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Rigidity of Isometric Immersions
of Higher Codimension

Marcos Dajczer

Abstract.  Given an isometric immersion f: M™ — R¥ into Euclidean space, we provide
sufficient conditions on f so that any 1-regular isometric immersion of M™ into RV 11 is
necessarily obtained as a composition of f with a local isometric immersion RY > U —
RY 1, This result has several applications.

1. Introduction

Let f:M™ — RN be an isometric immersion into Euclidean space of an n-
dimensional connected Riemannian manifold. Even assuming f to be rigid, a large
set of non-congruent isometric immersions of M™ into RV *! can be produced by
composing f with elements of the infinite-dimensional family of (local) isometric
immersions of RY into RN*!. The main purpose of this paper is to provide
sufficient conditions on f to ensure that any isometric immersion of M™ into
RN*1 is a composition of f with an isometric immersion as above.

A classical rigidity theorem due to Allendoerfer [All] states that f is rigid in
RY if the type number 7 of its vector valued second fundamental form a: T'M x
TM — TM+* satisfies 7(z) > 3 for all z € M™. Recall that the type number of
a symmetric bilinear form v: R™ X R™ — RP is the largest integer 7 for which there
are 7 vectors Xy, ..., X, in R™ such that the rp vectors ij (X).1<i<T,
1 < j < p, are linearly independent, where §i,...,&, is a basis of RP and
B :R" — R™ is given by <ngX,Y> = (y(X,Y),&;). We define the rank p
of 7 as

p = min{rank B : £ € RP, ¢ # 0}.
Then p > 7. Observe also that p > 0 implies S(v) = span{y(X,Y) : X,Y €
R"} = RP.
Recall that an isometric immersion is called 1-regular if the first normal
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spaces Ni(z) = span{a(X,Y) : X,Y € T, M} have equal dimension. Our
main result is the following extension of Allendoerfer’s theorem.

Theorem 1. Let f:M"™ — RN be an isometric embedding whose second
fundamental form has type number v > 3 and rank p > 4, everywhere. Then
every 1-regular isometric immersion g: M™ — RN is a composition g =
ho f, where U C RY is a neighborhood of f(M"™) and h:U c RN — RN 11
is an isometric immersion.

Theorem 1 was obtained by Erbacher ([Er]) for M™ = S? and N = n + 1.
Counter-examples exist if we drop either the 1-regularity or the rank hypothesis.
Henke ([He]) showed that local isometric immersions S* > V — R™? may
not be a composition of immersions near umbilical points. As for the rank con-
dition, there exist local isometric immersions of S2 > V' — R® which are not
compositions of immersions as in the above theorem (see [D-T]).

Remark. Theorem 1 is not true if we do not ask f to be an embedding. It is not
too difficult to verify that an n-dimensional tube with self intersections along a
curve in R™*! may admit a 1-regular isometric embedding in R™t2. However, if
f is just an immersion, the proof of the theorem shows that g(M™) is contained
in a flat hypersurface of RN+,

On the other hand, if we restrict ourselves to:the class of minimal immersions,
then the assumptions of Theorem 1 may be weakened.

Theorem 2. Let f: M™ — RN be a minimal isometric immersion with type
number 1(zo) > 3 at a point xo € M™. Then any minimal isometric immersion
g: M™ — RNt is congruent to f in RNTL. -

Finally, we apply Theorem 1 to the study of Riemannian manifolds which can
be isometrically immersed in both R¥ and SN. The case of codimension one
was already considered by do Carmo-Dajczer ([C-D]), where it is shown that the
manifold must be conformally flat. Conversely, a simply-connected conformally
flat hypersurface LY of SN*1, N > 4, without umbilical points, can be isomet-
rically immersed in RV+1 (see [C-Y]) as a 1-parameter envelope of spheres (see
[A-D]). In particular, any submanifold M" of L™ admits isometric immersions
into SN*1! and RN +1,

We say that an isometric immersion f: M — M has an umbilical direction
§€T M atz € Mif A, = A1, 0 # X € R. We conclude this paper with the
following result.
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Theorem 3. Let f: M™ — R™'P, p > 2, be an isometric embedding free of
umbilical directions, whose second fundamental form has type number r > 3
and rank p > 4, everywhere. If M™ admits an isometric embedding g: M"™ —
SMtP then there exist a conformally flat manifold N c'}ﬂ’ ~1 and isometric
immersions k: M™ — Nc";”’_l, hy: NC";“’_I — R™P? and hy: Nc"f”"l —p
SPtP 5o that f = hyok and g = hy o k.

