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The set of axiom A diffeomorphisms
with no cycles

Nobuo Aoki

Abstract. Let M be a C* closed manifold and Diff! (M) be the space of diffeomorphisms
of M endowed with the C* topology. This paper contains an affirmative answer to the following
conjecture raised by Mafié, which is an extension of the stability and -stability conjectures of
Palis and Smale, as follows: the C* interior of the subset of diffeomorphism such that all the
periodic points are hyperbolic is characterized as the set of diffeomorphisms satisfying Axiom
A and the no-cycles condition. Moreover, it is showed that the ¢! interior of the set of all
Kupka-Smale diffeomorphisms coincides with the set of all diffeomorphisms satisfying Axiom
A and the strong transversality condition.

0. Introduction

Let M be a C* closed manifold and Diff* (M) be the space of diffeomorphisms
of M endowed with the C* topology. Let P1(M) be the set of f € Diff' (M)
such that all the periodic points of f are hyperbolic. Then P1(M) is a residual
subset of Diff' (M) by the Kupka-Smale theorem. Let us define

there exists a C'! neighborhood U(f)
FY(M) = { f € Diff'(M) |such that all periodic points of every
g € U(f) are hyperbolic
Then #!(M) coincides with the interior of P1(M) in Diff' (M) and for f €
F1(M) all periodic points of f are dense in Q(f) (see [Ma 6]). As we shall
explain later 71(M) contains all structurally stable diffeomorphisms and by the

same reason it contains all 2-stable diffeomorphisms .
Our aim is to prove the following theorems announced in [Ao].

Theorem 1. Every diffeomorphism belonging to F1(M) satisfies Axiom A
and the no-cycles condition.
We denote as K'S(M) the C! interior of the set of all Kupka-Smale diffeo-
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morphisms belonging to Diff!(M). Obviously K.S(M) c (M) and K S(M)
contains Morse-Smale diffeomorphisms which are open in Diff'(M) (Palis [Pal
1]). If we establish Theorem 1, then it will be checked that Kupka-szile diffeo-
morphisms belonging to K S (M) yields strong transversality. Thus we obtain the
following

Theorem 2. Every diffeomorphism belonging to KS(M) satisfies Axiom A
and the strong transversality condition.

Recall that A is a hyperbolic set of f € Diff' (M) if A is compact, invariant
(f(A) = A) and there exist a unique continuous splitting 7'M A = E*® E*
that is invariant (Df(E°) = E*® and Df(E*) = E*) and constants ¢ > 0 and
0 < A < 1 such that

IDF™ | E°|| < eA”, | Df™"|E¥|| < eA™

for all n > 0. Thus E* is contracted by Df and E* is expanded by Df. If
A is a periodic orbit of period p, then A is hyperbolic if and only if D, f? has
no eigenvalues of absolute value one for z € A, in which case z is called a
hyperbolic point. Moreover for z € A the stable and unstable manifolds are
defined by

Wi(z) ={yld(f*(y), /"(z)) — 0 as n — oo},
W}‘(x) — {_y|d(f_"(y),f'”(:z:)) — 0 as n — oo}.

We sometimes denote W ¢(z) and W #(z) by W*(z) and W (z) respectively.

Let f € Diff 1(M ). Then f is structurally stable if there exists a neigh-
borhood U(f) of f in Diff'(M) such that for every g € U(f) there exists a
homeomorphism h: M — M such that ho f(z) = g o h(z) for all z € M. We
denote by Q(f) or €2 the set of nonwandering points of f. When there exists a
homeomorphism h:2(f) — €(g) such that h o f(z) = g o h(z) (z € Q(¥))
for every g in a certain neighborhood U(f), f is Q-stable. Structural stability
implies (2-stability. We recall that f satisfies Axiom A if 0 is hyperbolic and the
periodic points are dense in . ;

One can check (see [Frl]) that if f € Diff* (M) is structurally stable then
each periodic point of f is hyperbolic by Franks’s lemma and the Kupka-Smale’s
theorem. The result of Kupka and Smale is that the set of all diffeomorphisms
such that

(i) all periodic point of f are hyperbolic, and
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(ii) given any pair (z, y) of periodic points, W*(z) and W *(y) meet transver-
sally,
is a residual subset of Diff* (M) (notice that the theorem holds in the C* topology,
r > 1). A diffeomorphism satisfying (i) and (ii) is called Kupka-Smale.

Let A be a hyperbolic set for f, A = Per(f) N A. Then A can be written
as the finite disjoint union A = A; U --- U A, of closed invariant sets A;, such
that each f| A is topologically transitive. Such a set A; is called a basic set with
respect to A. The stable and unstable sets of a basic set A; are defined by

Ws(Ai) = {y | d(f"(y),A,‘) —0asn— OO},
W(A:) = {y|d(f"(y), Ai) as n —> oo}.

Then W (A;) = U{W9(z)|z € A} for 0 = s,u. If € > 0 is small, then for
z € A the local stable and unstable sets

W2 (z) = {y|d(f"(z), f"(y)) <&, ¥n2>0},
Wi(z) = {y|d(f"(z), f*(y)) <&, Yn <O}

are C disks tangent at z to the subspaces E*(z) and E*(z), respectively, such
that T, M = E*(z) @ E*(z). Moreover there exist 0 < A < 1 and ¢ > 0 such
that

A" (&), f(5)) < eAMd(z,y) forall y € W(s) and n >0,
d(f~™(z), f"(y)) < cA"d(z,y) forall yeW:(z)andn >0

(see Hirsch and Pugh [HiPu]). This tells us that the set of hyperbolic periodic
points with period n is finite and W2 (z) € W7(z) for z € A (0 = s, u), which
shows that
W(z) = U{ "W (f(2) | n 2 0},
W(z) = U{f"W¢(f"(=)) [n 2 O}.
If, in particular, f is Axiom A then M = U{W(z) |z € Q(f)} for o = s, u.
Let f € Diff'(M) be structurally stable. Then it follows (see [Mad]) that
all periodic points are dense in the nonwandering set £2 by Pugh’s closing lemma
[PuRo], that is, let f € Diff'(M) and = € a(z) U w(z), then there is a diffeo-
morphism g, arbitrarily C! near to f, such that z is a periodic point of g. Thus
we can conclude that f is Axiom A if the hyperbolicity of (2 is shown.
An Axiom A diffeomorphism f satisfies the strong transversality condition
if and only if the stable manifold W $(z) and the unstable manifold W (z) are
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transversal for all z € M (ie. ToWj(z) + T.Wi(z) = TuM). For f €
Diff' (M), if Q(f) is finite and f satisfies Axiom A and the strong transversality
condition, then f is called Morse-Smale.

Recently Mafié [Ma6] gave an answer to the C! Stability Conjecture of Palis
and Smale.

Theorem A. If f € Diff' (M) is structurally stable, then [ satisfies Axiom A
and the strong transversality condition.

It was already proved by Robinson [Ro1] that if an Axiom A diffeomorphism
is structurally stable then it satisfies the strong transversality condition.

The converse of Theorem A had been proved by Robbin [R1] for C? diffeo-
morphisms and Robinson [Ro4] for C*! diffeomorphisms.

A relation on the basic sets Aj, 1 < 7 < s of a hyperbolic set A is defined
as Ay > A if (We(A)) — A)) NWU(A;) # @; ie. there is a point z which
comes from A; and goes to A; under negative iterates of f. We say that f has no
cycles with respect to A (say simply no cycles) if Ay > Ay, > ++- > A;]. > Ag,
is impossible among the basic sets. If [ is Axiom A, then strong transversality
implies no cycles (with respect to €2).

To obtain a result toward the proof of the (2-Stability Conjecture, Palis [Pal3]
showed, by using the result obtained in proving Theorem A, the following facts.

Theorem B. Every diffeomorphism belonging to ¥ Y(M) can be approximated
by Axiom A diffeomorphisms with no cycles.
This result implies the following theorem.

Theorem C. If f € Diffl(M ) is Q-stable, then f is an Axiom A diffeomor-
phism with no cycles.

Long ago the converse of Theorem C had been proved by Smale [Sm4].

As a problem related to Theorem B, Maiié conjectured that 71 (M) is charac-
terized as the set of Axiom A diffeomorphisms with no cycles. Theorem 1 gives
an answer for this conjecture.

Let P(f) be the set of all periodic points of f & Diff (M) and denote by
P(f) the closure of P(f). For z € M define |

a(z, f)-={y € M |there exists an increasing sequence {n:}
such that f~™(z) — y as { — oo},
Lo(f) ={z € M| there exists y € M such that z € a(y, f)}.
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Let w(z, f) = a(z, f71) and L,(f) = La(f™1). Also write a(z) = a(z, f)
and w(z) = w(z, f) and denote as L~ and L the closures of Lo(f) and L, (f)
respectively. Obviously P(f) c L-NLt c L- c L-UL* C Q(f). In [Ne2]
Newhouse gave examples such that (i) L~ is hyperbolic but L* is not hyperbolic,
(i) P(f) is hyperbolic and finite but L~ and L* are neither and Gii) L~ U Lt
is finite and hyperbolic but Q(f) is neither. However, when we are concerned
with the stability, then we see by Theorem 1 that if f € Diff' (M) is P(f)-stable
then f satisfies Axiom A and P(f) = L - NLt* =L~ = - U L+ — Q(f).
A diffeomorphism f is called to be P(f )-stable if there exists a neighborhood
U(f) of f in Diff'(M) such that if g € U(f ) then there is a homeomorphism
h:P(f) — P(g) satisfying h o f(z) = g o h(z) for z € P().

A diffeomorphism is quasi-Anosov if the fact that || D f*(v)|| is bounded for
all n € Z implies that v = 0. The set of all quasi-Anosov diffeomorphisms
belonging to Diff! (M), QA(M), is open and it coincides with the C? interior of
all expansive diffeomorphisms in Diff' (M), and moreover every diffeomorphism
belonging to Q A(M) N K S(M) is Anosov (Maiié [Ma2]). However an example
of a diffeomorphism on the connected sum M’ of two 3-tori that is quasi-Anosov
but not Anosov was given by Franks and Robinson [FrRo]. It is clear that M" is
a manifold which is not the 3-torus. In this case we have that QA(M') does not
intersect K S(M'). This follows from the fact that every closed manifold which
admits an Anosov diffeomorphism of co-dimension one is the torus (Newhouse
[Ne3]).

