On a Liouville-type theorem for linear and nonlinear elliptic differential equations on a torus

Jürgen Moser and Michael Struwe

Abstract. We study solutions u of quasilinear elliptic equations $-\operatorname{div}(F_p(x,\nabla u))=0$ on \mathbb{R}^n , where F(x,p) is periodic in $x=(x_1,\ldots,x_n)$ and satisfies suitable convexity and growth assumptions with respect to p. If u has asymptotically linear growth, we show that u is, in fact, a linear function up to a periodic perturbation. This partially generalizes recent results of Avallaneda-Lin from the linear to the nonlinear case, and we also achieve a simplified proof of their results. Our work is motivated by the study of minimals of variational problems on a torus and, moreover, has contact with homogenization theory.

1. Results, open problems

a) The well-known Liouville theorem asserts that every bounded harmonic function in \mathbb{R}^n is a constant. A simple generalization shows that every harmonic function growing at most polynomially is a polynomial. In a recent note [1] Avallaneda and Lin generalized this theorem to linear elliptic differential equations in divergence form

(1.1)
$$\sum_{i,j=1}^{n} \partial_{x_i}(a_{ij}(x)\partial_{x_j}u) = 0$$

with periodic coefficients. Using tools from homogenization theory [2] they characterized the solutions of polynomial growth and showed, in particular, that they are necessarily polynomials with periodic coefficients.

In this note we prove a similar result for nonlinear elliptic equations. The simple proof depends on the standard estimates of elliptic regularity theory. This approach also gives rise to a simple proof of the beautiful result of Avallaneda and Lin which we present in section 3.

b) In the nonlinear setting we consider the scalar Euler equation

(1.2)
$$\sum_{i=1}^{n} \partial_{x_{i}}(F_{p_{i}}(x, u_{x})) = 0,$$

where F = F(x, p) is a strictly convex function of $p \in \mathbb{R}^n$ of quadratic growth; moreover, F has period 1 in all components of $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$. More precisely, we assume that $F(x, \cdot) \in C^2(\mathbb{R}^n)$ and that there exist positive constants λ, μ, γ such that

(1.3)
$$\lambda |\xi|^2 \le \sum_{i,j=1}^n F_{p_i p_j} \xi_i \xi_j \le \mu |\xi|^2,$$

(1.3) $|F_p(x,0)| \leq \gamma,$

iii) F(x+z,p) = F(x,p) for all $z \in \mathbb{Z}^n$.

With respect to x the function F is assumed to be measurable, and need not be smooth.

We consider u as a weak solution of (1.2) in $H^1_{loc}(\mathbb{R}^n)=W^{1,2}_{loc}(\mathbb{R}^n)$. From regularity theory [7; Chapter 4] it is well-known that such weak solutions are Hölder continuous. Assume u has linear growth: u=O(|x|). We give the condition the weaker form

(1.4)
$$|B_r|^{-1} \int_{B_r} u^2 dx \le cr^2 \text{ for } r \ge 1,$$

where $B_r = \{x \in \mathbb{R}^n; |x| < r\}$ and $|B_r|$ denotes the volume of B_r .

Theorem 1. If u is a weak solution of (1.2) satisfying the linear growth condition (1.4) then it has the form

$$(1.5) u(x) = (\alpha, x) + \beta + p(x, \alpha)$$

with some constant vector $\alpha \in \mathbb{R}^n$, $\beta \in \mathbb{R}$ and a Hölder continuous periodic function $p(x+z,\alpha) = p(x,\alpha)$, $z \in \mathbb{Z}^n$, having mean value zero. p is uniquely determined by α .

The existence of solutions of the form (1.5) is readily verified. Indeed, $p = p(x, \alpha)$ can be found as a minimizer of the variational integral

$$\int_{\Omega} F(x,\alpha+p_x) dx, \quad \Omega = [0,1)^n,$$

in the class of periodic functions in $H^1_{loc}(\mathbb{R}^n)$. It is determined only up to a constant which can be fixed by the normalization

$$[p] := \int_{\Omega} p(x) dx = 0.$$

The point of theorem 1 is that the formula (1.5) gives the most general solution of (1.2) with linear growth.

c) The proof of theorem 1 will be presented in section 2. The argument also yields a simple proof of Avallaneda and Lin's theorem, avoiding largely homogenization theory — at least as far as the estimates are concerned.

To formulate their theorem in [1] we assume that the coefficients a_{ij} are periodic: $a_{ij}(x+z) = a_{ij}(x), z \in \mathbb{Z}^n$, measurable(*), $a_{ij} = a_{ji}$ and satisfy for some positive constants $\lambda < \mu$

(1.6)
$$\lambda |\xi|^2 \leq \sum_{i,j} a_{ij}(x) \xi_i \xi_j \leq \mu |\xi|^2,$$

for all $\xi \in \mathbb{R}^n$.

We consider weak H_{loc}^1 solutions of (1.1) which grow of order $O(|x|^N)$. More precisely, we denote by $S^{(N)}$ the space of weak solutions of (1.1) satisfying

$$\left|B_r\right|^{-1} \int_{B_r} u^2 \, dx \le c r^{2N} \quad \text{for all} \quad r \ge 1 \, .$$

The following theorem gives a characterization of $S^{(N)}$:

Theorem 2. (Avallaneda-Lin, 1989.)

i) Any solution $u \in S^{(N)}$ has the form

(1.8)
$$u(x) = \sum_{|\nu| \le N} p_{\nu}(x) x^{\nu}; \quad x^{\nu} = \prod_{i=1}^{n} x_{i}^{\nu_{i}}$$

where $p_{\nu}(x)$ are \mathbb{Z}^n -periodic and Hölder-continuous; the coefficients p_{ν} of highest order $|\nu| = \sum_{i=1}^n \nu_i = N$ are constants.

ii) The homogeneous polynomial

$$u^{(N)} = \sum_{|
u|=N} p_
u x^
u$$

solves an elliptic equation with constant coefficients

$$Qu^{(N)} = \sum_{i,j} q_{ij} \partial_{x_i} \partial_{x_j} u^{(N)} = 0,$$

(Q is called the homogenized operator of (1.1)). A solution of (1.9) is called Q-harmonic.