Although all our results refer to submanifolds of Euclidean space, they remain
valid for submanifolds of the Euclidean sphere or the hyperbolic space by similar
arguments.

1. Some linear algebra results
We will make use of the theory of flat bilinear forms to prove some lemmas
which describe the pointwise structure of the second fundamental forms of the
immersions involved in our theorems.

Lemma 1. Let o:R™ x R® — RP be a symmetric bilinear form with type
number T > 3 and rank p > 4. Assume that v:R"® X R* — RPtl js g
symmetric bilinear form which verifies for all X,Y,Z,W € R", that

<O¢(X, Y)7 a(Z’ W)) - <C!(X, W): C!(Z, Y)> =

= <7(X: Y)) 7(Z) W)) - <'7(X: W)"Y(Z: Y)) ®
Then there exists an orthogonal sum decomposition RPT1 = R? @ R, such that
(i) mgp oy =q,
(il) rank mg oy < 1,
where mgp (respectively mg) denotes the orthogonal projection onto RP (re-
spectively R).
Proof. Consider the symmetric bilinear form

B=ady:R"xR"— R @ RPT1 ~ R?PH!,
where R?P*1 is endowed with the nondegenerate inner product ({ , )) defined
by

< (f) 61); (’7:7]') >= (fﬂ?) - <§,)77’) g
Then f is flat in the sense that it verifies
< :B(X:Y))/B(Z:W) > -<K ﬂ(X’W)7IH(Z’Y) >=0

for all X,Y,Z,W € R".
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Given.X € R", we define a linear transformation B(X):R" — R2Pt1 py
B(X)(Z) = B(X,Z). We say that X € R" belongs to the set RE(B) of
regular elements if, and only if,

dim B(X)(R") = ¢ = max{dim B(Y)(R") : Y € R"}.

The basic property of an element X € RE(f) (see [Mo], p. 246) is that for any
vector n € Ker B(X),

B(R™,n) C U(X) = B(X)(R"™) n B(X)(R")". (1)
Let ko = min{dim ¥ (X) : X € R*, X # 0}, and define
RE*(B) ={X € RE(B) : dim U(X) = ko}.

Since RE*(B) is open and dense in R™ (see [D-R], p. 214) and o has type
number 7 > 3, there exist X1, X2, X3 € RE*() such that the vectors

{ngX,- :1<1<3,1<75<p}
are linearly independent for a basis &y, ..., &, of RP. Now, the subspace
S={Z€eR":a(X;,Z2)=0,1<i{< 3}

satisfies
8= [span{ngXi 11<49<3,1<5<p}l*,

and therefore,
dimS =n — 3p. 2)

Since B(X2)(Ker B(X1)) C U(X;) by (1), thus, the, linear transformation
D(X32) = B(X2)|kerB(x,) : Ker B(X1) — U(X3)

satisfies
Ker D(X;) = Ker B(X;) N Ker B(X3),
and
dim Ker D(X3) > dim Ker B(X;) — ko.
Similarly,
D(Xs) = B(Xs)|ker D(x,): Ker D(X3) — U(X1) N U(Xy)
satisfies

Ker D(X3) = [ KerB(X;),
7=1,2,3
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and
dim Ker D(X3) > dim Ker D(X;) — dim ¥(X;) N U(X,)
> n—q— ko — dim¥U(Xy) N U(Xs). 3)

Since (Y, Ker B(X;) C S, we obtain from (2) and (3) that

n—3p>n—gq-ko—dimlU(X;)n U(Xz).
Using

¢<2p+1-ko, dimU(X1)NU(X2) < ko, )
we get that ko > p — 1. Hence, either kg = p — 1 or ko = p.

Case ko = p— 1. Under this assumption, inequalities (4) must be equalities. We
conclude that (i) ¢ = p + 2, and (i) U(X;) = U for i = 1,2, 8.
We claim that U = S(8). From U c Im B(X;)%, we have U+ >
Im B(X;)** =Im B(X;). Since dimU* = 2p+ 1 —dimU = p+ 2, we get
I @R =Ur, 12{<8,

Clearly, given Y € R™, there exists £ > 0 such that the set of vectors X; =
X1+ €Y, X;, X3, have the same properties than the set X7, X5, X35. Hence,
Im B(X,) = U+, and therefore, Im B(Y')  U~. This proves the claim.