For the proof of Theorem 1 it remains only to prove that Q(f) is hyperbolic
since the periodic points are dense in Q(f). To see this let P;(f) be the closure
of periodic points with the unstable splitting of dimension 7. Since Qf) =
UP;(f) and specially Po(f) is hyperbolic (by a result of Pliss), we suppose that
A(j0) = U{Pi(f)|0 < i < s} is hyperbolic by induction on indices i. As
explained above A(7p) is expressed as the union A(j0) = AyU---UA, of disjoint
basic sets for f. Since the hyperbolicity of P; +1(f) is obtained by proving
that _P_j0+1( )N A(%) = 9 (see Maiié [Ma6]), on the contrary we suppose that
_Pj0+1(f) N A(5) # & and then Fjoﬂ(f) N A, # @ for some basic set A,.
We use here two of the perturbation techniques introduced by Mafi¢. Under the
assumption Aq N Pj+1(f) # @, we shall prove that there exists a basic set
Ay # Aq such that W¥(A,) N W*(A) # .

Therefore Ay N _Pjo-H( f) # @ in this case; by the same rcason we have
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W (As) NW*(A.) # @ for some basic set A, # Ap. In this repetition we shall
be able to find a cycle among basic sets of A(7p) and reach a contradiction.

1. The results concerning the stability conjecture

Here we describe some results concerning the stability of diffeomorphisms. In
[Pe] Peixoto proved that Morse-Smale diffeomorphisms are C! open and dense
in diffeomorphisms of a circle S1. In higher dimensions, Newhouse [Nel] exhib-
ited an open set in Diff'(S?) of nonhyperbolic diffeomorphisms. Smale [Sm3]
proved that the structurally stable systems on compact 4-manifolds are not dense,
and Williams [Wi] obtained the same result on compact 3-manifolds. After that
Newhouse and Palis [NPal] showed that for every two-closed manifold if Q(f)
is hyperbolic then the set of periodic points is dense in f) Gee. f satisfies
Axiom A) and an Axiom A diffeomorphism can be C° approximated by Ax-
iom A diffeomorphisms with no cycles. Patterson [Pa] showed the existence of
an Axiom A diffeomorphism which can not be C? approximated by Axiom A
diffeomorphisms with no cycles when dim M > 3. The corresponding C? ques-
;ion is unknown. In general the properties of diffeomorphisms belonging to the
boundary of #(M) are still unknown. It seems likely that these questions are
concerned with the study of the phenomena which occur in the bifurcation theory
of one-parameter families of diffeomorphisms. The bifurcation theory of diffeo-
morphisms and vector fields has been studied in many works by Newhouse, Palis,
Takens and other mathematicians.

It is unknown whether Theorems 1 and 2 presented in this paper hold for the
set of diffeomorphisms with the C topology (r > 25. This is concerned with the
problems mentioned above.

We can define 71(M) for differentiable maps by analogous forms to those
used for diffeomorphisms. It is not known if the conclusion of Theorem 1 holds
for differentiable maps. In [Sh3] Shub stated that strong transversality can be
introduced for regular maps. When it is established, it seems likely that Theorem
2 can be discussed for regular maps.

In the rest of this section we briefly describe the historical notes on the stability
of diffeomorphisms and flows.

For at lcast 14 years (1962-1976) there were some results to the stability
conjecture. First, structural stability was proved in [Pe] as stated above for generic
flows on oriented two-manifolds. Anosov [An] proved the structural stability
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of diffeomorphisms and vector fields when M is hyperbolic. For Morse-Smale
diffeomorphisms and flows (they exist on every manifold) the stability was proved
by Palis and Smale [PalSm], and in [Sm4] Smale proved the {2-stability for Axiom
A diffeomorphisms with no cycles. Moser [Mos] described that the stability of
the case when M is hyperbolic can be obtained by solving a functional equation
by means of the implicit function theorem. After that Robbin [R1] proved, using
Moser’s idea on one hand and Palis-Smale ideas on the other, the structural
stability of C%-diffeomorphisms satisfying Axiom A and strong transversality. De
Melo [De] showed Robbin’s result for C'1 diffeomorphisms on a two-manifold.
Robinson [Ro3] adapted Robbin’s techniques to C'! vector fields satisfying Axiom
A and strong transversality. Moreover, in [Ro4] he gave the proof of the structural
stability for C! diffeomorphisms satisfying Axiom A and strong transversality.
The -stability for flows was proved by Pugh and Shub [PuSh].

The characterization of structural stability was stated in [PalSm] as the Stabil-
ity and 2-Stability Conjectures as mentioned before. Besides the results of Maiié
and Palis described above, at present there are some results concerned with the
conjectures. When dim M = 2, Liao [Li], Maiié [Ma3] and Sannami [Sa] proved
independently that if f is structurally stable, or (2-stable, then it satisfies Axiom
A and strong transversality, or Axiom A and no cycle condition respectively. Af-
ter that Maiié [Ma4] showed, in proving the Ergodic closing lemma, that if f
is structurally stable and the closures of the sets P; of the periodic points with
stable splitting of dimension ¢ are mutually disjoint then it satisfies Axiom A. See
Hurley [Hu] to a related result.

The conjecture for flows is whether structural stability or (2-stability implies
that the closure of the periodic points is hyperbolic. Only recently Hu [H] an-
nounced that the conjecture for flows is true in the case dim M = 3. The
assertion is based on Maiié [Maé6], Doering [Do] and Liao [Li]. In the case of
a compact manifold with boundary, Labarca and Pacifico [LP] gave an exaple of
a structural stable flow, tangent to the boundary, that does not satisfy Axiom A.
Define 7(M) for flows by analogous forms to those used for diffeomorphisms;
ie. z € X1(M) if there exists a C! neighborhood U ( U € XY(M)), X € U,
such that for every Y € U all the singularities and periodic orbits of the flow
generated by Y are hyperbolic. It is not in general true that the periodic orbits
of a flow in #1(M) are dense in Q. An example can be found in Guckenheimer
and Williams [GuWi] and Guckenheimer [Gu]. If a flow in 7 1(M ) satisfies the
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structural or {2-stability, then the density of the periodic orbits in €2 is obtained by
the C! closing lemma. In view of Liao’s result [Li], to see that the flow satisfies
Axiom A, a key difficulty is to separate singularities from periodic orbits. The
C Stability Conjecture for flows is still unknown when n >4,

2. The preparation of proof of Theorem 1

For the proof of Theorem 1 we need the argument developed in Mafié [Mas5,6]
and Palis [Pal2]. We begin by briefly recalling Mafié’s remarkable proof of the
C! Stability Conjecture and facts concerning this conjecture.

As before let P(f) denote the set of periodic points of f € Diff* (M). 1t
z € P(f) is hyperbolic, then T, M = E*(z)@ E¥(z), Df(E*(z)) = E*(f(x))
and Df(E%(z)) = E*(f(z)). For f € F1(M) define as P;(f) the set of
points ¢ € P(f) such that dim E%(z) = i (compare with the definition i)
in Maiié [Ma6]). Since f € F'(M), we have Q(F) = B( f) as explained
before and so Q(f) = U{Pi(f) |0 < i < dim M}. It is easily checked that
P;i(f) N P;(f) = & when P;(f) and P;(f) (i # 7) are hyperbolic.

To obtain Theorem 1 it is enough to show that for every f € 7 (M), Pi(f)
is a hyperbolic set for all 0 < 7 < dim M because P(f) is dense in Q(f). For
the cases 1 = 0 and ¢+ = dim M it follows from a result due to Pliss that Po(f)
and Pgim ar(f) are finite. Thus these sets are hyperbolic and

(Po(f) U Paimm(f)) N (U{_};j(f) [0<j< dim M}) = 2.

To show that the splitting of 7'M | P,(f) extends to a splitting of TM ]p.( f)
satisfying the definition of hyperbolicity we irgtroduée the following notions: I

Given a compact invariant set A of a diffeomorphism f & Diff* (M) we say
that a splitting TM|y = E @ F is a dominated splitting if it is continuous,

invariant and there exist ¢ > 0 and 0 < A < 1 such that
IDS™ | E(2)|| - | Df~" | F(f*())]| < A
forallz € A and n > 0.

‘Then we have (See Pliss [P1] and Liao [Li] for a related result).

(. (IMadl.) If f € FY(M), then there exist ¢ > 0, 0 < A < 1,m>0anda
C?! neighborhood U(f) of f such that for all g€ U(f),0<i<dimM and
mo 2> m there exists a splitting T M IF.(g) = E; @ F; satisfying

1
@ [[Dg™ | Ei(z)|| - [|[Dg=™ | Fy(g™ (z))|| < A (= € Pi(g)),
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®) B(2) = B*(s), Fi(a) = B*(z) (z € R(g)),
() if z € Pi(g) has period n > mg then

[n/mg]-1 .
I1 HDg”‘O | E;(g”‘"’(z))“ < eAln/mol
=0

Dg~™ | F,-(g’”"j(:z:))” < ealn/mo],

]_
["ﬁw]
=1

(here | | denotes the Gauss symbol) and
(d) for all z € P(g)

Heftnt = nf log | Dg™ | Ey(g™(2))| < log A,
=0

n—oo n

e 1 n—-1 y )
liminf 3" log [ Dg ™™ | (g™ (2)) | < log .
=0
After this result, to show that the splitting T' M |5. B = E; @ F; is hyperbolic
1
for all 1 <1 < dim M we need the following result based on Liao’s idea:

(II). (Theorem 1.4, [Ma6].) If F; is expanding (1 < 1 < dim M) then E; is

contracting.
Therefore to show Theorem 1 it suffices to prove that f € F1(M) implies
that F; is expanding. Now Maiié translated, to solve the C'! Stability Conjecture,

the contracting property into averages of ergodic measures as follows.
(III). (Lemma 1.5, [Ma6].) Let mq be as in (I). If
/log |Df~™ | Fy| du < 0
for every ergodic u € M(f™ | P;(f)) then F; is expanding.
Here M(f™o | P;(f)) denotes the set of all f™o- invariant probabilities on

the Borel o-algebra of P;(f). As we explained above Py(f) is hyperbolic. If
P (f) is nonempty, then the following (IV) for jo = O means that

/log |Df=™0 | Fy||du < 0

for all ergodic . € M(f™ | P1(f)) because A(0)NP;(f) = @ and u(A(0)) =0
for all p € M(f™ | P1(f)). Thus F} is expanding by (III), and E; is contracting
by (D). Therefore Py(f) is hyperbolic. When Py(f) is empty and Py(f) # &,
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then we consider that the empty set Po(f) is hyperbolic, and apply the following
(V). Then we have that P;(f) is hyperbolic.