^(*) The Lipschitz continuity of the a_{ij} required in [1], is not needed in our argument.

iii) Denoting the space of Q-harmonic polynomials of degree $\leq N$ by $\mathcal{H}^{(N)}$ there exists a linear isomorphism between $\mathcal{H}^{(N)}$ and $\mathcal{S}^{(N)}$; in particular

$$\dim S^{(N)} = \dim \mathcal{X}^{(N)}.$$

For N=1 this theorem clearly is a special case of theorem 1 with

$$F(x,p)=rac{1}{2}(ap,p)=rac{1}{2}\sum_{i,j}a_{ij}p_ip_j$$

being a quadratic form in p. For N=1 the homogenized operator is irrelevant. On the other hand, the case N>1 does not seem to be meaningful for the nonlinear problem, since then $|u_x|$ would become unbounded.

d) This investigation was motivated by a study of minimals of a variational problem

$$(1.10) \int F(x,u,u_x) dx$$

on a torus $T^d=\mathbb{R}^d/\mathbb{Z}^d$, d=n+1, where in general F also depends on the variable u, in fact, such that $F(x,\cdot,\cdot)\in C^2$ and $F(x,u+1,u_x)=F(x,u,u_x)$. Otherwise we impose the same assumption (1.3) on F as before, uniformly in u.

The problem is to describe solutions of the Euler equation

$$\sum_{i=1}^n \partial_{x_i} F_{p_i}(x, u, u_x) = F_u(x, u, u_x)$$

with linear growth u = O(|x|). One may expect that there exists a vector $\alpha \in \mathbb{R}^n$ such that $u - (\alpha, x)$ is bounded in \mathbb{R}^n . It turns out that such a statement is false even for n = 1. However, we conjecture that it is true for minimal solutions, i.e. functions $u \in H^1_{loc}$ satisfying

(1.11)
$$\int_{\mathbb{R}^n} (F(x, u + \varphi, u_x + \varphi_x) - F(x, u, u_x)) dx \ge 0$$

for all $\varphi \in C^1_{\text{comp}}(\mathbb{R}^n)$. As a matter of fact, in [10] the first author proved such statements for minimals without self-intersections, i.e. minimals u for which for any $j \in \mathbb{Z}^n$, $j_0 \in \mathbb{Z}$ the function $u(x+j)-j_0-u(x)$ has a fixed sign or vanishes identically.

We conclude this section with two open problems:

1) If u is a minimal in the sense of (1.11) satisfying u = O(|x|), does there exist an $\alpha \in \mathbb{R}^n$ such that $u - (\alpha, x)$ is bounded?

2) Under the same assumptions on u, is it true that u has no self-intersections? If the second question has a positive answer so does the first.

If $F = F(x, u_x)$ is independent of u, both these questions are answered positively by theorem 1. Hence in this case the set of minimals without self-intersections agrees with the set of minimals with linear growth.

It has to be pointed out that in the case $F_u \equiv 0$ every extremal is automatically minimal. This is due to the invariance under the translation $u \to u + \text{const.}$ For the same reason the case of Cantor sets of minimals described in [10] cannot occur (see [11], p. 87) making this situation rather simple, and possibly not typical.

In Section 4 we show some connection between the theory of minimals and the homogenization theory, in order to give some wider perspective of these problems. In Section 5 we state an example showing that statement 1) is false for solutions of Euler equations for which $F = F(x, u, u_x)$ depends also periodically on u. This example shows the need to restrict ourselves to minimals. Finally, to make this note self-contained, we describe in the appendix the "two scale expansion" of homogenization theory. It is our purpose to separate the analytic estimates from the formal expansion which has more algebraic character.

Acknowledgements

The first author expresses his thanks to M. Avallaneda, F.-H. Lin, R. Kohn, and their colleagues at New York University for interesting discussions on this topic. Both authors are indebted to V. Bangert who raised the question addressed in this note.

2. Proof of theorem 1

a) We begin with two standard inequalities from the theory of elliptic differential equations. For this purpose the periodicity in x is irrelevant, and we assume that F = F(x, p) satisfies the condition given in (1.3) except for (1.3.iii).

Lemma 1. If $u \in H^1_{loc}(B_R)$ is a weak solution of (1.2), then for 0 < r < R one has the inequality

(2.1)
$$\int_{B_r} u_x^2 dx \le c_1 \{ (R-r)^{-2} \int_{B_R} u^2 dx + \gamma^2 |B_R| \}$$

where c_1 is a constant depending only on λ , μ in (1.3.i).

From the work of de Giorgi we have the classical pointwise estimates for the

solution of (1.1):

Lemma 2. If $v \in H^1_{loc}(B_{2r})$ is a weak solution of the linear equation (1.1) whose coefficients are measurable and satisfy (1.6), then v is Hölder continuous and satisfies

(2.2)
$$\operatorname{ess sup}_{B_r} v^2 \le c_2 |B_{2r}|^{-1} \int_{B_{2r}} v^2 dx,$$

where c_2 depends on $\frac{\mu}{\lambda}$ only. Moreover, there exists a constant $\theta \in (0,1)$, also depending only on $\frac{\mu}{\lambda}$, such that

$$\operatorname{osc}_{B_r} v \leq \theta \operatorname{osc}_{B_{2r}} v$$

where osc $v = \sup v - \inf v$.

