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On a Liouville-type theorem for linear
and nonlinear elliptic differential
equations on a torus

Jiirgen Moser and Michael Struwe

Abstract. We study solutions u of quasilinear elliptic equations — div(Fp(z, Vu)) =0on
R™, where F(z,p) is periodic in z = (21, ..., %) and satisfies suitable convexity and growth
assumptions with respect to p. If u has asymptotically linear growth, we show that u is, in
fact, a linear function up to a periodic perturbation. This partially generalizes recent results of
Avallaneda-Lin from the linear to the nonlinear case, and we also achieve a simplified proof
of their results. Our work is motivated by the study of minimals of variational problems on a
torus and, moreover, has contact with homogenization theory.

1. Results, open problems

a) The well-known Liouville theorem asserts that every bounded harmonic func-
tion in R™ is a constant. A simple generalization shows that every harmonic
function growing at most polynomially is a polynomial. In a recent note [1]
Avallaneda and Lin generalized this theorem to linear elliptic differential equa-
tions in divergence form

(1.1) Zn: 9, (a,-]-(:z:)a,,].u) =90

6,5=1

with periodic coefficients. Using tools from homogenization theory [2] they char-
acterized the solutions of polynomial growth and showed, in particular, that they
are necessarily polynomials with periodic coefficients.

In this note we prove a similar result for nonlinear elliptic equations. The
simple proof depends on the standard estimates of elliptic regularity theory. This
approach also gives rise to a simple proof of the beautiful result of Avallaneda
and Lin which we present in section 3.
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b) In the nonlinear setting we consider the scalar Euler equation

n
{1.2) Zazi(F,,i (e uz)) =10,

i=1
where F = F(z,p) is a strictly convex function of p € R™ of quadratic growth;
moreover, F has period 1 in all components of z = (z1,23,... ,z,) € R™

More precisely, we assume that F(z,-) € CZ(R™) and that there exist positive
constants A, u,~y such that

i) ’\IE,Z < Z Fp,—p]-&gj < ,u"flza

1.3 HI=1
(1.8) i) |Ey(z,0) < 7,

iii) F(z+z,p) = F(z,p) forall zez".
With respect to z the function F' is assumed to be measurable, and need not be
smooth.

We consider u as a weak solution of (1.2) in HL_(R") = W,-?(R"). From
regularity theory [7; Chapter 4] it is well-known that such weak solutions are
Holder continuous. Assume u has linear growth: u = O(|z|). We give the
condition the weaker form

(1.4) |B,.|_1/ uldz <cr? for r>1,
B

:

where B, = {z € R™;|z| < r} and |B,| denotes the volume of B,.

Theorem 1. If u is a weak solution of (1.2) satisfying the linear growth
condition (1.4) then it has the form

(15) u(z) = (e,2) + B+ pl(z,0)

with some constant vector o € R", 8 € R and a Hélder continuous periodic

function p(z+ z, ) = p(z, @), z € I™, having mean value zero. p is uniquely

determined by o. .
The existence of solutions of the form (1.5) is readily verified. Indeed, p =

p(z, ) can be found as a minimizer of the variational integral
/ Flize wbiyde, 1§ = [0, 1)",
Y

in the class of periodic functions in HY (R"). It is determined only up to a
constant which can be fixed by the normalization

[p] == /np(w) dz=0.
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The point of theorem 1 is that the formula (1.5) gives the most general solution
of (1.2) with linear growth.

¢) The proof of theorem 1 will be presented in section 2. The argument also yields
a simple proof of Avallaneda and Lin’s theorem, avoiding largely homogenization
theory — at least as far as the estimates are concerned.

To formulate their theorem in [1] we assume that the coefficients a;; are
periodic: a;;(z + 2) = aij(z),z € 7", measurable(*), a;; = a;j; and satisfy
for some positive constants A < u
(1.6) NeP® < Y ai(@)&ds < mlel,

i,
for all £ € R™.