Our proof will be done by induction on indices ¢ and the rest of this section
and the next section will be devoted to complete the induction step. Suppose that
there exists jp such that

@1 A(jo) = U{Pi(£) |0 < k < jo}
is hyperbolic. Then we have

(IV). (Theorem 1.6, [Ma6).) Let A > 0 be as (). If
[ 108D | F| ds > 10g x

for some p € M(f™ | Pj,41(f)), then u(A(5)) > 0.
(1IT) and (IV) mentioned above are based on the following

(V). (Ergodic closing lemma, [Mad].) Let X(f) be the set of points x € M
such that for all € > 0, every compact set K disjoint from the closure of the
orbit of z and every C' neighborhood U(f) of f, there exists g € U(f) which
coincides with f on K and has a periodic point Yy Such that if n is its period,
then d(f7(z),97(y)) < e for all 0 < j < n. Then X(f) is a f- invariant Borel
set and p(3(f)) = 1 for all p € M(f).

To complete the induction step, it suffices to show that #(A(%0)) = 0 for
all p € M(f™|Pj41(f)). This means that there are no measures ke
M(F™ | Py 11(£)) such that

/Iog |Df~™0 | F| du > log .

Using only the hypothesis f € 7'(M) to obtain that u(A(jo)) = 0, for all
1€ M(f™ [P, 41(f)), it will be enough to show that A(jo) N P,0+1(f)
In fact Pj,41(f) is hyperbolic if and only if A(jo) N Pj,+1(f) = @. To see the
hyperbolicity of P;,.(f) we use the fact that the hyperbohc set A(jo) can be
wrilten as a finite union of basic sets Aq(A(jo) = A1 U---U A,) (Smale [Sm3]),
and the fact that if p is a periodic point and q is a transversal homoclinic point
of p then in every neighborhood of ¢ there are infinitely many periodic points
which are h-related to p. Here z is called h-related to p if W*(O(z)) has a
point of transversal intersection with W*(O(p)) and W*(O(p)) has a point of
transversal intersection with W*(O(z)), where O(z) denotes the orbit of z (sec
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Smale [Sm1] and for a simple proof see Newhouse [Ne2]). It is easily checked
that each basic set A of A(jo) has the local product structure, i.e. for some € > 0

Wep)nW;(g) C A

for p,q € A. Thus there exists a compact neighborhood U of A such that
N{f™"(U)| —oo < n < oo} = A. Such a neighborhood U is called an isolating
block of A. In [Pal3] Palis made use of these facts to prove the following result,
on which depends heavily the proof of Theorem 1.

(VD). If f € FY(M), then there can be no cycle among basic sets of the
hyperbolic set A(jo).

Therefore to obtain the hyperbolicity of Fjo+1( f) we shall prove that if
A(jo) N P;,+1(f) # O then there exist basic sets A, # A, such that
W*(Aa) NWH(4s) # 2.

To do this we must take advantage of two powerful perturbation techniques
of Mafié [Ma5,6]. First we explain the creation of a homoclinic orbit for the case
when an orbit accumulates on the stable and unstable manifold of a hyperbolic
set (see [MaS5] for details). The technique will play an important role to show
Theorem 1.

Let A be a hyperbolic set of f € Diff 1(M ) and suppose that there exists a
compact neighborhood U of A such that Nf"(U) = A. Choose € > 0 so small
that W2 (z) UWX(z) C U for all z € A and define

Vi =U{Wl(z)|z €A}, Vi =uU{Wi(z)|ze€A)
Obviously V~ and VA+ are compact and satisfy
V) vy, fvh avy, A=vinv
Define a closed neighborhood of A by
V(r,A) ={z|d(z,Vy)<r, d(z,V)<r}
and choose €; > 0 so small that V(el, A) C U (notice that ¢ is arbitrarily). By
taking 0 < o < 1 and 0 < ry < &1 we set an strictly decreasing sequence

ro>ryL>re >

satisfying r, 41 = r1+% for all n > 0.
Define S as the closed set of points z € V (ro, A) that can be written as
z = f™(yn) (m € Z) with y, € V(rn,A) and f(y,) € V(ro,A) for all 0 <
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i1<mifm>0,orforallm<:<0if m<O0. WesayherethatS,‘} is a star
shaped neighborhood of A. 1t is clear that each S is the smallest neighborhood
of A containing V (rn,A) and N{SA |0 < n < oo} = (V¥ UV) NV (ro, A),
(see Figure 1).

Vo
Sn
) > V—
Vir A
V(ro,/\) /
Figure 1
£2(x), $
ix),/
x o7
Y
Figure 2

(VID). (Lemmas 3 and 2, [Ma5].)
(1) Let &1 > Q be as above. Then there exist 0 < € < €1 and 0 < M<AZ<l
such that if d(z,V;") < &9 and d(z, V") < &g then

7ld(z)VA—) < d(f(x)>VA_) < ’\ld(z:VA—):
nd(z,Vy") < d(f_l(x):VA+) < Ad(z, Vy).
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(2) There exists Cy > C1 > 0 such that for x € V (ro, A,), letting

T(z) =sup{j| f'(z) € V(ro,As) for all 0 < I < 5}
+sup{j | f(z) € V(ro,Aq) forall 0 < I < i},

one has

T(x) < Call + &) if €V (ro, A) - 5P,
T(z) > C1(1+ &) if z € Ste

for sufficiently large 1 (Figure 2).
This shows the behaviour of f-iterates of points z close to A. If for a point
z a set of the form o = {f~¥(z),..., f~Ut)(2)} (0 < 7 < j + 1) satisfies
o C SE f77t1(z) ¢ SA and f~9-1(z) ¢ SA, then we say that the set o is
a (f~1,z;n)-string. To simplify the notation (f~1,z;n)-strings will be called
(f~1,z)-strings if there are no confusions. It is clear that there is a natural
ordered relation among (f~1, z)-strings, defined by oy < o if the first element
of o3 is a strictly negative iterate of the last member of o.
Let mg be as in (I) and, as above, let U be an isolating block of A. Let T ¢ A
be a point such that there exist a sequence {zy} C M converging to Z and a
sequence of integers 0 < ny < ny < --- such that the sequence of probabilities
L ik
o= Z 8 p-moi(z,)
j=1
converges to 4 € M(f™°). If A C M is a Borel set and u(A) > 0, then it is
not difficult to see that the limit point v of the sequence

1 monk
mony, Zl 5f_j(zk)
]:
satisfics v(A) > 0.

We suppose that the probability u satisfies p(A) > 0. Then for all N > 0
one of the following (VIII) and (IX) holds (Lemma 4, [Ma5]).

(VIID). There exist n > N, k > 0 and two (f~1,k)-strings 01,02 C 8.y
such that

o (Sp — Spy1) =2

for every (f~1,k)-string 01 < 0 < 03.
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(IX). There exist n > N, k > 0 and a (f~1,k)-string oy C S}, such that
on S,‘} =0

for every (f1,k)-string o # o1.

When (VIII) is satisfied, we denote as ¢; the last point of o N V(rn,A).
Moreover let gz be the first point of o3 N V(r,,A). In the simplified case the
situation is described in Figure 3.

W / \\ M
) / ( \
i S i)
19 //
q
\\_‘z' ’///‘/
Lid oy ] LA

VIrpen )

V(rn,A)
Figure 3

Since ¢y is the last point of g3 NV (r,,A), f~1(q1) does not belong to
V(rn,A). Let 41 and A; be as in (VII), then we can write A1 = 7% for some
0 < a < 1. As the only restriction we used about 6o was 0 < 8y < 1, we can take
it so near 0 1 that §o(14a) > 1, and choose 4 such that 0 < 28 < bo(14+a)—1.
Then the last inequality yields d(qy,V,") < r2+# if n is large enough, and so
there exists y; € V" such that ¢; € B(r2t# y;) (Figure 4, see p.150, [Ma5]).

Moreover we write q; = f'(z), g2 = f*2(zj) and define No = t5 — t;.
Then it is checked that B(rat#/3 y1) ¢ SA, from which we have f7i(q1) ¢
B(r,1,+ﬁ/3, y1) for 0 < 5 < No when n is large enough.

Similarly it is proved that if n is large then there exists y, € Vy such that
g2 € B(r2*#,y,) and f7(qz) ¢ B(ri*P/®,ys) forall Ny > j > 0, and moreover
f79(yz) ¢ B(rat?/3,y;) for all § > 0.

Now for (f), a neighborhood of f in Diff* (M) apply the following well
known result to f~! o U(f) and ¢ = [(2+ B)/(1 + B/3)] — 1.

(X). Given ¢ > 0 and a neighborhood N of the identity in Diffl(M) there

Bl Ble. 1 . vr s An oav P -

THE SET OF AXIOM A DIFFEOMORPHISMS WITH NO CYCLES 35

exists R > 0 such that for every 0 < r < R and every pair of points a,b € M
satisfying d(a,b) < r1*, there exists h € N such that h(a) = b and h(z) = «
for all z ¢ B(r,a).

B, B/3y))

y'I I ‘ 2+,
ey Br 2%y

A
{

Figure 4

Since the neighborhood f~! o U(f) and the number ¢ give R > 0, we can
suppose, taking n large enough, that r, < R. Then there exists h € f~1 o U(f )
such that h(y2) = g2, h(q1) = y1 and h(z) = z for all z ¢ B(r,1,+ﬂ/3,y1) U

B(r,1,+ﬁ/3,y2). Define g = f o h € U(f); then we have a homoclinic orbit of g
associated with A (Figure 5).

4f“\\
N
TNA |
y1 ‘—oq1 /’
q, _7
< yzf
N
Figure 5
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For the case when (IX) is satisfied let o; have the form

o1 ={f7"(zx),..., f ot (z)}.