The last inequality, which originally was used locally to establish the Hölder continuity of solutions, yields for large r a generalization of the Liouville Theorem for uniformly elliptic equations (1.1). Indeed, if $M = \operatorname{osc}_{\mathbb{R}} n \ v < \infty$ then we obtain $M \leq \theta M$, implying M = 0, i.e. v is a constant, if bounded.

b) To prove theorem 1 we note that with u = u(x) also u(x + z) for $z \in \mathbb{Z}^n$ is a solution. Let e_k denote the k-th basis vector in \mathbb{R}^n and consider

$$v_k(x) = u(x + e_k) - u(x).$$

Taking the difference of the differential equations for u(x) and $u(x+e_k)$, we see that v_k satisfies a linear equations of the form (1.1) with

$$a_{ij}(x) = \int_0^1 F_{p_i p_j}(x, u_x + t v_{kx}) dt$$

From lemma 1 and lemma 2 we will establish that v_k is bounded, hence a constant. Indeed, by assumption (1.4) and lemma 1 we obtain

$$\int_{B_r} u_x^2 dx \leq c_1(r^{-2} \int_{B_{2r}} u^2 dx + \gamma^2 |B_{2r}|) = O(r^n)$$
.

Writing

$$v_k = u(x + e_k) - u(x) = \int_0^1 u_{x_k}(x + te_k) dt$$

one obtains

$$\sum_{k=1}^{n} \int_{B_r} v_k^2 dx \le \int_{B_{r+1}} |u_x|^2 dx = O(r^n).$$

By lemma 2 this gives rise to a pointwise estimate:

$$\operatorname{ess \ sup}_{B_r} \ v_k^2 \le c_2 |B_{2r}|^{-1} \int_{B_{2r}} v_k^2 \, dx = O(1)$$

for all $r \geq 1$. Hence v_k is a bounded solution, hence a constant which we denote by α_k . From the equations

$$u(x+e_k)-u(x)=\alpha_k$$

we see that $u(x) - \sum_{k=1}^{n} \alpha_k x_k$ is a \mathbb{Z}^n -periodic Hölder continuous function. Denoting its mean value by β we obtain theorem 1.

c) For completeness we add a simple proof of lemma 1. Because of

$$F_{p_{i}}(x,p) - F_{p_{i}}(x,0) = \sum_{j} \int_{0}^{1} F_{p_{i}p_{j}}(x,tp) p_{j} dt$$

we obtain from (1.3.i) the inequalities

$$\left\{\begin{array}{l} (p,F_p(x,p)-F_p(x,0))\geq \lambda |p|^2\\ |F_p(x,p)-F_p(x,0)|\leq \mu |p| \end{array}\right.$$

where (\cdot, \cdot) , $|\cdot|$ denote Euclidean inner product and norm, respectively.

Let $\int \dots$ denote integration over \mathbb{R}^n . Inserting in the weak form

$$\int (\varphi_x, F_p(x, u_x)) \, dx = 0$$

of (1.2) the test function $\varphi = \eta^2 u$, where $\eta \in C^1_{\text{comp}}(B_R)$, we obtain from (1.3)

$$\int \left((\eta^2 u)_x, F_p(x, u_x) - F_p(x, 0) \right) dx \leq \gamma \int \left| (\eta^2 u)_x \right| dx$$

and therefore with (2.3)

$$\lambda \int \eta^2 u_x^2 dx \leq 2 \mu \int \left| \eta u_x
ight| \left| \eta_x u
ight| dx + \gamma \int \left| (\eta^2 u)_x
ight| dx \, .$$

Choose the function η so that $\eta=1$ in B_r , $0 \le \eta \le 1$ in B_R , $|\eta_x| \le 2(R-r)^{-1}$. With the Schwarz inequality and the estimate $2|ab| \le \varepsilon a^2 + \varepsilon^{-1}b^2$ for any $\varepsilon > 0$, we obtain

$$\int \eta^2 u_x^2 \, dx \leq 4 ig(rac{\mu}{\lambda} ig)^2 \int \eta_x^2 u^2 dx + rac{2\gamma}{\lambda} \int \Big| (\eta^2 u)_x \Big| dx \, ,$$

which proves the estimate for $\gamma=0$. Treating the last term in the same manner we obtain

$$\int \eta^2 u_x^2 dx \leq c igg(\int \eta_x^2 u^2 dx + \gamma^2 \int \eta^2 dx igg),$$

with a constant depending on λ, μ ; i.e. (2.1) with $c_1 = 4c$.

We remark that (2.1) was extended by Giaquinta and Giusti [5] to functions $F = F(x, u, u_x)$ which may also depend on u; however, in that case it is essential that u are minimals in the sense of (1.11) of the corresponding variational problem.

3. Proof of the theorem by Avallaneda and Lin

a) The argument of the previous section gives a simple proof of parts i) and ii) of theorem 2, as we show now.

In the linear case the function $v_k(x) = u(x + e_k) - u(x)$ is again a solution of (1.1) if u is. Therefore, the above argument can be repeated: Defining the difference operator Δ_i by $\Delta_i \varphi = \varphi(x + e_i) - \varphi(x)$ and for a multi-index $\nu = (\nu_1, \nu_2, \dots, \nu_n) \in \mathbb{Z}^n$, $\nu_i \geq 0$,

$$(3.1) E^{\nu} = \prod_{i=1}^{n} \Delta_{i}^{\nu_{i}},$$

then also $E^{\nu}u$ is a solution of (1.1) for all such ν .

Recalling the definitions of space $S^{(N)}$ of solutions u of (1.1) satisfying (1.7), we show

Lemma 3. If $u \in S^{(N)}$ then $\Delta_i u \in S^{(N-1)}$.

This follows from the argument

$$egin{align} \int_{B_r} (\Delta_i u)^2 dx & \leq \int_{B_{r+1}} u_x^2 dx \ & \leq c_3 igg(r^{-2} \int\limits_{B_{2r+1}} u^2 dx + \gamma^2 |B_{2r+1}| igg) = O(r^{n+2N-2}) \,. \end{split}$$

More generally, we obtain

$$E^{\nu}u \in \mathcal{S}^{(N-|\nu|)}$$
 for $|\nu| \leq N$,

and by lemma 2

(3.2)
$$\operatorname{ess sup}_{B_R} |E^{\nu}u| = O(R^{N-|\nu|})$$

Hence for $|\nu| = N$ the solution $E^{\nu}u$ is bounded, hence a constant, and $E^{\nu}u = 0$ for $|\nu| > N$.