We consider weak HL _solutions of (1.1) which grow of order O(|z|"). More
precisely, we denote by $(V ) the space of weak solutions of (1.1) satisfying

(L.7) IB,]_I/ ulde < cr®™ forall r>1.
By

The following theorem gives a characterization of § (V).

Theorem 2. (Avallaneda-Lin, 1989.)
i) Any solution u € SWN) has the form

n

(1.8) u(z) = Z plz)r’; 2= Hx:-li

|V|<N i=1
where p,(z) are I"-periodic and Holder—continuous; the coefficients p, of
highest order |v| = Y[, v; = N are constants.
ii) The homogeneous polynomial

lv|=N
solves an elliptic equation with constant coefficients
(1.9) Q“(N) T Z ‘Ii:iaziazj ulM) = 0,
'1]

(Q is called the homogenized operator of (1.1)). A solution of (1.9) is called
Q-harmonic.

(*) The Lipschitz continuity of the a;; required in [1], is not needed in our argument.
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iii) Denoting the space of Q-harmonic polynomials of degree < N by X &)

there exists a linear isomorphism between X (N) and SN in particular
dim $®) = dim ¥ (™),

For N = 1 this theorem clearly is a special case of theorem 1 with

1 1
F(z,p) = E(GP,P) il s > aijpip;
1]

being a quadratic form in p. For N = 1 the homogenized operator is irrelevant.
On the other hand, the case N > 1 does not seem to be meaningful for the
nonlinear problem, since then |u,| would become unbounded.

d) This investigation was motivated by a study of minimals of a variational
problem

(1.10) / F(z,u,u;)dz

on a torus 7% = R4/7%, d = n + 1, where in general F also depends on the

variable u, in fact, such that F(z,-,-) € C? and F(z,u+ 1,u;) = F(z,u,u;).

Otherwise we impose the same assumption (1.3) on F' as before, uniformly in u.
The problem is to describe solutions of the Euler equation

n
Z 0z, Fy, (2%, %, = Hylr 6, u,)
i=1
with linear growth u = O(|z|). One may expect that there exists a vector a € R"
such that u — (e, z) is bounded in R™. It turns out that such a statement is false
even for n = 1. However, we conjecture that it is true for minimal solutions, i.e.
functions u € H{. _ satisfying

(1.11) / (P2, 1+ 5 s + o)~ Pz, u,ug)) dz > 0
R7

for all p € CL . (R™). As a matter of fact, in [10] the first author proved such
statements for minimals without self-intersections, i.e. minimals « for which for
any j € 7", 5o € Z the function u(z+ 5) — jo — u(z) has a fixed sign or vanishes
identically.

We conclude this section with two open problems:

1) If » is a minimal in the sense of (1.11) satisfying u = O(|z|), does there
exist an & € R™ such that u — (o, z) is bounded?
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2) Under the same assumptions on wu, is it true that u has no self-intersections?
If the second question has a positive answer so does the first.

If F = F(z,u;) is independent of u, both these questions are answered
positively by theorem 1. Hence in this case the set of minimals without self-
intersections agrees with the set of minimals with linear growth.

It has to be pointed out that in the case F,, = 0 every extremal is automatically
minimal. This is due to the invariance under the translation © — u + const. For
the same reason the case of Cantor sets of minimals described in [10] cannot occur
(see [11], p. 87) making this situation rather simple, and possibly not typical.

In Section 4 we show some connection between the theory of minimals and the
homogenization theory, in order to give some wider perspective of these problems.
In Section 5 we state an example showing that statement 1) is false for solutions
of Euler equations for which F = F(z,u,u;) depends also periodically on u.
This example shows the need to restrict ourselves to minimals. Finally, to make
this note self-contained, we describe in the appendix the “two scale expansion” of
homogenization theory. It is our purpose to separate the analytic estimates from
the formal expansion which has more algebraic character.