Setting ¢ = f~%°(z;), as in the previous case we can prove that if n is large
enough then there exists y € V,~ such that ¢ € B(r2*#,y) and f~7(y) ¢
B(r,1,+ﬂ/3,y) for all 5 > 0 and morcover f~7(z;) ¢ B(r,1,+ﬂ/3’”,y) for all
0 < 7 < so. Now apply (X) for ¢ and y. Then we can find h € frou(y)
satisfying h(y) = ¢ and h(z) = z for all z ¢ B(r,1,+ﬁ/3,y). The behaviour of
the orbit of zj under h o f is described in Figure 6.

Figure 6

Let r, (n > 0) and S be as above. Since u(A) > 0 by hypothesis, from
(VII) and (IX) it follows that there exists N = 0 satisfying one of the following
(VII)? and (IX)°.

(VIID®. If (VIII) is satisfied, then for any N > N there exist n > —N—
y1 € V¥ — A w2 € V{ — A, neighborhoods B(ri™*/® y.), i = 1,2, and
9 € U(f) such that g coincides with f in the complement of B(r,1,+'3 / 3, Y1) U
B(r,lfﬁ / 3,y2) and g creates a homoclinic orbit associated with A; i.e.
[W:(A) - AJUWE(A) # @. '

(IX)°. If (IX) is satisfied, then for any N > N there exist n > 7 z¢ € {zn},

y € Vi —A, a neighborhood B(rpt*? 3 y) and g € U(f) such that g coincides

with f in the complement of B(r,1,+ﬂ / 3, y) and z}, is contained in Wit(A).
For the proof of (VIII)° and (IX)° see pp. 149-155, [Ma5].
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To create a homoclinic orbit associated with A we are going to explain another
perturbation technique of Maiié.

We use the following definitions. Let ¥ be a compact invariant set of f €
Diff' (M) having a dominated splitting TM|y = E & F. We say that a pair of
points (z, f~"(z)) contained in ¥ is a (f~1,, E)-string for n > 0 if

I1 |01 1B E)] < v

and we say that (z,f "(z)) is an wniform (f~1,~, E)-string if
(f~(z), f™(z)) is a (f~1,, E)-string for all 0 < j < n (these notions are
essentially used in the proof of (I)). By replacing E by F, a (f~1,~, F)-string
and a uniform (f~1,~, F)-string are defined in the same way.

(XD). ([P1], [Li] and [Ma6].) For 0 < X' < ' < 1there exist N = N(X',~') >
0 and 0 < c(XN,7') < 1 such that if (z, f~"(z)) is a (f~1, X, E)-string for
n > N, then there exist 0 < ny < ny < --- < ng < nsuchthatk > nc(N, ')
and (z, f~"(z)) is a uniform (f~1,~', E)-string for all 1 < i < k.

If ny is the largest integer satisfying the statement of (XI) and if ny # n,
then we can easily check that, setting 2’ = f~"k(z) and n’ = n — ny,

I1[os1807)] 2+

for all 1 <1 < n'. In this case (2, f‘"'(z’)) is called a uniform (f=1,+', E)-
obstruction. By replacing E by F a uniform (f~!,~, F)-obstruction is defined.
Let z € M and f € Diff'(M). Define the probability pn(f,z) by

1>
MHn = :I: Z o —moj(z)
Jj=1

and denote as M(f,z) the set of accumulation points of the sequence

{un(f,2) [ n > 0}.

(XID). ([Ma5].) If X is an isolated hyperbolic set of f € Diffl(M), with
Q(f|Z) = X, and there exists = ¢ W*(Z) such that u(Z) > 0 for all
1 € M(f, ), then there exists g € Diff' (M) arbitrarily C* near to f and co-
inciding with f in a neighborhood of ¥, having a homoclinic point associated
to a basic set of 2.
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Denote as M(f~1, z) the set of accumulation points of the sequence
1 7%

{n—kj§5fmoa'(zk)}-
Then we have that if ¥ is as in (XII) and there exists z ¢ W*(X) such that
#(X) > 0 for all p € M(f~1,z), then the conclusion of (XII) holds. In this case
notice that W*(X) is replaced by W*(£).

Let {yn} (C M) be a sequence converging to a point p. We recall that a
set X is attainable from {y,} if for § > 0, a neighborhood U of p and a
C neighborhood U(f) of £, there exists a sufficiently large kq such that for all
k > ko there exist g € U(f) and [ > 0 satisfying

yk €U and g7H(yx) € By,
97 (y) = fY(y), forall y¢u,
d(f™(k),97"(yx)) < 6, forall 0 <n<l.
Take the set ﬁjoﬂ( f) as . By the properties of the dominated splitting
™ l_ﬁ]'o+l (f) = E@F, there exists a family of embedded C'* disks D(y, F)

(y € Pj,11(f)) such that

2.2 Y € D(y, F) and T, D(y, F) = F(y),
(2.3) f(D(y, F)) contains a neighborhood of f(y) in the disk D(f(y), F)),

(2.4) D(y, F) depends continuously on y.

Similarly there exists a family of embedded C* disks D(y, F) (y e PLU)
such that (2.2), (2.3) and (2.4) hold, with F replaced by E.

Let Dy (y, F) be the closed disk of points in D(y, F) whose distance in
D(y, F) to y is less than or equal to r. To create a linking between stable and
unstable manifolds of basic sets, Mafié [Ma6] prepared the following -

(XIID. (Attainability Theorem.) Let {yn} be a sequence in P 11(f) con-
verging to p & A(jo) and v: {y,} — 7% is a Junction satisfying v(y,) — oo
as n — oo. Let mg be as in (I). Given r > 0 and 0 < v < 1 there exists
€ = &(mo,r,v) > 0 such that if the Jollowing conditions are satisfied,
(1) for n, (yn, f~™o¥Wn)(y.)) is a uniform (f~™01 v, E)-string,
(2) there exist ng > 0 and A4 > 0 such that (Yn, F7™09(y,)) is a
(f~™0,~, E)-string for all # < J < v(yn) and all n > ny,
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(3) p is a non periodic point,
(4) y € Pj 11(f) is e-near to an accumulation point of the sequence
{f-morlunl(y,)},

then the closed disk D, (y, F) is attainable from {y,}.
Now we prepare a corollary which is obtained from the attainability theorem.

(XIV). Let {yn}, v and mg be as in (XIIl). For r > 0 and 0 < v < 1 there
exists € = €(mo,r,7) > 0 such that if the conditions (1) and (4) of (XIII) are
satisfied, then for 6 > O there exist a sufficiently large k > 0 and z € D,(y, F)
such that

d(f~7 (), f7(2)) < 6
for all 0 < 57 < mov(y).

Replacing F' by E in (XIV), we have that there exists € > 0 such that
if (yn,fmo”(yﬂ)(yn)) is a uniform (f™o,~, F)-string for n > 0 and if y €
Pj,+1(f) is e-near to an accumulation point of {y,}, then for § > O there exist
k > 0and z € D,(y, E) such that d(f7(yx), f’(z)) < 6 forall 0 < j <

mov(yg).

3. Proof of Theorem 1

Let A(j0) be as in (2.1). Then A(jo) is written as the finite union A(j) =
A1 U---UA, of basic sets A;. To obtain the hyperbolicity of Pj,+1(f) suppose
Py 41(f) N Ay # @ for some basic set A, (otherwise P;,41(f) is hyperbolic).
For U an isolating block of A, put A} = N{f~"(U)|n > 0}. Then it follows
(see p.203, [Ma6]) that

(A —A)NPja(f) # 2

and denote it by T';. Notice that 'y € W*(A,) and ', N P(f) = @.

Let mq be as in (I) and S,‘:“ be a star neighborhood of A, (see section 2).
Fix p € T4 N Sy with f~1(p) ¢ S5 and take zx € (SP* — Sta,) N Py 11(f)
satisfying z, — p as k — oo. For k > 0 denote as 7y the positive integer
such that f ‘ﬁk(a:k) is the first point of the orbit of z belonging to .S',f“ — S,?ﬁl.
Clearly 7y — oo as k — oo. Put ng = [(7ix — 1)/mo] + 1 for k > 0, then each
n is the integer such that the point of the form f~™0"k(zy) is the first point
belonging to S,f“ - Sﬁjl.

For some time write S = S,f“ for all k£ > 0 if there are no confusions. It is
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clear that all accumulation points of { f~™°"k(zy)} is a subset of Vi, — Aq and
forallk >0

[Ony (k) = {zk, f ™"k (2k)}] N [Sk — Sky1] = @
where
Oy (zk) = {2, f 7 (2h), -, fT™0 % (24)}

denotes the finite orbit from zj to f~™0"k(z;) (Figure 7).

Figure 7

Let N be as in (VIII)° and (IX)° and put
i) gy

for all ¢ > N (sometimes we write SAa [f] = S(z)) For the pair ({z¢}, {nk})
let z}, be the last point of the form f~mo% (zx) in On, (zx) N S(+) that runs lastly
away S(¢) for N < ¢ < k. Put ngi = ng — ¢;. Obviously

£ vieh) = oM ()
and
SE) N{fT™(2h),... , fT"ki ()} = @.

To avoid complication write T = f~™o"k (zx) for k > 0 (Figure 8). Because
[ is a diffeomorphism without homoclinic orbits under small C'1 perturbations of
f, we have

Sit1N [Onk".(x}',) —-{=} =02
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forall N <i<kandall k > 0.

Figure 8

S(N+k)

-m_|
S(K+K) —t 0 K(z,)

Figure 9

41

Let [ > 0 be an integer (this will be determined later on). Fix K > [+ N +1

and define
N+k H
) 2k = 2’Kik’ le=ng Nk
for all k > 0. We set ag = K (N+I+1) Since Sk_1 — Sk C Sy

and [Sg_; — Sk] N Sk+x = D forall 1 < k < ag, we have

3.1

O[k(zk) n (SK—-I - SK) =

+k+1



4e NOBUO AOKI

for all 1 < k < ag (Figure 9).
From now on we shall show that there exists a basic set A; such that W*(A,)N
W*(A;) # @ by using the finite pair

({Zk}:§1 > {lk}:£1

for K sufficiently large.