It is easily seen by induction that the most general functions u for which $E^{\nu}u=0$ for all $|\nu|>N$ have the form (1.8). Indeed, if

$$\Delta_i v = 0$$
 for any $i = 1, \ldots, n$,

then v is a periodic function. Suppose now that for some number $N\in\mathbb{N}$ we know that

$$E^{\nu}v = 0$$
 for all $|\nu| \geq N$

implies that v has the form (1.8), and let w satisfy

$$E^{\nu}w=0$$
 for $|\nu|>N$.

Then for any multi-index ν , $|\nu| = N$, there holds

$$\Delta_{\boldsymbol{i}}(E^{\boldsymbol{\nu}}w)=0\,,\quad \boldsymbol{i}=1,\ldots\,,n\,.$$

Hence, for any such ν , $|\nu| = N$, we have

$$E^{\nu}w = \nu ! p_{\nu} (*)$$

for some periodic function p_{ν} . Consider now the function

$$v(x)=w(x)-\sum_{|
u|=N}p_
u(x)x^
u$$
 .

By construction,

$$E^{\nu}v = 0$$
 for all $\nu, |\nu| \geq N$.

By induction hypothesis

$$v(x) = \sum_{|
u| < N} p_
u(x) x^
u \, ,$$

and the induction step is complete.

For $u \in S^{(N)}$ the coefficients $p_{\nu}(x)$ can be expressed as a finite linear combination of u(x+z), $z \in \mathbb{Z}^n$, and therefore are Hölder continuous. The highest coefficients p_{ν} for $|\nu| = N$ are given by

$$p_{\nu} = (\nu !)^{-1} E^{\nu} u , \quad |\nu| = N$$

and thus are constants, proving i) of theorem 1.

b) The statement ii) of theorem 2 is trivial for N=0 and N=1, as any linear function is harmonic. For N=0 the solutions are constants and for N=1 of the form

$$(3.3) u = \sum_{i=1}^{N} \alpha_i x_i + p(x)$$

^(*) as usual we write $\nu ! = \prod_{i=1}^{n} (\nu_i !)$

where p = p(x) is \mathbb{Z}^n -periodic and is solution of

There p = p(x) is x = p enterties and is solution of

$$\sum_{i,j=1}^n \partial_{x_i}(a_{ij}(x)(\alpha_j+p_{x_j}))=0.$$

JÜRGEN MOSER AND MICHAEL STRUWE

The solution u is clearly unique up to a constant and can be written in the form

$$(3.4) u = \sum_j \alpha_j(x_j + \psi_j(x)) + \beta$$

where ψ_k is the periodic solution of

(3.5)
$$\sum_{i,j} \partial_{x_i} a_{ij} (\delta_{jk} + \psi_{kx_j}) = 0,$$

with mean value zero. In matrix notation we write

(3.6)
$$\partial_x(a(I+\psi_x^T))=0, \quad [\psi]=0$$

where ψ is the vector with components ψ_1, \ldots, ψ_n , and [] denotes the mean value over the unit cube $[0,1]^n$.

In the case N=2 the solution can be written in the form

(3.7)
$$u = \frac{1}{2}(Cx, x) + \sum_{j=1}^{n} x_j p_j(x) + p_0(x)$$

with a constant symmetric matrix C, and periodic functions p_0, p_1, \ldots, p_n .

Proposition 1. If a function (3.7) solves the equation $Lu = \sum \partial_{x_i} (a_{ij} \partial_{x_j} u) = 0$, then the vector $p = (p_1, p_2, \dots, p_n)^T$ satisfies

$$(3.8) p - [p] = C\psi, .$$

with ψ given by (3.5), and C satisfies

(3.9)
$$tr(qC^T) = 0$$
, where $q = [a(I + \psi_x^T)]$.

Proof. Applying the operator L to u, given by (3.7), after a routine calculation we obtain

$$Lu = \sum_{j=1}^{n} f_j(x)x_j + g(x)$$

with

$$egin{aligned} f &= \partial_{m{x}}(a(C^T + p_{m{x}}^T)) \ g &= tr(a(C^T + p_{m{x}}^T)) + \sum_{m{i},m{j}} \partial_{m{x_i}}(a_{m{i}m{j}}p_{m{j}}) + Lp_0 \,. \end{aligned}$$

For Lu=0 we have f=0, g=0. One verifies from (3.6) that $p=C\psi$ is a solution of the equation f=0, and since p is determined uniquely up to a constant, this proves (3.8). From the equation g=0, taking the mean value, one obtains the compatibility condition

$$[g] = tr[a(C^T + p_x^T)] = tr\Big([a(I + \psi_x^T)]C^T\Big) = tr(qC^T) = 0$$
 ,

proving the proposition.

The matrix $q = (q_{ij})$ can — using (3.6) — be rewritten as

(3.10)
$$q = [(I + \psi_x)a(I + \psi_x^T)],$$

showing that it is positive symmetric. The associated differential operator

(3.11)
$$Q = \sum_{i,j=1}^{n} q_{ij} \partial_{x_i} \partial_{x_j}$$

is called the homogenized operator of L. The relation (3.9) shows that $u^{(2)} = \frac{1}{2}(Cx, x)$ is a solution of the equation

$$Qu^{(2)}=0.$$

Thus the case N=2 is settled.