Acknowledgements

The first author expresses his thanks to M. Avallaneda, F.-H. Lin, R. Kohn, and
their colleagues at New York University for interesting discussions on this topic.
Both authors are indebted to V. Bangert who raised the question addressed in this
note.

2. Proof of theorem 1

a) We begin with two standard inequalities from the theory of elliptic differential
equations. For this purpose the periodicity in z is irrelevant, and we assume that
F = F(z,p) satisfies the condition given in (1.3) except for (1.3.iii).

Lemma 1. If u € H} (Bg) is a weak solution of (1.2), then for 0 < r < R
one has the inequality

(2.1) /B widz < cr{(B — )72 /BR utdz + 4| Br[}

where cq is a constant depending only on A\, u in (1.3.i).
From the work of de Giorgi we have the classical pointwise estimates for the
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solution of (1.1):

Lemma 2. If v € Hlloc(Bz,.) is a weak solution of the linear equation (1.1)
whose coefficients are measurable and satisfy (1.6), then v is Holder continu-
ous and satisfies

(2.2) ess supp_ v? < 02|B2,.|_1/ vidz,
Bay

where cq depends on § only. Moreover, there exists a constant § € (0,1),
also depending only on &, such that

oscp, v < foscp,, v

where osc v = supv — inf v.

The last inequality, which originally was used locally to establish the Holder
continuity of solutions, yields for large r a generalization of the Liouville Theorem
for uniformly elliptic equations (1.1). Indeed, if M = oscgn v < oo then we
obtain M < M, implying M = 0, i.e. v is a constant, if bounded.

b) To prove theorem 1 we note that with u = u(z) also u(z + z) for z € 2" is
a solution. Let ey denote the k-th basis vector in R™ and consider

vr(z) = u(z + &) — u(z) .

Taking the difference of the differential equations for u(z) and u(z + ej), we see
that vy, satisfies a linear equations of the form (1.1) with

1
a,-j(x) = /(; Fpipj (x, Uz 1 tvkz) dt;

From lemma 1 and lemma 2 we will establish that vy, is bounded, hence a constant.
Indeed, by assumption (1.4) and lemma 1 we obtain

/ uldz < cl(r_2/ uldz + v¥|Bay|) = O(r™).
By B

2r
Writing 3
vp = u(z + e;) — u(z) = / ug, (T + tey) dt
0
one obtains

}:/ vide < / lug|?dz = O(r™).
k=1 Br Br+1

By lemma 2 this gives rise to a pointwise estimate:

ess supp, vf < c2|Bzr|*1/B vidz=0(1)
: g

2
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for all » > 1. Hence vy, is a bounded solution, hence a constant which we denote
by ak. From the equations

u(z + ex) — u(z) = ag

we see that u(z) — > §_; axzk is a Z"-periodic Holder continuous function.
Denoting its mean value by £ we obtain theorem 1.

¢) For completeness we add a simple proof of lemma 1. Because of
1
By, (z,p) — Fy, (2,0} = Z/{; Fp’.pj(x,tp)pj dt
J

we obtain from (1.3.i) the inequalities

(p, Fp(2,p) — Fy(z,0)) > Alp|”
(23) bamm—&wmmmm

where (-, ), |-| denote Euclidean inner product and norm, respectively.
Let [ ... denote integration over R™. Inserting in the weak form

/((p,,, Fy(z,u;))dz =0
of (1.2) the test function ¢ = nzu, where n € Cclomp(BR), we obtain from (1.3)

dz

[ (@P0)e, By, 02) = By, 0)) dz < 1 [ [(ou)
and therefore with (2.3)
z\/nzuidr < 2#/ [tz |Inzul d-'t+'1/ (7).