We can check that {I,,}:fl is not uniformly bounded with respect to K >
!+ N + 1. Indeed, if there exists an infinite sequence of K such that {1},
is uniformly bounded, then we have W*(A,) N W*(A,) # O since certain sub-
sequences of UK{;:,C}ZI:"1 and Ug{ f~™olk (zk)}:i{l converge to some points of
VA*; — A, and VA_G — A, respectively. This can not happen because of (VI).

Since {I;,}Zfl is not uniformly bounded with respect to large K, for L > 0
there exists K > I+ N + 1 such that for K > K L there exists a sequence
1<k <ks < ---<kRK < ak so that Iy, > L for 1 < ¢ < Rg. Denote as
{K'} an infinite sequence of K, for all L > 0. If { Rk | K € {K'}} is bounded
and if we write

By = {k1,. .. ’kRK} and Ag = {1,2,... ,AK} — U(k+y Bg:

for all K > [+ N +1, then the family ({2kbreag {lk}reay) satisfies the con-
dition where {l;} ke a 18 uniformly bounded. Thus we can derive a contradiction
as observed above.

When {Rg | K € {K'}} is unbounded, to avoid complication we may sup-
pose that the family ({z;}.X,, {Ix};X,) satisfies the condition such that each
{l k}:fl is a strictly increasing sequence.

Notice that {z¢},X; € Pj,11(f) for all K and P, 11 (f) has the dominated
splitting

™5, .. n=E&F

satisfying (I) mentioned in section 2. Let A > 0 be as in @.
First we consider the case when for all large K the finite pair ({zk}:fl,
{1} K,) satisfies

l
32) l'k[ |Dsme [ P(17m0i(24)) ] > b
j=1
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for all 0 < k < agk. If there exists the smallest integer mj, > 0 such that

(3.3) I [pr o1 F(s=mei(@m))| < Aemit?
j=m,

for 1 < k < ag, then we have

(34) [T |psme| F(smeti = ()| > A
=0

forall0 < n <mj — 1.

Suppose that the cardinality of {m}, | m}, # 0,1 < k < ak} is bounded with
respect to K. Let Ck be the set of points f~™o!%(z;) of indices k satisfying
m), = 0. Then each f~™0'k(2;) € Ck satisfies

n

[T |Dfme | F(smol=(z))| > A+t

§=0

for all 1 < n <. For § > 0 there exist K5 > 0, 9k, € P;,+1(f) and finitely

many points ¢ € CK& such that the distance between ¢ K and ¢ is very small. If
6 — 0, then we have 9k; — gand § € Vi — A,y Thus

n
[T |Dsme| F(smi @) > A+
=0
for every n > 0. Define the probabilitics
1 n
Hn = ; z:l ‘Sfmoj(q)
J:

for n > 0 and denote as M(f~1,§) the set of accumulation points of {u,}.
Then p(A(j0)) > 0 for all 4 € M(f~1,3) by (IV). By applying (XII) we have
§ € W*(A,) for some A, and thus

g E W (Aa) NW?2(As),

which is our requirement.

Therefore it is enough to check the case when the cardinality of {m/, | m}, #
0,1 < k < ag} is unbounded with respect to K. To avoid complication we may
suppose mj, # 0 for all 1 < k < ax and large K.

For the case when {l — m%}zlz{l is uniformly bounded with respect to K >
I+ N + 1 (ie. there exists L > 0 such that Iy — m), < L for all large K and
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1 < k < ak), we have

ﬁ ”Df—mo I F_m"(m;c_j)(zk))“ > Antl
=0

for all 1 < n < m) and all large K, from which
W (A) NWE(Ap) £ 2

for some A. Our requirement was obtained in this case.

For the case when {l; — m}c}zlz{l is not uniformly bounded with respect to
K > 1+ N+ 1. Given L > 0 there exists Kr > 1+ N + 1 such that for
K > K|, there exists a sequence 1 % ki <ks <--- < kRK < ag so that
leg — my, = Lfor1< ¢ < Rg. Let {K'} be an infinite sequence of K, for all
L>0.1If {Rx | K € {K'}} is bounded and if we write Bg = {k;, . .. ykry }
and Ak = {1,2,...,ax} — Uign Bg: for all K > | + N + 1, then the
family ({zk}keAK, {lk}keAK) satisfies the condition where {I} — mk}keAK
uniformly bounded with respect to K > I+ N + 1. Thus we have W¥(A,) N
W*(A) # @ for some A,, which is our requirement.

Therefore, when {Rg | K € {K'}} is unbounded we proceed our argument
for the family ({zx}xen o {lx}reB b ,)- To avoid complication we may suppose
that the family ({2} %, {1} K,) satisfies the conditions such that each {l -
mk} k=1 18 a strictly increasing sequence and its first term is sufficiently large.
Then for all K sufficiently large ({zj } (X soodd ) k=1) admits a sequence {my} K ey
of integers Iy > my > mj, such that

n
G5 I [prm | F(rm™i(a))| < y" T (my <0 <)
J=my ’
for all k with 0 < k < ag (use (XI) to obtain (3.5)). Here v satisfies A < v < 1.
By the choice of my

(3.6) i |Dfm | P(=melmi=i) ()| > 47
j=1

for all 1 < n < my. Notice that my # 0 for all 1 < k < ag and all
large K. From (3.2), (3.3), (3.4), (3.5) and (3.6) we can conclude that if for all
K > 1+ N +1 the finite pairs ({2x};%X,, {ls},X,) satisfy (3.2) then we have
one of the following properties:

(3.7.a) there exists § € Vy, — A such that § € W*(A,;) for some basic set Ay, and
such that for all large K there exist finitely many points g € { f~™°™k (zk)}:‘;‘I
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so that the distance between § and g is very small. Thus
W(As) "W (Ay) # 2.

(3.7.b) for all K sufficiently large there exists a sequence {mk}:i"l of integers
such that for all large k with 1 < k < ag

IT |Drme  B(moi(aa)| < /et (i < m < b,
j‘mk

i |Ds=mo | F(gmeltmm1=0) ()| > X1 (0 < n < my - 1).
7=0

Thus, when the family ({2}, X}, {lc}K,) satisfies (3.2), we proceed our argu-
ment for the case (3.7.b) since (3.7.a) is our requirement.

When there exists an infinite sequence of integers K such that ({zk},c i
{Ik}a,c ] satlsﬁcs

l
ﬁ ”Df—mo | F(f—mo.’i(zk))” < Ak
=1

for some 1 < k < ak, ie. (zx, f~™%(z;)) is a (f~™0, X, F)-string, by (XI)
we can find also 0 < my, < I satisfying (3.7.b). To develop our argument denote
by Dk the set of 1 < k < ag satisfying the above inequality. If the cardinality
of Dk is bounded with respect to K and if we write Ag = {1,2,... ,ax} —
Dk, then the family ({Zk}keAKa{llc}keAK) satisfies (3.2). For this case we
may suppose that Ag = {1,2,... ,ax} for K, and that there exists an infinite
sequence {K} of K such that ({zk}] 1,{1,‘};51) satisfies (3.2) for all 1 <
k < ag. If the cardinality of Dg is unbounded with respect to K then we may
suppose that Dg = {1,2,... ,ax} for large K. For this case we have that there
exists an infinite sequence of integers K such that ({2}, {lc}X,) satisfies

ﬁ |Ds=m | F(fm03 (z))| < N for all 1 < & < ag.
11 _

Therefore, for a family ({z;},%,,{! k}:K,) satisfying (3.1) we can suppose,
without loss of generality, that the family satisfies always (3.7.b).

For this family let {m;}, X, be as in (3.7.b). If {Ix — m;};X, is uniformly
bounded with respect to K > [+ N + 1, as observed above we have (3.7.a). This
is our requircment.

Rnl Snr Rrac Mat Val 22 Ne 1.9 1007
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Therefore we may suppose without loss of generality that each of {I; —
mk}:i(l is a strictly increasing sequence and we shall check that case. Notice
that each my, is the smallest integer satisfying (3.7.b). For 1 <k<agad K
sufficiently large (XI) ensures the existence of a finite sequence
0= Meo <M =M1 < Mgg <---< M5, <idy

such that for 1 <1 < 53

I1 D5 P /"™ (mys < m <),
(3.8) j=my ;

-fI ”Df—mo | F(f‘mo(mk,£+1—:i))(zk))H > A"

(1< n<mpipr — my;+1).

Here we consider two cases:

(B9 Ak = {mp i1 —my; |1 <k<ag,0<i< Jk} is uniformly bounded
with respect to all large K.

(3.10) Ay is not uniformly bounded with respect to all large K.

We check first the case when ({zk}Z’:‘I,{lk}:’z{l) satisfies (3.9) for all K
sufficiently large. For this case we have that there exists L > 0 such that mp < L
forall1 <k <akand K >1+ N+ 1. Since the limit point of {2} is in
W*(A,) (take a subsequence if necessarily), there exists ¢’ € W*(A4) such that
f7™0™k (2) — ¢'(€ Pj,11(f)) as k — oo. Let ng > 0 be an integer such that
f™om0(¢') belongs firstly to the interior of V (o, As).

Since A(jo) is hyperbolic, A(jo) has the continuous splitting T M|y (;,) =
E° @ E* such that there exist constants ¢y, cy> 0 and 0 < A1 < 1 satisfying

D" | B(2)]| < exA}
and
IDf* [ E*(2)|| > eaAT™

for all z € A(jo) and n > 0. Take § > 0 and 72 such that 0 < v, < e7% < 1.
The only restriction we used about myg in (I) was to choose it arbitrarily large
such that mg > m. Thus we can choose myg satisfying

o1 @] <, o ) 2

for all z € A(g) and 7 > 0.
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Now, for z € Pj,+1(f) N A(jo) the tangent space T M splits into two direct

T:M = E*(z) ® E%(z) = E(z) ® F(z).

Since dim E%(z) < jo + 1, we have E*(z) N F(z) # {0} and then
|Df=m™7| F(z)|| > 737

for all 7 > 0.
In the definitions of VA+ , Vi and V (ro, A) (see section 2), the number €; was
arbitrary. Thus we can take €; such that d(z,y) < €1 (z,y € Pj,+1(f)) implies

(3.11) llog |[Df~™ | F(z)| —log | Df~™ | F(y)]|] < 6.
When z € Pj,+1(f) N Ag, from (3.11)
(3.12) |Df~™ | F(y)|| = e7° |[Df ™ | F(z)| > e ¥v3".