For N>2 we can proceed by induction. Assume that the claim ii) has been proven for N-1 in place of N, and let $u\in \mathcal{S}^{(N)}$. Then $\Delta_i u\in \mathcal{S}^{(N-1)}$. The leading part of $\Delta_i u$ is given by

$$(\Delta_{m i} u)^{(N-1)} = \partial_{x_{m i}} u^{(N)}$$

and by induction hypothesis

$$\partial_{x_i}(Qu^{(N)}) = Q(\partial_{x_i}u^{(N)}) = 0$$
,

hence $Qu^{(N)}=$ const. Since $Qu^{(N)}$ is homogeneous of degree N-2>0 we get $Qu^{(N)}=0$, proving ii).

c) The proof of part iii) requires the construction of a $u \in \mathcal{S}^{(N)}$ with given leading part in $\mathcal{X}^{(N)}$. This can be done via formal expansions extending the formulae used in b), which are developed in homogenization theory; for the convenience of the reader we supplied them in the appendix. Here we want to show that the above results show that $\mathcal{S}^{(N)}$ is finite dimensional. Indeed, the mapping $u \to u^{(N)}$ gives rise to an injective linear map

$$S^{(N)} / S^{(N-1)} \rightarrow \chi^{(N)} / \chi^{(N-1)}$$

for every $N=1,2,\ldots$. Therefore the dimension of the left space is dominated by that of the right space, and since $S^{(0)}=\mathcal{X}^{(0)}$ we have

$$\dim S^{(N)} \leq \dim \mathcal{X}^{(N)}$$
.

In the appendix we show that actually we have equality.

4. Minimals and homogenization

a) We discuss briefly the connection between the theory of minimals of a variational problem (1.10) and homogenization. We assume that $F = F(x, u, u_x)$ depends on u also, with period 1, and satisfies the conditions (1.3). Without loss of generality we may assume that F(x, u, 0) = 0 so that (1.3.i-ii) implies an inequality

$$(4.1) c_0^{-1} |p|^2 - c_1 \le F(x, u, p) \le c_0 |p|^2 + c_1.$$

In [10] the class \mathcal{M} of minimals, in the sense of (1.11), without self-intersections has been studied. These are minimals such that for any $j \in \mathbb{Z}^n$, $j_0 \in \mathbb{Z}$ the functions

$$(4.2) u(x+j) - j_0 - u(x)$$

do not change sign. We list some of the results:

- a.1) For every $u \in \mathcal{M}$ there exists an $\alpha \in \mathbb{R}^n$ such that $u(x) (\alpha, x)$ is bounded. The set of these u will be denoted by \mathcal{M}_{α} .
- a.2) For any $\alpha \in \mathbb{R}^n$ there exist $u \in \mathcal{M}$ for which $u(x) (\alpha, x)$ is bounded, i.e. $\mathcal{M}_{\alpha} \neq \emptyset$.
- a.3) For any $u\in\mathcal{M}_{\alpha}$ the average action

$$\Phi(lpha) = \lim_{r o \infty} \left| B_r
ight|^{-1} \int_{B_r} F(x,u,u_x) \, dx$$

exists and is independent of the choice of $u \in \mathcal{M}_{\alpha}$. Moreover, $\Phi(\alpha)$ is strictly convex.

The statement a.3) was proven by Senn [14]. Incidentally, as observed by Giaquinta and Giusti [5], for minimals of variational problems satisfying (4.1) the inequality (2.1) holds.

b) In the case that $F = F(x, u_x)$ is independent of u, these statements take a much simpler form. In particular, we want to show

- b.1) If $F_u \equiv 0$ then every solution of (1.2) is a minimal.
- b.2) The set \mathcal{M} agrees with the set of solution (1.5) of (1.2) with linear growth u = O(|x|).
- b.3) The average action has the form

$$\Phi(\alpha) = \int_{\Omega} F(x, \alpha + p_x(x, \alpha)) dx , \ \Omega = [0, 1)^n$$

where $p = p(x, \alpha)$ was defined in (1.5).

b.4) In the quadratic case $F(x, u_x) = \frac{1}{2}(a(x)u_x, u_x)$ one has

$$\Phi(lpha)=rac{1}{2}(qlpha,lpha)$$

where q is the matrix (3.10) of the homogenized operator Q corresponding to $L = \partial_x (a \partial_x)$.

The proofs are straightforward: Since

$$F(x,p+q) \geq F(x,p) + (F_p(x,p),q) + \frac{\lambda}{2}|q|^2$$
,

for any $\varphi \in C^1_{\text{comp}}(\mathbb{R}^n)$ one finds

$$\int \left(F(x,u_x+arphi_x)-F(x,u_x)
ight)dx \geq rac{\lambda}{2}\int arphi_x^2 dx\,,$$

if u is a weak solution of (1.2). This proves b.1); it would be sufficient to assume convexity of $F(x,\cdot)$.

If $u \in \mathcal{M}$ then the functions (4.2), in particular, $v_k = u(x + e_k) - u(x)$, have a fixed sign or vanish identically. On the other hand v_k satisfies a linear equation (1.1) (see section 2 b)), and by the Harnack inequality for such equations (see [13]) it is constant, say α_k . Therefore we conclude as before that u has the form (1.5). Thus, in view of b.1) our claim b.2) is verified.

The statement b.3) is obvious if one makes use of the characterization of \mathcal{M} , and the formula (1.5). Finally, b.4) is a consequence of (3.4), i.e.

$$u_x = (I + \psi_x^T) \alpha$$
 .

Hence, by (3.10),

$$\Phi(lpha) = rac{1}{2} igl[(a(x) u_x, u_x) igr] = rac{1}{2} (qlpha, lpha) \, .$$

c) The functional

$$\int \Phi(v_x)\,dx\,,$$

obtained by replacing α by the gradient of the unknown function v, gives rise to the homogenized differential equation

$$\sum_{i} \partial_{x_{i}} \Phi_{\alpha_{i}}(v_{x}) = 0.$$

Indeed, in the quadratic case, this equation agrees with Qv=0. In the nonlinear case, it takes the form

(4.4)
$$\sum_{i} \partial_{x_{i}} \int_{\Omega} F_{u_{x_{i}}}(x', v_{x} + p_{x}(x', v_{x})) dx' = 0.$$

This follows readily from the formula

$$\Phi_{\alpha_i}(\alpha) = [F_{u_{x_i}}(x, \alpha + p_x)] + \sum_j \int_{\Omega} F_{u_{x_j}}(x, \alpha + p_x) p_{x_j \alpha_i} dx.$$

Since $\alpha x + p$ is a solution and p periodic, the last sum vanishes, which gives (4.4). To justify the preceding computation we need to assure that $p_x(x,\cdot)$ depends differentiably on α — at least in a certain Sobolev space topology. First observe that by the uniqueness assertion in Theorem 1 we have a map

$$\alpha \longmapsto p(\cdot, \alpha)$$
.