Choose the function 5 so thatp = 1in B,, 0 < n < 1in Bg, |n| < 2(R-r)"L
With the Schwarz inequality and the estimate 2|ab| < ea?+&e~1b? for any € > 0,

dz.

we obtain

dz

/nzuz dr < 4(%)2/n2u2d:c+ %{l/ |(172u):c

which proves the estimate for v = 0. Treating the last term in the same manner

we obtain
/nzuid:c < c</ n:uzdx+ '72/172d:c> ,

with a constant depending on A, p; i.e. (2.1) with ¢; = 4c.
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We remark that (2.1) was extended by Giaquinta and Giusti [5] to functions
F = F(z,u,u,) which may also depend on u; however, in that case it is essential
that u are minimals in the sense of (1.11) of the corresponding variational problem.

3. Proof of the theorem by Avallaneda and Lin
a) The argument of the previous section gives a simple proof of parts i) and ii)
of theorem 2, as we show now.

In the linear case the function vg(z) = u(z + ex) — u(z) is again a solution
of (1.1) if w is. Therefore, the above argument can be repeated: Defining the
difference operator A; by A; = ¢(z + €;) — ¢(z) and for a multi-index
v={(v1,v2,... ,Wp) €I 15 20,

n
vi
(3.1) B =T A%,
=1

then also EYu is a solution of (1.1) for all such v.
Recalling the definitions of space § (N) of solutions w of (1.1) satisfying (1.7),
we show

Lemma 3. If u € S then Aju e S(N-1),
This follows from the argument

/ (A;u)lde S/ uldz
Br By,

<cs (7'_2 / u2d$ + '72|BZr+1|) = O(r"+2N‘2) ;

Bar+1

More generally, we obtain

E'ue SN-I") for |v|< N,
and by lemma 2 _
(3.2) ess supp  |E¥u| = O(RN-I"),

Hence for |v| = N the solution E¥u is bounded, hence a constant, and EYu = 0
for |[v| > N.

It is easily seen by induction that the most general functions u for which
EYuw =0 for all |v| > N have the form (1.8). Indeed, if

Aw = Qiiforany st.= ¥, . 05
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then v is a periodic function. Suppose now that for some number N € N we
know that
EYv=0 forall |v|>N

implies that v has the form (1.8), and let w satisfy
EYw=0 for |v|>N.

Then for any multi-index v,

v| = N, there holds
A{(E'w) =0, i=1,...,n.
Hence, for any such v, [v| = N, we have
E'w=vlp, (*)
for some periodic function p,. Consider now the function

v(z) = w(z) — Z pulE)a .
lv|=N

By construction,

EYv=0 forall v,|lv|>N.
By induction hypothesis

) = Z pulz)E"
|v|<N

and the induction step is complete.

For u € S the coefficients p,(z) can be expressed as a finite linear
combination of u(z + 2), z € Z", and therefore are Holder continuous. The
highest coefficients p,, for |v| = N are given by

po=@w)1Ey, |v|=N
and thus are constants, proving i) of theorem 1.

b) The statement ii) of theorem 2 is trivial for N = 0 and N = 1, as any linear
function is harmonic. For N = 0 the solutions are constants and for N = 1 of

the form
N

(3.3) u= Zaj:cj + p(z)
i=1

(*) as usual we write v ! =[], (;!)
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where p = p(z) is Z"™-periodic and is solution of
n
3 9z;(asi(2) (e + ps,)) = 0.
t,j=1

The solution u is clearly unique up to a constant and can be written in the form

(3.4) u=)_ aj(z; +vj()) + 8
J
where 1y, is the periodic solution of
(3.5) > 9z aii (i + i z) =0,
)

with mean value zero. In matrix notation we write
(3.6) 8z(a(I+437)) =0, [¢]=0

where 4 is the vector with components 4)1,... , %y, and [ ] denotes the mean
value over the unit cube [0, 1]".
In the case N = 2 the solution can be written in the form

n
(3.7) u=3(Cz,2) + 3 _z;p;(z) +po(z)
i=1
with a constant symmetric matrix C, and periodic functions po, py, ... , pp.