Let ng be as above. Since f™o™(¢') = ¢ € int V(ro,As) N Pj,11(f) and
f™73(q) € V(ro,Aa) N Pjo1(f) for all § > 0, from (3.12)

|Dsme | B(smi(g))| > €73
for all 7 > 0, and by the properties of dominated splitting
(3.13) | Ds™e | B(rmi(g)| < 2 < 1

for all 7 > 0 (since Ayz < 72 < e~ %).
Let D(q, E) be a small closed disk satisfying (2.2), (2.3) and (2.4). Then it
is checked from (3.13) that

D(g, E) ¢ W*(qo)

where W*(go) (C W*(A,)) is the stable manifold containing q. Remark here
that there exists a very small closed disk D’'(¢’, E) such that

frere(D(g, B)) € D(f™™(¢'), E) = D(q, E)

(see Proposition 2.3, Maiié [Ma3]). Therefore, for k sufficiently large choose a
small closed disk D'(f~™™k(z), F') and take a point

ze D'(¢, E)nD'(f~™™k(2), F)
(Figure 10). Then we have
fmoro(z) € fmo™o(D'(¢', E)) € D(q,E) C W*(qo).
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Therefore Z € W*(A,). Since (3.7.b) holds, we can apply (XIV) for large k
with 1 < k < ak. Then the distance between f~7(%) and FEA( o) Yris
sufficiently small, say

d(J7E), £k (=) < 6,
for all 0 < 7 < mo(lk — my).
To create a homoclinic orbit associated with A, (i.e. % € W7 (Aa)NWE(AL))
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for a certain diffeomorphism g being C* near to f, we prepare the following (3.14)
and (3.15). Notice that each {l; — mk}:Kl is a strictly increasing sequence.
(3.14) For k > 0 let o), be the strmg containing f~™k! k(z,,) and 1}, > 0 be the
largest integer such that f~ Mot (2x) € o) and (f moi (2k), f~™0™k (21)) is a
uniform (f~™° ~, F')-string i.e.

I |prme  F(r-metmii(z)] < 77+
=0

for all 0 < n < ). Let Ex be the consecutive, strictly increasing subsequence
starting at the first term ¢ — Iy of {1}, — 1 k}:*;‘l. Then one has that either there
exists an infinite sequence { K } such that Ex * as K — oo and O NV, =9,
where O denotes the set of all accumulation points of

(™A () |44 — Ik € Ex, K € {K}},

or W%(As) N W*(As) # @ for some basic set Ay. To avoid complication we
suppose, without loss of generality, that if we have the first part then Ex =
{1, — L} K, for K € {K} (Figure 11).

To see (3.14) suppose that {¢}, —{ k};fl is uniformly bounded (then it is clear
that O N (Vi — Aa) # D). But {Ix — mi} X, is not uniformly bounded with
respect to K > [+ N + 1. Thus {7}, — mk}zlz‘l is not uniformly bounded. By
maximality of 4, (f “™Ck+D(z,), f~™mo™k (2;)) is an uniform (f~™0, 4, F)-
obstruction; i.e.

H ”Df——mo |F f—mo i +1- J)(zk )” > At
for all 0 < n < ¢} — my — 1. Then we can find § € Vy, — Aq such that
IT|psm 1 F(rmi@)| 2 v~
j=0

for all n > 0. Thus we have § € W*(A;) for some basic set A, by (XII) and so
WH(As) NW*(Ay) # @. Therefore we obtain (3.14).
Let ro > 0 be as before (see section 2) and for £ € M let T,(T,) be the
integer satisfying
d(f~(z),V) <ro/2, forall 0<j<T,
(d(f'(z), Vi) < ro/2, forall 0<j<TL)
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and

d(f ==t (2), V) > ro/2 (d(f Tt a), 5t ) > rof2).
Then we have that
(3.15) given a small 0 < § < ro/2 there exist positive integers I and L such
that for k > L and z € V (g, A,) if one has either d(f~(z), f7(y)) < 6 for
0<y<Teord(f(z),f(y)) <6for0< < T theny € B w

This is easily followed from (VII). In fact, since z V(rk,As), we have
k
d(z, Vi) < rp = {7507 and by (vIny (1)

M7 r0/2 < AT (@), V) < d(s, Vi) < {00,

Take 1 > C] > logry/log~;. Then there exists Ly > O such that k£ > L,
implies T, >-Ci(1 + 60)*. Suppose y ¢ S,_; for all I > 0. Since T(y) <
Ca(1 + &o)*~* by (VID), there exist Ly > Ly and [ > 0 satisfying T, > T(y)
when k > L. Thus there exists 0 < 7 < T, such that f‘j(y) ¢ V(ro,Aq) and
by (VID),
d(f77(2), Vi) < Md(z, V) < Xir, < ro/2.

Therefore d(f~7(z), f~7(y)) > ro/2, which is a contradiction. The first part of
(3.15) was obtained. Similarly we obtain the second part.

Now we use (3.14) for the family ({z;}.X,, {1x},X,). Then we have that
either W*(A,) NW*(A) # @ for some basic set Ay, or there exists an infinite
sequence {K} such that {# — Ik} K, is strictly increasing and O N Vi, =@
If we have the first part, then it is our requirement. -

Therefore for the case when we have the lafer we shall derive a contradiction.

Let L be as in (3.15). Given a large k > L there exists t;, = T’_m i such
that S )

d( fj—mof;c(zk),VAt ) < ro/2
forall 0 < 7 < t; and
d(f(tk+1)_m°i;c(zk),VA*;) > r0/2.

As | > 0 was arbitrary we take it such that [ = J. Here [ is an integer chosen as
in (3.15).

Let z be as above. Then it is concluded (by using (3.1) and (3.15)) that there
exists a (f~™o, ~, F)-string g, C Sy _1 contained in the orbit of % such that
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ocNSg ;. , = O for every (f~™°,~, F)-string 0 # o7 contained in O, (2).
Use here (VIII) and (VII)°. Then there exists a small C! perturbation of f, by
which a homoclinic orbit associated with A, is created, thus contradicting (VI).

For the case when the family ({z};X,, {li};X,) satisfies (3.9) we have
proved that W*(A,) N W*(Ap) # @ for some basic set Aj.

Next we consider the case when ({zj}.X,, {l¢ } X, ) satisfies (3.10) for all K
sufficiently large. As in (3.8) we have that 0 = Meo < Mk = M1 < Mg <
e < Mg <lgforall 1 <k < ag and all large K. Then, by the assumption

{mpi —mp;1|0<i< g, 1<k<ag, K>1}

is unbounded. Thus, for L > O there exists Ky, > 7—{— N + 1 such that for all
K > K| there exist a sequence 1 < kj < --- < kRK <agand 1< ikq < Jkgs
1 < ¢ < Rk, so that

Mgk, ~ Mhaig, -1 2 L.

Let {K'} be an infinite sequence of Ky, for all L > 0. If {Rg | K € {K'}} is
bounded and if

Bg = {kl,. Sz ’kRK} and Ag = {1,2,. - ,aK} = U{KI}BKI

for all K >+ N + 1, then the family ({Zk}keAK,{lk}keAK) derives a con-
tradiction by using the above argument since (3.9) is satisfied.

Therefore, when {Rg | K € {K'}} is unbounded we proceed our argument
for the family ({zj } ke Byrs {lk}keB K1)+ To avoid conAlplication we may suppose
that { K'} is the sequence {K} of K satisfying K > [+ N + 1 and each B is
the sequence {1,2,... ,ax}.

Since {my 1 — mk:O}Zfl = {my }:fl for all large K, for L > O there exists
Ko > O such that my, > Lforall 1 < k < ag and K > K. Then, for § > 0
we can find K5 > 0, gk, € P;,+1(f) and finitely many points ¢ belonging to
{f ""O(mk‘l)(zk)}:ff such that the distance between g, and g is less than 6.
If 6 — 0, then we have 9K; — g since K5 — oo. Then by (3.7.b)

1 [s=m | Fgmi(@)] 2 v+
7=0

for all n > 0. Thus § € W*(A;) for some basic set Ay. If A, = Ay, as observed
above we have a homoclinic orbit associated with A, under a certain small C*
perturbation of f, thus contradicting (VI).



NOBUO AOKI

For the case when A, # Ay we shall show that WH(As) NW*(Ap) # O. The
rest of this section will be devoted to obtain it.

Notice first that for K sufficiently large finitely many points belonging to
{f ‘"‘O(mk‘l)(zk)}Zfl are near to . For convenience we may suppose that all
points of { f ‘"‘O(mk‘l)(zk)}:fl are near to § and this holds for all K sufficiently
large. To simplify the notations write

e f_mo(mk_l)(zk) and ik =l —mp+1

forall 1 < k < ag and all K sufficiently large (Figure 12). Obviously

fmolk(z,) = fmol (2k) for all k and the family { 07k (Zk)}, X, satisfies one
of the following properties.

Figure 12

(3.16) There exists K7 > 0 such that for all 1 <k <ag and all large K
o A :
Ol'k(zk) N SKI; =J.
(3.17) Otherwise, i.e. for K1 > 0 there exist K > 0 and 1 < k < ag such that
— A 4 A
(}lk(zk) N SKI; # & and Oik(zk) N SKI;+1 ="

Let { K’} be a sequence of K satisfying (3.17) for K; > 0. If {K'} is finite,
then {K'} — { K'} satisfies (3.16). For this case (3.16) holds for all K sufficiently
large. If {K'} is infinite, then there exist K" € {K'} and 1 < k < agn such
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that

01, (7k) N Sghyy # @ and Op (B4) N S, = 2.
Let { K"} be a sequence of K" satisfying the above relation and repeat the same
manner for {K"}. Then, in the repetition of n time we have that either (3.16)
holds for all large K, or
(3.18) there exists an infinite sequence { K (")} such that for all K (™) there exist
O<ki<ky<---< k, < g (n) SO that

- Ay < Ay —
O, (F) N Sy # 2 and Ozkl (Z,) N Sk i1 = 2,
1

for all 1 < ¢+ < n. To avoid complication for the above two relations we may
suppose that

. A _ A
Olk (2k) N Sk, 44 # 2 and oik (Zk) N SK 451 = 2,

forall 1 < k < agmn) and K(").