Taking difference quotients in the differential equation (1.2), there results for fixed j

$$egin{aligned} 0 &= \sum_{m{i}} \partial_{x_{m{i}}} \left[rac{F_{u_{m{x}_i}}(x, lpha + he_j + p_{m{x}}(x, lpha + he_j)) - F_{u_{m{x}_i}}(x, lpha + p_{m{x}}(x, lpha))}{h}
ight] \ &= \sum_{m{i}} \partial_{x_{m{i}}} \int_0^1 F_{u_{m{x}_i}u_{m{x}_j}}(x, lpha + artheta he_j + p_{m{x}}(x, lpha + he_j)) dartheta \ &+ \sum_{m{i}, m{k}} \partial_{x_{m{i}}} \left(\left\{ \int_0^1 F_{u_{m{x}_i}u_{m{x}_k}}(x, lpha + p_{m{x}}(x, lpha) + artheta hw_{m{x}}) dartheta
ight\} \partial_{x_{m{k}}} w
ight), \end{aligned}$$

where

$$w(x) = w^{(h)}(x) = \frac{p(x, \alpha + he_j) - p(x, \alpha)}{h}$$
.

That is, w satisfies an elliptic equation

$$-\sum_{i,k} \partial_{x_i} (b_{ik} \partial_{x_k} w) = \sum_{i} \partial_{x_i} b_i,$$

where

$$b_{ik}(x) = b_{ik}^{(h)}(x) = \int_0^1 F_{u_{oldsymbol{x}_i} u_{oldsymbol{x}_k}}(x, lpha + p_{oldsymbol{x}}(x, lpha) + artheta h w_{oldsymbol{x}}) dartheta$$

and

$$b_i(x) = b_i^{(h)}(x) = \int_0^1 F_{u_{oldsymbol{x}_i} u_{oldsymbol{x}_j}}(x, lpha + artheta h e_j + p_{oldsymbol{x}}(x, lpha + h e_j)) dartheta \,.$$

Note that by (1.3.i) the matrix (b_{ij}) satisfies the uniform ellipticity and boundedness condition (1.6). Moreover, $b_i \in L^{\infty}$ with

$$|b_i| \leq \mu$$
,

uniformly in h. Multiplying (4.5) by w and integrating by parts, we thus obtain

$$\left\| \lambda \| w_x
ight\|_{L^2}^2 \leq \sum_{i,k} \int_{\Omega} b_{ik} w_{x_i} w_{x_k} dx = - \sum_i \int_{\Omega} b_i w_{x_i} dx \leq \mu \| w_x \|_{L^2} \, .$$

That is, $w=w^{(h)}$ is bounded in $H^1(\Omega)$. In particular, $p(x,\alpha+he_j)\to p(x,\alpha)$ in $H^1(\Omega)$ as $h\to 0$. Moreover, multiplying (4.5) by $w\varphi^2$, where $\varphi\in C_0^\infty$ is a smooth cut-off function, we easily verify that $\int \left|w_x^{(h)}\right|^2 dx$ is uniformly absolutely continuous. Now take the difference of equations (4.5) for $h,\ell>0$ and multiply by $w^{(h)}-w^{(\ell)}$. Since $\left|b_{ik}^{(h)}-b_{ik}^{(\ell)}\right|\to 0$, $\left|b_i^{(h)}-b_i^{(\ell)}\right|\to 0$ almost everywhere, from Vitali's theorem we obtain that

$$\begin{split} \lambda \Big\| \big(w_x^{(h)} - w_x^{(\ell)} \big) \Big\|_{L^2}^2 &\leq \sum_{i,k} \int_{\Omega} b_{ik}^{(h)} \big(w_{x_i}^{(h)} - w_{x_i}^{(\ell)} \big) \big(w_{x_k}^{(h)} - w_{x_k}^{(\ell)} \big) \, dx \\ &\leq \sum_{i} \int_{\Omega} \Big| b_i^{(h)} - b_i^{(\ell)} \Big| \Big| w_{x_i}^{(h)} - w_{x_i}^{(\ell)} \Big| \, dx \\ &\quad + C \int_{\Omega} \sup_{i,k} \Big| b_{ik}^{(h)} - b_{ik}^{(\ell)} \Big| \Big(\Big| w_x^{(h)} \Big|^2 + \Big| w_x^{(\ell)} \Big|^2 \Big) \, dx \\ &\longrightarrow 0 \quad \text{as} \quad h, \ell \to 0 \, . \end{split}$$

That is, $w^{(h)}$ is a Cauchy-sequence in H^1 , showing that

$$\alpha \longmapsto p(\cdot, \alpha)$$

is differentiable in the H^1 -topology, as desired.

This implies that $\Phi(\alpha)$ is a C^1 -function, and by [14] it is strictly convex. We remark that in the general case the derivatives of Φ may have a dense set of discontinuities, according to results by V. Bangert and J. Mather (see [9]).

The formula (4.4) is a special case of the homogenized equation for monotone operators derived by Dal Maso and Defranceschi [3]. Of course, the goal in their theory is quite different, namely to study a boundary value problem, say the

Dirichlet problem, while we imposed a growth condition.