Proposition 1. If a function (3.7) solves the equation Lu = 3 9z, (a,-,-a,,j ) =
0, then the vector p = (p1,pa,. .. ,pn)T satisfies

(3.8) p—[p] =Cy,
with 1 given by (3.5), and C satisfies

(3.9) tr(¢CT) =0, where q=[a(I+¢])].

Proof. Applying the operator L to u, given by (3.7), after a routine calculation
we obtain
n
Lu=)_ fi(z)z; +g(z)
fa]
with
f=82(a(C” +p7))
g =1tr(a(CT +p7)) + D _ 85 (ai;p;) + Lpo.

5
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For Lu = 0 we have f = 0, ¢ = 0. One verifies from (3.6) that p = C4 is
a solution of the equation f = 0, and since p is determined uniquely up to a
constant, this proves (3.8). From the equation g = 0, taking the mean value, one
obtains the compatibility condition

lg) = trla(CT + pT)] = tr(a(I + ¥])ICT) = tr(¢CT) =0,

proving the proposition.
The matrix ¢ = (qij) can — using (3.6) — be rewritten as

(3.10) ¢ =[(I+¥a)all +97)],
showing that it is positive symmetric. The associated differential operator
n
(3.11) Q= Y. 4ij02; 0,
i,7=1

is called the homogenized operator of L. The relation (3.9) shows that ul?) =
1(Cz, z) is a solution of the equation

Qu(z) =0.

Thus the case N = 2 is settled.

For N > 2 we can proceed by induction. Assume that the claim ii) has been
proven for N — 1 in place of N, and let u € $(V), Then A;u € SWW-1), The
leading part of A;u is given by

(Au) V- = 5, u()
and by induction hypothesis
da, (QuM) = Q(aziu(N)) = Ok

hence Qu(N ) = const. Since Qu(N ) is homogeneous of degree N — 2 > 0 we
get Qui¥) =0, proving ii).

¢) The proof of part iii) requires the construction of a u € § ) with given leading
part in ¥(N)_ This can be done via formal expansions extending the formulae used
in b), which are developed in homogenization theory; for the convenience of the
reader we supplied them in the appendix. Here we want to show that the above
results show that §(V) is finite dimensional. Indeed, the mapping v — u(™)

gives rise to an injective linear map

S LgW-A o R R
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for every N = 1,2, ... . Therefore the dimension of the left space is dominated
by that of the right space, and since $0) = ¥(9) we have

dim §(™) < dim ¥™)

In the appendix we show that actually we have equality.

4. Minimals and homogenization

a) We discuss briefly the connection between the theory of minimals of a vari-
ational problem (1.10) and homogenization. We assume that F = F(z,u,u;)
depends on wu also, with period 1, and satisfies the conditions (1.3). Without loss
of generality we may assume that F(z,u,0) = O so that (1.3.i-ii) implies an
inequality

(4.1) ¢ lpl* = e1 < F(z,u,p) < colpl* + 1.

In [10] the class M of minimals, in the sense of (1.11), without self-intersec-
tions has been studied. These are minimals such that for any j € Z%, jo € Z the
functions

(4.2) u(z + 7) — j0 — u(z)
do not change sign. We list some of the results:

a.1) For every u € M there exists an a € R™ such that u(z) — (e, z) is bounded.
The set of these u will be denoted by M,.

a.2) For any o € R™ there exist u € M for which u(z) — (o, ) is bounded, i.c.
M, # 2. g

a.3) For any u € M, the average action
¥(a) = lim |B,|™ / 5 s i
— 00 Br

exists and is independent of the choice of u € M,. Moreover, ®(c) is strictly
convex.

