={%,§= fo(%,p)} and
@2(7) =1 ={%,§= fn(i,l")}-
Let u, be the p-value where v, and W* have a tangency in ¥ and let this

tangency be at
(53 =9+ 8p, Y = M(sn)”‘n) = fn(zo + s"’“"’))'

In order to have at thesc tangencies the exponent of motion bigger than one, we

must have 3
B o) = (a0 + o).
We have f,(%,p) = (A(1))" - fo((o(r))™" - £, ) so that
e @) = - M) X () - fol (o () - )
(W)™ S (W)™ - &) - (—n) - (@(w) ™" - 0" (W) +
O (@)™ 2w,

Defining d,, = M(sp, pn), the above formula and:

At ~dy; ne~|lndp|; 07" > dy

imply that Y
E‘E(fn(xo + sml»‘n))| £Ci- dn_; : | In dn|
for some constant Cy. Also, as in the argumeht in the previous subsection, we
have
M(l)(smﬂn) <Cp- d71;+a
for some constant Cj. ,

Now we transfer these estimates to C* coordinates z, y and the corresponding
function M; remember that, as in the previous subsection, the (3 + [a])-jets of
(z — %) and (y — §) are zero along the local unstable separatrix. We define s, to
be the unique value near s,, such that M(1)(3,, u,,) = 0. Then for some constant
C3 we have |s,, — 35| < Cs - dLt?, so we also have
%%(Enaun) <Cy-dy- Iln dnl

for some constant Cjy.
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Next we define I' = {(s, )| M()(s, u) = 0}. Near (0, ) this is a C*-curve
parameterized by u: T' = {(s = v(p), u)}. If | is the exponent of motion of the
tangency at . = i then we have m(u) = M(y(p),p) = D - (p — i)' + ho.t.
From this we conclude that

m' () /(m()) -/

is bounded and bounded away from zero for y near fi. This however is incom-
patible with

oM
IE(E"’“"” = |m'(un)| < Cy-dn - |Indy|

and the fact that m(u,,)/d, is bounded and bounded away from zero. This is the
required contradiction which completes the proof of the main theorem.
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