5. A Counterexample

Here we want to point out that in the non-autonomous case equation (1.2) may very well have solutions for which one has u = O(|x|) but for which $u - (\alpha, x)$ is not bounded for any $\alpha \in \mathbb{R}^n$. For this reason we formulated our problem in the introduction only for minimals.

For the counterexample we take n = 1 and

(5.1)
$$F(x, u, u_x) = \frac{1}{2}u_x^2 + V(x, u)$$

where $V \in C^2(T^2)$. In [12] (see section 6) a function V is constructed, possessing a large bump in each fundamental domain, such that every minimal of (5.1) with $|\alpha| \leq 1$ avoids a certain disc $D \subset T^n$. Thus the set is constructed of minimals with $|\alpha| \leq 1$ is not dense on the torus. Using the work of Mather [8] one can for given α_+, α_- with $-1 < \alpha_- < \alpha_+ < 1$, construct solutions of the Euler equation

$$u_{xx} = V_u(x,u)$$

for which

$$u(x)/x \longrightarrow \alpha_{\pm}$$
 for $x \longrightarrow \pm \infty$, resp.

For such a solution one has obviously u = O(|x|) for $|x| \to \infty$ but $u(x) - (\alpha, x)$ is not bounded for any α .

This example leans on the theory of monotone twist maps — and there are many smooth examples known for which the minimals are not dense, i.e. for which there are no invariant curves.

Appendix

a) Using the formulae of homogenization theory [2] we want to establish an isomorphism

$$(A.1) \Phi: \mathcal{X}^{(N)} \longrightarrow \mathcal{S}^{(N)}.$$

This amounts to constructing for a given Q-harmonic homogeneous polynomial h of degree N a solution $u \in \mathcal{S}^{(N)}$ with $u^{(N)} = h$. This is an existence problem in a finite-dimensional space; therefore it is more or less an algebraic question.

In this part we follow [1] but clarify a point left unattended in that paper.

To reduce this question to a perturbation problem it is customary to rescale $u \in \mathcal{S}^{(N)}$ and consider

$$arepsilon^N u(rac{x}{arepsilon}) = \sum_{|
u| < N} arepsilon^{N - |
u|} x^
u p_
u(rac{x}{arepsilon})\,,$$

which tends to $u^{(N)}$ for $\varepsilon \to 0$. Considering x and $y = \varepsilon^{-1}x$ as independent variables and writing

$$egin{align} U(x,y,arepsilon) &= \sum_{|
u| \leq N} arepsilon^{N-|
u|} x^
u p_
u(y) \ &= U_0(x) + arepsilon U_1(x,y) + \cdots + arepsilon^N U_N(x,y). \end{split}$$

one has $U_0 = u^{(N)}$. The differential equation for U takes the form

$$(A.3) \qquad (\partial_y + \varepsilon \partial_x)(a(y)(\partial_y + \varepsilon \partial_x))U = (L_0 + \varepsilon L_1 + \varepsilon^2 L_2)U = 0,$$

where

$$egin{align} L_0 &= \partial_{m{y}}(a(m{y})\partial_{m{y}})\,, \ L_1 &= \partial_{m{y}}(a\partial_{m{x}}) + \partial_{m{x}}(a\partial_{m{y}})\,, \ L_2 &= \sum_{m{i},m{j}} a_{m{i}m{j}}(m{y})\partial_{m{x}_{m{i}}}\partial_{m{x}_{m{j}}}\,. \end{split}$$

In a first attempt one tries to find a solution in the form

$$U(x,y,arepsilon)=\Psi U_0(x)\,,$$

where

$$(A.5) \Psi = I + \varepsilon \Psi_1 + \varepsilon^2 \Psi_2 + \cdots = \sum_{\nu} \varepsilon^{|\nu|} \psi_{\nu}(y) \partial_x^{\nu}$$

is a formal differential operator with \mathbb{Z}^n -periodic coefficients $\psi_{\nu}(y)$. We need not be concerned about convergence questions, since these series terminate when applied to a polynomial. This first attempt fails but the coefficients $\psi_{\nu}(y)$ can be so determined as to simplify the problem. One has the following

Proposition 2. There exists a unique formal series Ψ of the form (A.5) with $\psi_0 \equiv 1$, $[\psi_{\nu}] = 0$ for $|\nu| \geq 1$ such that

$$(A.6) (L_0 + \varepsilon L_1 + \varepsilon^2 L_2) \Psi = M + (\partial_y + \varepsilon \partial_x) (a(y) \partial_y),$$

where the formal operator

$$M = arepsilon^2 M_2 + arepsilon^3 M_3 + \cdots \ = \sum_{|
u| \geq 2} arepsilon^{|
u|} m_
u \partial_x^
u$$

has constant coefficients. Moreover, M_2 agrees with the homogenized operator Q of (3.11).

Remarks. Note, if $M_3 = M_4 = \cdots = 0$ then our problem would be solved: If $U_0 = U_0(x)$ is any homogeneous polynomial of degree N then by (A.6)

$$(L_0+arepsilon L_1+arepsilon^2 L_2)\Psi U_0=MU_0=arepsilon^2 QU_0$$
 ,

since the last term in (A.6) cancels when applied to a polynomial depending on x only. Hence if U_0 is Q-harmonic the right hand side vanishes and

$$\Psi U_0 = U_0 + \varepsilon U_1 + \dots + \varepsilon^N U_N$$

would be the desired solution.

This "Ansatz" agrees with formula (14) in [1]. The constants m_{ν} correspond to the k_{α} in [1] which, however, are dropped in the later estimates. We will show below how to take care of M_3, M_4, \ldots

The proof of the proposition can be gleaned from [1] or [2]. It consists in a comparison of coefficients which yields the following equations for the coefficients of ε^s .

$$egin{align} L_0 &= \partial_y a(y) \partial_y \,, \quad s = 0 \,, \ L_0 \Psi_1 + L_1 &= \partial_x (a(y) \partial_y) \,, \quad s = 1 \,, \ L_0 \Psi_s + L_1 \Psi_{s-1} + L_2 \Psi_{s-2} &= M_s \,, \quad s > 2 \,. \end{gathered}$$

The first equation is automatic; the second gives

$$L_0\Psi_1+\partial_y(a(y)\partial_x)=0$$
 ,

which can be solved for the periodic coefficients ψ_j of Ψ_1 , uniquely if they are normalized by $[\psi_j] = 0$. Similarly, the coefficients of Ψ_s can be solved, provided that the compatibility condition is satisfied; for this purpose the constant coefficients of M_s are needed.