The statement a.3) was proven by Senn [14]. Incidentally, as observed by
Giaquinta and Giusti [5], for minimals of variational problems satisfying (4.1) the
inequality (2.1) holds.

b) In the case that F' = F(z,u,) is independent of u, these statements take
a much simpler form. In particular, we want to show

Bol. Soc. Bras. Mat.. Vol. 23. Ns. 1-2. 1992
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b.1) If F, = 0 then every solution of (1.2) is a minimal.
b.2) The set M agrees with the set of solution (1.5) of (1.2) with linear growth
= O[]}

b.3) The average action has the form
(4.3) ®(a) = / F(z,a+ py(z,a))dz, 2 =[0,1)"
o
where p = p(z, a) was defined in (1.5).
b.4) In the quadratic case F(z,u;) = 1(a(z)us, u;) one has

2(a) = 5 (g2, )

where ¢ is the matrix (3.10) of the homogenized operator @) corresponding to
L= {00y).

The proofs are straightforward: Since
2
F(z,p+4q) > F(z,p) + (Fp(2,p),0) + 3lal”,
for any ¢ € CL - (R™) one finds

comp

[F@ vt ) - P dz> 3 [ olds,

if u is a weak solution of (1.2). This proves b.1); it would be sufficient to assume
convexity of F(z,-).

If u € M then the functions (4.2), in particular, vy = u(z + eg) — u(z), have
a fixed sign or vanish identically. On the other hand v, satisfies a linear equation
(1.1) (sce section 2 b)), and by the Harnack inequality for such equations (see
[13]) it is constant, say a. Therefore we conclude as before that u has the form
(1.5). Thus, in view of b.1) our claim b.2) is verified.

The statement b.3) is obvious if one makes use of the characterization of M,
and the formula (1.5). Finally, b.4) is a consequence of (3.4), i.e.

uz = (I +97)a.
Hence, by (3.10),
1
®(a) = 5 [(a(:c)uz,uz)] = %(qa,a).

¢) The functional

f (v,) dz,
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obtained by replacing « by the gradient of the unknown function v, gives rise to
the homogenized differential equation

> 8., (vz) =0.
1

Indeed, in the quadratic case, this equation agrees with Qv = 0. In the nonlinear
case, it takes the form

(44) Zazi ‘/n Fu'zi (I',Uz +pz(z”vz)) dz' =0.
1
This follows readily from the formula

Bq,(a) = [Fum‘, (z,a+ps)] + Z/n Fuzj (z,a+ pz)pzjaidz ’
¢)

Since ax + p is a solution and p periodic, the last sum vanishes, which gives
(4.4). To justify the preceding computation we need to assure that p,(z, -) depends
diferentiably on oo — at least in a certain Sobolev space topology. First observe
that by the uniqueness assertion in Theorem 1 we have a map

ar— p(-,a).

Taking difference quotients in the differential equation (1.2), there results for
fixed 7

Fuz‘- (:1:, o+ h’e.‘i +p,,(z,a = he.’i)) - Fuzi (:z:,a +pz(a:,a))]

0= Za"’i [ h
1
W 9, /0 FuZ'_qu (z, 0 + dhe; + ps(z, a + hey))dd

1
+ 0., ({/0 Fuzpuz, (2,0 + pa(z,0) + ﬂhwz)dﬂ}azk w) ,
i,k

where

(W) (z) = p(z,a + he;;) ~p(z,0)

w(z) =w

That is, w satisfies an elliptic equation

(4.5) = 38, (s, w) = 2 P
ik i

where

1
bip(x) = bfl’:) () = /0 Fuz uz, (z,a+ ps(z,a) + dhw,)dd

DAl Cnn Dinn RiEce VS A2 AT.. 18 SHOA

ON A LIOUVILLE-TYPE THEOREM 15

and
1
A g gl / Fusyus, (8,0 + Ohe; + pa(2, 0+ he;))d9.
0

Note that by (1.3.i) the matrix (b;;) satisfies the uniform ellipticity and bounded-
ness condition (1.6). Moreover, b; € L* with