First we investigate the case when the family {Oik (Ek)}zi':{1 satisfies (3.18).
Let ¢ be as above. Fix K sufficiently large and choose a point Z, which is
near to . Notice that § € W*(A;). As above we can find small closed disks
D'(Zy,, F) and D'(g, E) satisfying

(3.19) D'(Z,, F) N D'(4, E) # 2.
Take z € D'(Z,, F) N D'(§, E) C W*(A;). By using the fact that

T [or-m 120 )] <

for 1 < n < I, it follows that the distance between f~7 (2) and f~7(zy,) is
small for 0 < 57 < m07k0 (see (XIV)). Let [ be as in (3.15). From the construction
of ({21:}251,{11;}:51) we have Oy, (2) N (S:fi — 8§ )= for1 <k<ag
and hence

(3.20) O (Ze) N (Sy; - S§*) =@ (1< k< ag).

Use (3.14) for the family ({Zx}, X, {Tx},X,). Then there exists a family
{z;c}:fl such that one of the following cases holds.
(3.21) There exists an infinite sequence {K} such that {1} — 71:}:51 is strictly
increasing and O N Vi, = 9 (bere O is defined as in (3.14)). For this case, as
observed above, there exists a (f ™0, , F)-string oy contained in the orbit of %
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such that o N SkAfi—l = & for every (f~™o,~, F)-string 0 # o, conta‘ined in
the orbit of Z. Then we can find certain diffeomorphism ¢ such that Wi(Al) N
W (Ay) # @ for some basic set A, (Figure 13).

a
[ )/ -m |
Np
Vo N
A, \\
\
+ \\
\% N\
Aq Sowing B
Figure 13

(3.22) When {4}, — 7,,}:51 is uniformly bounded with respect to all large K, there
exists a basic set Ay such that W*(A,) N W*(A) # 2.

As (3.22) is our requirement, we shall derive a contradiction for the case (3.21).
For large K choose Zj, as above and so take the smallest integer ky = ki (K )>0
such that

5 iy > A
07k0 (zko) N Skl # & and 07k0 zko) N Sk1b+1 =0,

Take K so large that Z, is very near to §. Then we can choose ki (K) so
large that ky(K) > N 1. Since the family.{0- (Zk)} K, satisfies (3.18), as

b
K of (3.18) we take K' = ki1(K). Then by choosing K as in (3.18) we have

that for all 0 < 7 < ax — ko
Or,. s (Brots) N S, s # @ and O, (Frati) N Sibiio1 = 2.
To avoid complication we may suppose that Zy, = Z; and 7k0 =1;, and then we
have ,
o,j (z)n s,A{éﬂ._l # & and 0,]_ (z)n S,Aﬁﬂ- = &,
forall 1 < 5 < ag and large K (notice that K’ depends on K). N.otice that the

family ({Zx} K}, {4 }X,) is defined nearby the basic set A and satisfies (3.20)
for large K.
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For 1 < j < ag and large K denote as f ' (z;) the point of 0; (Z;) that
‘)
runs lastly away Sﬁ'} +;+ Then we have
BinS%(N+j-1)#£0

where B; = {z;, f1(z;),. .. Y (Z;)}. If this is false, then there exists
a certain diffeormorphism ¢ creating a homoclinic orbit associated with A, as
observed above. This is a contradiction.

Take here the point z; = f~*(2;) € B; that runs lastly away S4 (N +5—1).

—myl’. : . .
Let l;- be the smallest integer such that f ™ (z;) is the first point belonging to
Sﬁ,‘iﬂ. Obviously I;- < 7]- forl1 < j<ag. Since]_V_+j < K'-l< K'< K'+j
for all 1 < 7 < ag, we have
A A Ay Ay 5
SKe+j (@ SK'i C SK'—? C Sﬁﬂ' (1<j<ak).
The choice of 2} and f ol (2}) ensures that
Ay Aoy
01;_ (z5) N (Sﬁﬂ' - SK,+j) =3.

In fact, if this is false, by the manner as above we can find a certain diffeomor-
phism creating a homoclinic orbit associated with A, thus contradicting.
. a a
Therefore, for the family ({}},5,, {I;},%]) we have

7§ A A —
On () N (Sys_; = Skt) = 2,
(3.23) O () € Op(27) € On;(2),

Oz;, (z) N (S;;a_i - S}@a) =0a.

As observed above we have that {I;c}:’z"l is not uniformly bounded with
respect to all large K and the family ({z}}.X,,{l}},X,) derives one of the
following properties.

(3.24) Let {m;c}Z’__‘1 be the sequence satisfying (3.8) for the family
({2 1.5, {1} K,). Then there exists § € Vi, — As such that § € W*(A,)
for some basic set A., and such that for large K there exist finitely many points
ge{f My (2)} K, so that the distance between § and gq is very small. Thus
WH(As) N W*(A.) # @ as observed above.

(3.25) For all K sufficiently large there exists a sequence {m}c}:fl of integers
satisfying (3.7.b) for ({2} };X,,{l}},%,) and there exist finitely many poins

]

belonging to {f ™™k~ (21)}%K. which are near to some point §' of some set
k) S k=1 P
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W?(A;). For convenience suppose that all points of { f —mo(m}c—l)(z;c)}:g are
near to ¢ and this holds for all K sufficiently large. Write
_ r_ -
Zp = oMy 1)(2;) and I; =l -mp+1

for all k. Then each Oy (2},) satisfies one of the following properties (similar to
(3.16) and (3.18)).
(3.25.a) There exists K5 > 0 such that for all large K and all 1 < k < ag

= A

(3.25.b) Otherwise, i.e. for n > 0 there exists an infinite sequence {K (")} such
that for all K™ there exist 0 < ki<ky<: i<k, < by (n) so that

= A —
Ol;‘?i (z;‘i) il SK;-H' # & and Oi;c: (z;c’_) N SAc

Ky+it1 = 9,

for all 1 < ¢ < n. To avoid complication for the above two relations we may
suppose that

= A -
of;c(z;") N SK:+k # & and Oi;c(z;c) () SI%;+I¢+1 = @

forall1 < k< K(® and K.

First we check the case when (3.25) is satisfied. Suppose {oi}, (E}c)}ff:(l
satisfies (3.25.b) for all K sufficiently large. For convenience put K =K (7) for
n large enough. Then, as observed above we can find a point ‘E;CO near to a point §'
of W*(A.) such that there exist small closed disks D'(z,, F) and D'(¢', E) such
that @ # D'(%,, F) N D'(y', B) € W*(A,). Take 3 € D'(2},, F)n D'(¢', E).
It is checked that the distance between f=7(2) and f=7 (%) is small for 0 <
j < moiko. i

Since Op () N (S2_; — Sxt) = @ for 1 < k < ag by (3.23), obviously

O @I (S ;- S¢) = 2.

Since Oy (Zi,) © Oy (24,) and Oy (24) N (She, — sh#) =@, forall 1 <
k < ag and large K, we have

Op (Fk) N (S, — Sg) = 2.

. Iise (3.14) for the family ({Z},X,,{T;};X,). Then there exists a family
{13}, such that one of the following two cases holds. ‘
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(3.26) There exists an infinite sequence {K} such that {#} — 7;}:’___‘_’1 is strictly
increasing and O OVA_b = & (here O is defined as in (3.14)). For this case, as in
(3.21), we can find a certain diffeomorphism g such that W'(A;) "W 3 (A.) # @
for some basic set A,.

(3.27) When {4}, — 7;}:—':‘1 is uniformly bounded for all large K, there exists a
basic set A, such that W*(A;) "W *(A.) # 2.

Suppose that we have (3.26). For large K choose E}co as above and so take
the smallest integer k3 = k2( K, ky(K)) > 0 such that

b A — A
0‘1;0 (Zk,) N S # 2 and %0 (Zh,) N S5, = 2.

As observed above we can take ky so large that k; > N +1 by choosing a large
K. Put K" = k9 and use (3.18). Then we have

—r A <! A -
Ol;c0+1(zk0+j) n SKC"+] -_,é %) and oi.',, (ZJ) N SK€’+]'+1 = g,

for all 0 < 57 < ag — ko and large K. Again we may suppose that Z), = 7 and
I, = Iy, and then we have

» A z 4
%(z}) NSk # D and 07;_ (2;) N Sk = 2,

forall 1 < j < ak and large K (notice that K" depends on K and K' = k;(K)).
Then the family ({Z}};X,, {Tx}+X,) is defined nearby the basic set A,. This
family satisfies (3.20) and (3.23) for large K.

As observed above we can find finite sequences {z} },X, and {14} X, such
that each z} is a point of Oi;c (%) that runs lastly away S4¢(N + k — 1) and

each [} is the smallest integer such that f ol (2}) is the first point belonging
oie » . ¥ a a &
to S%5. Then it is easily checked that the family (=} K, {1} K, satisfies

O (2) N (Sgs_; = Sx%) = 2,

(3.28) Om(2) € On (2),
" a a A A
O () N (S, — SV S, — Sl = @

Therefore the family ({2} },X,, {I{};X,) satisfies again one of (3.24) and (3.25).

Suppose that we have (3.27). Here let m), be an integer satisfying all the
properties of my of (3.14) for 1 < k < K and large K. Then each {7;c -
my} K, is a strictly increasing sequence. Thus each {1}, — m}. K, is a strictly
increasing sequence except for a certain bounded set. Let § > 0 be small. Then
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there exist K; € {K}, gk; € Pj,11(f) and finitely many points g€ A=
{f "”O(i;cﬂ)(zk)},‘:fl such that the distance between gx, and g is very small.
Since 9ks — g as § — 0, as in the proof of (3.14) we have that ge VA'b - A
and that § € W*(Ay) N W*(A,) for some A,. Thus fmoN (3) e V" for some
N > 0 and so the distance between f "‘“N(QK§) and VAt is small for large Kj.
Thus the distance between f™oV (¢) and V" is small. To avoid complication, for
all K5 and all ¢ € A we may suppose that the distance between f™N(q) and
V' is small.
By construction we have that for all 1 <k< ak, and all Kj

Or, (Zk) € Oy (21) € Oy (zk) € Oy (2).