The second and third equations (for s=2) of (A.7) correspond to the equations f=0, g=0 of Proposition 3.1; from this we read off that M_2 agrees with the operator Q introduced there. (See also [2], Chapter 1.)

By induction on $|\nu|$ one easily verifies C^{α} -regularity of ψ_{ν} ; see for instance [6; Theorem 3.2, pp. 88–89].

b) It remains to get rid of the terms M_3, M_4, \ldots . For this purpose we need the following elementary proposition.

Let \mathcal{P} denote the space of polynomials in x_1, x_2, \ldots, x_n with real coefficients, and $\mathcal{P}^{(s)} \subset \mathcal{P}$ the space of homogeneous polynomials of degree s. Hence Q maps \mathcal{P}^{s+2} into \mathcal{P}^s for s > 0.

Proposition 2. There exists a right inverse $R : P \to P$ of the elliptic operator $Q : P \to P$, such that

$$R: \mathcal{P}^{(s)} \longrightarrow \mathcal{P}^{(s+2)}, \quad QR = \mathrm{id}.$$

This proposition shows, in particular, that $Q: \mathcal{P}^{(s+2)} \to \mathcal{P}^{(s)}$ is surjective. Of course, there are many such right inverses. For our purposes it suffices to define R through the Cauchy problem: If $g \in \mathcal{P}^{(s)}$ define Rg = v as the solution of

$$Qv = g$$
, $v = v_{x_1} = 0$ for $x_1 = 0$.

By an expansion in powers of x_1 one finds readily a unique $v \in \mathcal{P}^{(s+2)}$. Of course, if one is interested in estimates this is a very poor choice and one will construct a better R, for example, as an integral operator. But for our purposes it suffices.

Defining the formal series

$$A = I + \varepsilon R M_3 + \varepsilon^2 R M_4 + \cdots$$

we have

(A.8)
$$\varepsilon^2 M_2 A = \varepsilon^2 M_2 + \varepsilon^3 M_3 + \cdots = M.$$

We form the unique formal inverse

$$A^{-1} = I - \varepsilon R M_3 + \cdots.$$

Then for any Q-harmonic polynomial $U_0 = U_0(x)$ define the polynomial

$$V(x) = A^{-1}U_0(x) = U_0 - \varepsilon(RM_3)U_0 + \cdots$$

with leading term U_0 . By (A.8) this polynomial satisfies

$$MV = \varepsilon^2 M_2 AV = \varepsilon^2 M_2 U_0 = 0,$$

since $M_2 = Q$. Hence for $U_0 \in \mathcal{X}^{(N)}$ the desired solution $U = U_0 + \varepsilon U_1 + \cdots$ of (A.3) is given by

$$U = \Psi A^{-1} U_0$$

and the isomorphism is given by $\Phi = \Psi A^{-1}$.

References

- [1] Avallaneda, M. and Lin, Fang-Hua. Une théorème de Liouville pour des équations elliptiques à coefficients périodiques; Compt. Rendus Acad. Sci. Paris, 309, sér. I. 1989, 245–250.
- [2] Bensoussan, A., Lions, J.L. and Papanicolaou, G. Asymptotic analysis for periodic structures; North-Holland, New York 1978.
- [3] Dal Maso, Gianni and Defranceschi, Anneliese. Correctors for the homogenization of monotone operators; preprint S.I.S.S.A., May 1989, Trieste.
- [4] de Giorgi, E. Sulla differenziabilità e l'analiticità delle estremali multipli regolari; Mem. Accad. Sci. Torino, Cl. Sci. Fis. Mat. Natur. (3) 3, 1957, 25–43.
- [5] Giaquinta, M. and Giusti, E. On the regularity of the minima of variational problems; Acta Math. 148, 1982, 31–46.
- [6] Giaquinta, M. Multiple integrals in the calculus of variations and nonlinear elliptic systems; Ann. Math. Studies 105, Princeton Univ. Press, Princeton 1983.
- [7] Ladyzhenskaya, O.A. and Ural'tseva, N.N. Linear and quasilinear elliptic equations; Academic Press, 1968.
- [8] Mather, J. Variational construction of orbits of twist diffeomorphisms; Journ. AMS 4, 1991, 207–263.
- [9] Mather, J. Differentiability of the minimal average action as a function of the rotation number; Bol. Soc. Bras. Mat. 21, 1990, 59-70.
- [10] Moser, J. Minimal solutions of variational problems on a torus; Ann. Inst. Henri Poincaré, Analyse nonlinéaire, vol. 3, No. 1, 1986, 229–272.
- [11] *Moser, J.* Minimal foliations on a torus. Topics in Calculus of Variations, ed. M. Giaquinta; Lecture Notes in Math. 1365, 1988, 62–99.
- [12] Moser, J. Breakdown of stability, nonlinear dynamics aspects of particle accelerators; ed. Jowett et al., Lecture Notes in Physics 247, Springer Verlag, 1986, 492–518.
- [13] Moser, J. On Harnack's theorem for elliptic differential equations; Comm. Pure Appl. Math. 14, 1961, 577–591.
- [14] Senn, W.M. Strikte Konvexität für Zⁿ-periodische Variationsprobleme auf dem n-dimensionalen Torus; manuscripta math. 71, No. 1, 1991, 45–65.

Jürgen Moser Michael Struwe Eidgenössische Technische Hochschule ETH Zürich, Switzerland