|bl| S#,

uniformly in h. Multiplying (4.5) by w and integrating by parts, we thus obtain

Asz”i'z S Z/ﬂ bisziwzkdz = = ZAbiwIidz S ll‘”wz”L2 :
ik i

That is, w = w(*) is bounded in H'(1). In particular, p(z, a + he;) — p(z, @)
in H'(Q) as A — 0. Moreover, multiplying (4.5) by we?, where ¢ € C° is a
smooth cut-off function, we easily verify that [ ‘w&h) |2dx is uniformly absolutely
continuous. Now take the difference of equations (4.5) for h, £ > 0 and multiply
by w(®) — w(8. Since lb’(”:) - bf,?| — 0, ,b'(.h) - bse)’ — 0 almost everywhere,
from Vitali’s theorem we obtain that

2
<5 [ W - o)l - w?)ds
i,k

=5 /n 6 — 9 |w ) — w)| da

(] + fot0]) d=

A (w® — wf?)

+ C/ sup [p(®) — (9
0 i,l?| ik ik
— 0 as h,£—0.
That is, w(®) is a Cauchy-sequence in H*, showing that
o — p(" a)

is differentiable in the H'—topology, as desired.

This implies that ®(«) is a C-function, and by [14] it is strictly convex.
We remark that in the general case the derivatives of ® may have a dense set of
discontinuities, according to results by V. Bangert and J. Mather (see [9]).

The formula (4.4) is a special case of the homogenized equation for monotone
operators derived by Dal Maso and Defranceschi [3]. Of course, the goal in their
theory is quite different, namely to study a boundary value problem, say the
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Dirichlet problem, while we imposed a growth condition.

5. A Counterexample
Here we want to point out that in the non-autonomous case equation (1.2) may
very well have solutions for which one has u = O(|z|) but for which u — (o, z)
is not bounded for any o € R™. For this reason we formulated our problem in
the introduction only for minimals.

For the counterexample we take n = 1 and

(6.1 F(z,u,u;) = 2ul +V(z,u)

where V' € C%(T?%). In [12] (see section 6) a function V' is constructed, possessing
a large bump in each fundamental domain, such that every minimal of (5.1) with
|| < 1 avoids a certain disc D c T™. Thus the set is constructed of minimals
with |a| < 1 is not dense on the torus. Using the work of Mather [8] one can
for given ey, with —1 < a_ < a4 < 1, construct solutions of the Euler
equation
tige = Vy(a,u)

for which

u(z)/z — ay for z — foo,resp.

For such a solution one has obviously u = O(|z|) for |z| — oo but u(z) — (o, z)
is not bounded for any a. .

This example leans on the theory of monotone twist maps — and there are
many smooth examples known for which the minimals are not dense, i.e. for
which there are no invariant curves.

Appendix

a) Using the formulae of homogenization theory [2] we want to establish an
isomorphism

(A.1) & yWN) _, o)

This amounts to constructing for a given Q-harmonic homogeneous polynomial
h of degree N a solution u € §(™) with u¥) = h. This is an existence problem
in a finite-dimensional space; therefore it is more or less an algebraic question.
In this part we follow [1] but clarify a point left unattended in that paper.
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To reduce this question to a perturbation problem it is customary to rescale
ue S and consider
T _ x
M) = X N M2,
N

which tends to u™) for ¢ — 0. Considering z and y = €1z as independent
variables and writing
U(:v,y,s) = Z EN_lylzupV(y)
(A.2) lvI<N
= Uo(z) + eUs(z,y) + -+ + " Un(z,y)

one has Uy = u). The differential equation for U takes the form
(A8)  (9y +€0:)(a(y)(8y +€2))U = (Lo + eL1 +e*Ly)U =0,
where

Lo = 9y(a(y)ay),
Ly = 9y(ad;) + 9;(ady),

(A.4)
]