; T ¢ .
The family {Oik (zk)} k:is satisfies (3.17) and hence it satisfies (3.18). To simplify
the notations we may suppose that (3.18) holds for all large K; and we write
K= K&.

To obtain our requirement for the family {Ol-k (Ek)}Zfl we adapt the method
used to construct the family ({z;c}zfl, {l;c}:fl) In fact take Z, as in (3.19) by
replacing Ay with A, and as above let ki (K ) = k1 be the smallest integer such

vy A - A : =
that O;ko (Zk,) N Sp* # & and Oiko (Zk,) N Sy = @. Since {Ol-,c (Zk)}, X,
satisfies (3.18), as K of (3.18) we put K" = ki (K) for large K. Then we have

= Ac - A
oik0+j (Zeo+4) N SK"+j # @ and oik0+j (Zeo+7) N SK€'+J'+1 =9,

forall 0 < j < ag — ko. To simplify the notations as above we may suppose
that Zx, = Z; and li, = I}, and then we have -

(},j(z,-) N S;}C,,ﬂ_l # & and o,j ()N s}}e,+j =3 &

forall 1 < 7 < ag. Notice that the family ({Ek}Zfl, {1k} ,X,) is defined nearby
the basic set A, and satisfies (3.20). '
Denote as f~%(z;) the point of 0;.(;) that runs lastly away SAs, +j+ Then
2] j
we have B; N SA4¢(N + j — 1) # & where Bi ={z;, f71(z),... , (7))}
Take the point 2 € B; that ru'fls lastly away SA¢(N + 5 — 1). Let I be the
smallest integer such that f Mol (27) is the first point belonging to Sﬁc,, +5- Then
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for the family ({/};K,, {12};K,) we have

Ou(2]) N (S _; = Sgin) = 2,
(3.29) Ou(&f) < 0. (7)) < O, (=),

O (25) N (5% —Sx*) = 2.

The family ({2} :":{1,{ ',C'}ZI__‘I) satisfies one of (3.24) and (3.25).

For the two cases (3.26) and (3.27) we constructed the families satisfying
(3.28) and (3.29) respectively. In any case suppose (3.25.b) is satisfied and repeat
the above argument for them. Let us do it for the family ({z"}:fl,{l”}zfzfl
satisfying (3.28). Then we shall reach a contradiction. In the similar way we have
the same conclusion for the family satisfying (3.29) and so we omit the proof of
this case.

First we consider the case when (3.25.b) is always satisfied in the repetition.
Since the number of basic sets is finite, in the repetition of finite time we can find,
by using (3.21) and (3.26), a diffeomorphism g such that g = f in the complement
of the union of certain neighborhoods being nearby basic sets Ag,Ap,... and g
creates a cycle among the basic sets. However this is a contradiction.

Therefore, in the above repetition, that (3.25.b) is always satisfied is false.
Thus we reach the case that satisfies (3.16) (or (3.25.a)) in the repetition of finite
time. Therefore it will be enough to check the case when the family {OIk (Ek)}:f__(l
satisfies (3.16) (or (3.25.a)).

Since {Tk}:fl is not uniformly bounded with respect to K, as we did for
the family {I;},%, we may suppose that each {Tx} K, is a strictly increasing
sequence. Thus the family ({Ek}:fl, {7,‘}:51) admits the sequence 0 = my o <
My <o <myj < I, 1 < k < ak, satisfying (3.8), for which we have one
of (3.9) and (3.10).

If (3.10) is satisfied, as observed above we can suppose that for L > 0 there
exists Ko > 0 so that my > Lforall 1 < k < ag and K > Ky. Thus
there exists § € 751-0“( f) such that there exists finitely many points ¢ belonging
to {f """(""lc‘l)(zk)}ZI:{1 such that the distance between ¢ and § is small, and
such that, by (3.8) and (VII), we have § € W?(A.) for some A.. If A, and A,
agree, then we have a contradiction since a homoclinic orbit associated with A,
is created under a certain small C? perturbation of f. Therefore A, #A..

We claim that Ay # A.. Indeed, suppose Ay = A.. Since finitely many
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points belonging to {f‘"‘o("‘k‘l)('z'k)}: 1 are near to ¢, we have § € W*(A,) =
W*(Ap). Thus for every L > O there exist K > 0and 1 < k < ag such that
O; (z) N SL # <. But this is contrary to (3.16) (or (3.25.a)).

Henceforth let K denote sufficiently large integers. Since finitely many points
belonging to A = {f ‘mO(mk‘l)(Ek)}Zfl are near to ¢, we may suppose that
each point of A is near to § and write

Zg = f—mo(mk_l) (Ek) and 71: S p- mg +1,

1 < k < ak. Then the family {O (Zk) } X, satisfies one of (3.16) and (3.18) (or
(3.25.a) and (3.25.b)). Without loss of generality we can suppose that (3.16) (or
(3.25.2)) is satisfied. Let 0 = Mpo < Mgy < -+ < mk]k <hiyg <k<ag,
be the sequence satisfying (3.8) for the family {& 1)},

If the sequence satisfies (3.10), as above there ex1sts a basic set A4 such that
Ag, Ap,A; and Ay are mutually distinct. Since the number of the basic sels is
finite, the repetition of this manner derives a contradiction. Thus we arrive at the
case that satisfies (3.9) in the repetition of finite time.

Now it is enough to check the case when the family {0 (Zk)} p—1 Satisfying
(3.16) (or (3. 25 a)) obeys (3.9). For any basic set X; there exists R; such that
O (zk) N SR = @, for all 1 < k < ag and all large K. Denote as K;

lhe maximum of the integers R;. Then O; (zk) N Sk " =g, forall1 < k <
ag and all large K. By the manner mentloned in the first part of this section
construct nearby A, pairs ({zk} i 1k } i 1) for all K > 0, and repeat the same
argument for the pairs. Then a family ({z}};%,, {I kr}k 1) which satisfies one of
(3.24) and (3.25) is constructed nearby a certain basic set A. by using the family
({2} .5, 4 k} 1)- From the above argument we can suppose that the family
{6 (zk)} k=1 Satisfies (3.25) and moreover (3.25.a). Then it satisfies either (3. 9
or (3 10). We suppose, without loss of generality, that (3.9) is satisfied. Then
there exists K3 > 0 such that for any basic set Ass

O (i) N SK; = @ and hence Op (z;) N Sg& = 2,
for all k and all large K.
Here construct nearby A, pairs ({2} WP 4 } 1) by the manner as in the
first part of this section and continue the above argument for the pairs. As above

=N

a family ({z}/},X 1 {0k} ,) is constructed nearby a certain basic set A4 by using
the family ({Z}.%,, {T¢}:X,). Then we can find K5 > O so that O ("k) N
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Sﬁ,‘a = @ for any basic set A;, and so Oi;c )N S_,ﬁ‘: = @, for all k and all large
K. In this repetition we have a diffeomorphism g such that g coincides with f
in the complement of the union of certain neighborhoods of basic sets Ajand g
creates a cycle among basic sets A;.

For instance, if A, and A, agree, then there exists a positive integer L such
that for all 1 < k < ai and all large K

_ A | A
0 (@) NS} =2, Op@)NSh =0

Notice that f~™olk(z;) = ™0k (z;) € SA® and £ ™% (2,) = f~molk(z}) €
Sf” for all k£ and all large K. Then we have, as observed before, a diffeormor-
phism g such that g = f in the complement of the union of certain neighborhoods
of A, and Ay and g creates a cycle between A, and A,. This is contrary to (VI)

(figure 14).

Figure 14

It only remains to check the case when the family ({2}},X,, {l}};X
satisfies (3.24). For this case apply the method used to construct a famlly
(5 (T 1) nearby A, for the case (3.27). Then we shall reach a contra-
diction by running on the argument mentioned above.

Consequently the hypothesis Ag N Pj,+1(f) # @ leads up the phenomenon

of being W*(A;) N W*(A;) # @ for f and some Ay. However this is again
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contrary to (VI). Therefore A(jo) N ]—3_,,-0+1( f) = @ and f satisfies Axiom A.

4. Proof of Theorem 2

Since K.S(M) C 71(M), it is enough to check that f € K'S(M ) satisfies strong
transversality. Suppose that there exist f € KS(M) and z € M — Q(f) such
that T.W ¢ (z) + T, W { () # T: M. Since z ¢ Q(f), for § > 0 small enough we
have Bs(z) N f*(Bs(z)) = @ for all n # 0. Let & > 0 and take p1,p2 € P(f)
and y1,y; € B;s(z) satisfying

y€Wilp1) and y2 € Wi (py),

Ci(y1,f) is eC' nearto Cy(z,f),

Ci(y2,f) is eC' nearto C¥(z,f),
where C{ (z, f) is the connected component of z in Wf& (2) N Bs(z) (o = s,u).
Therefore, for 0 < & < 6 small enough there exist a diffeomorphism g €
KS(M) and p1,p; € P(g) such that g = f on M — {Bs(z) U f~Y(Bs(z))},
z € W, (p1) N W2 (p2) and C5 (z,9) = C7 (2, f) for ¢ = s, u, from which

TzW_j(pl) -+ TzW;‘(pz) = T,,Wf’(:c) + TzW}‘(x) =T M.
This is a contradiction.

Remark. Recently Moriyasu [Mo] proved the following results. The C! interior
of diffeomorphisms belonging to Diff* (M) satisfying - topological stability is
equal to F!(M). A diffeomorphism f:M — M is topologically stable if and
only if given € > O there exists § > 0 such that for every homeomorphism g¢
with d(f(z),g(z)) < 6 for all z € M there exists a continuous map h: M — M
satisfying hog = foh and d(h(z),z) < & for all z € M. If for any € > 0 there
exists 6 > 0 such that for every homeomorphism g with d(f(z),9(z)) < 6 for
z € M there is a continuous map h: Q(g) — Q(f) (h(Q(g)) c Q(f)) satisfying
hog = fohon Q) and d(h(z),z) < € for all z € Q(g), then f is Q-
topologically stable.

Restricting to 3-closed manifolds, Sakai [Sak] proved that the C?! interior of
all diffeomorphisms having the pseudo orbit tracing property is characterized as
the set of Axiom A diffeomorphisms with strong transversality.
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