In a first attempt one tries to find a solution in the form
U(z,y,e) = ¥Uy(z),
where
(A.5) U=I+el+U+--- =) ey, (y)oy
v
is a formal differential operator with Z™-periodic coefficients ¢, (y). We need
not be concerned about convergence questions, since these series terminate when

applied to a polynomial. This first attempt fails but the coefficients 1, (y) can be
so determined as to simplify the problem. One has the following

Proposition 2. There exists a unique formal series ¥ of the form (A.5) with
Yo =1, ] =0 for |v| > 1 such that

(A.6) (Lo+ €Ly + €2 Ly)¥ = M + (8, + €3,)(a(y)d,),
where the formal operator
M=eM+eMs+--- =) elm, oy
lv|>2
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has constant coefficients. Moreover, Mz agrees with the homogenized opera-
tor Q of (3.11).

Remarks. Note, if M3 = My = --- = 0 then our problem would be solved: If
Up = Up(z) is any homogeneous polynomial of degree N then by (A.6)

(Lo + €Ly + €2 Ly) WUy = MU, = €2QUy,

since the last term in (A.6) cancels when applied to a polynomial depending on
z only. Hence if Uy is Q-harmonic the right hand side vanishes and

WUy =Up+eUy+---+eNUy

would be the desired solution.

This “Ansatz” agrees with formula (14) in [1]. The constants m,, correspond
to the ko in [1] which, however, are dropped in the later estimates. We will show
below how to take care of Mz, My, ... .

The proof of the proposition can be gleaned from [1] or [2]. It consists in a
comparison of coefficients which yields the following equations for the coefficients
of £°.

Lo = dya(y)dy, s=0,
(A7) Lo%¥; + Ly = 3z(a(y)dy), s=1,
LoV, + L1V 1+ LoV, 2=M,, s>2.

The first equation is automatic; the second gives
LoV + ay(a(y)a,) =0l

which can be solved for the periodic coefficients y; of ¥y, uniquely if they
are normalized by [¢;] = 0. Similarly, the coefficients of ¥, can be solved,
provided that the compatibility condition is satisfied; for this purpose the constant
coefficients of M, are needed. .

The second and third equations (for s = 2) of (A.7) correspond to the equa-
tions f = 0, g = 0 of Proposition 3.1; from this we read off that M, agrees with
the operator @ introduced there. (See also [2], Chapter 1.)

By induction on |v| one easily verifies C®-regularity of ,; see for instance
[6; Theorem 3.2, pp. 88-89].

b) It remains to get rid of the terms M3, My, ... . For this purpose we need
the following elementary proposition.
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Let P denote the space of polynomials in z1, z3, . . . , £, Withreal coefficients,
and P(¢) C P the space of homogeneous polynomials of degree s. Hence @ maps
P**2 into P* for s > 0.

Proposition 2. There exists a right inverse R : P — P of the elliptic operator
Q : P — P, such that

R: P& — pl+))  QR=id.

This proposition shows, in particular, that Q : P(#+2) — P(9) is surjective.
Of course, there are many such right inverses. For our purposes it suffices to
define R through the Cauchy problem: If g € P(2) define Rg = v as the solution
of
Quv=g, v=v,, =0 for z; =0.

By an expansion in powers of z; one finds readily a unique v € P (++2) Of
course, if one is interested in estimates this is a very poor choice and one will
construct a better R, for example, as an integral operator. But for our purposes
it suffices.

Defining the formal series

A=T+eRMs+e*RMy+ -
we have
(A.8) EMA=eMy+ Mg +--- =M.
We form the unique formal inverse

A'=T-eRMs+--- .
Then for any Q-harmonic polynomial Uy = Up(z) define the polynomial
V(z) = A 'Uo(z) = Up — e(RM3)Uq + - - -

with leading term Uy. By (A.8) this polynomial satisfies

MV = e?My AV = 2 MU, = 0,

since My = Q. Hence for Up € XN the desired solution U = Uo+eUi+--
of (A.3) is given by
U=vA"1U,
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and the isomorphism is given by & = ¥ A~ .
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