Consider orthonormal bases £, .. ., €p of RP and 5y, ...,mp+1 of R, such
that

U=span{b; = £ +n;,1<j<p-1}.
It follows from the claim that
0=« ﬂ(Y) Z)’aj >= <a(Y)Z))£J') - ('7(Y’ Z))’?i)

forall V,Z€R"and 1< j <p—1. Set

r-1 p+1
¢:Z<a)§]> fj; "/): (a’§P> £P7 022(7”7h)’7h'
j=1 h=p

From the claim and flatness of g, it follows that o and ~ split orthogonally as

a=¢0Y, Y=¢@0,

where the symmetric bilinear form

% ® 0:R™ X R* — L = span{&,, np, np+1}
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is flat with respect to the induced Lorentzian metric on L as a subspace of R%P*1,
Since rank Bg, > 4, we have from Corollary 2 of [Mo] that S(¢ @ 0) # L.
Hence Corollary 3 of [Mo] applies, and therefore 7, 7p+1 can be chosen so that

(aa &p) —~ (7”717) ) rank <'7777p+1> S 1.
This concludes the proof of this case.
Case ko = p. The argument for this case is similar and left to the reader. O

Lemma 2. The conclusions in Lemma 1 with ng oy = O remain valid if
instead of p > 4, we assume trace o = trace ¥ = 0.

Proof. First notice that rank 7g oy < 1 and trace mg o v = 0 imply that
7g o7 = 0. To prove Lemma 1, condition p > 4 was used only once, namely to
deal with the bilinear form ¢ @ 6. In this case, instead of [Mo], we can use the
following result whose proof is part of the arguments in ([B-D-J], pp. 435-436).
O

Lemma 3. Let B:R"® — R™ be a symmetric linear transformation with rank
B > 3, and let B:R™ x R® — RP be a symmetric bilinear form. Assume
trace B = trace B =0, and that for all X,Y,Z,W € R", we have

(BX,Y)(BZ,W) - (BX,W)(BZ,Y) =
= (B(X,Y),B(2,W)) — (B(X,W),B(2,Y)) -

Then dim S(8) = 1 and (B(X,Y),8) = (BX,Y), where S(B) = span{é},
16| = 1. .

2. The proofs of the theorems
For the proof of Theorem 1 we will need the following result.

Lemma 4. Let f: M™ — R"™P be an isometric immersion whose second

fundamental form o satisfies that S(a) = TM L everywhere and splits con-
tinuously and orthogonally as

a=7® (A, )

for some unit vector field n € TM L. Assume rank Ap = 1 everywhere, and

that |(X,Y)|* is @ smooth function for any X,Y € TM. Then

(i) If ~ has rank p > 3, and n is chosen so that A, has a positive eigenvalue,
then n is smooth.
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(ii) Suppose that ~ has type number v > 3 and rank p > 4. Then n is constant
along Ker A, in R™P.

Proof. (i) First we show that for any hyperplane W c T, M, we have at z € M™,
S(v) =span{y(Z,Y): Z,Y e W}.

Otherwise, there exists § € T, M, so that (y(Z,Y),8) = 0forall Z,Y ¢ W.
This implies that rank As < 2, which is a contradiction.

Fixed a point zg € M™, let X;,...,X,, be an orthonormal basis of Ty M
such that A, X; = pXy,p > 0. Extend locally Xj, ..., X, to linearly indepen-
dent vector fields and set Y; = X; + Xj, 2 < 5 < n. By the above, we may
assume that at any point in a neighborhood of zqg € M™, we have that

S(y) =span{y(¥;,,Y;, ) : 1< k< p-1}.

Clearly, the set of vector fields
('k’ k)"’Y( i k)+<AYIkaY >7’, ISkSP—l

are linearly independent, and the functions v = < AY; 4
(1) ¢x(z0) = p >0,

2
@ v = ot V)| - ¥, %,)| € o= )
Consequently, all functions 1y, are positive and smooth in a neighborhood U of
Zy.

-k> satisfy:

At each point z € U, 7 is a solution of the system of linear equations

m( (Y, Y3 )hn) =1, 1<k<p-1.

Hence, 7 belongs to the intersection of p—1 affine hyperplanes He L oY;,Y5,)

and the unit sphere SP~1 C RP. The line R = (Y,_} H; is orthogonal to all
(Y,k,Y ) and meets S" in at least one point, since solution exists. To

conclude the proof it is sufficient to show that R N SY ! contains two different

points. But if R is tangent to S¥ =1 then n would be orthogonal to R, and therefore

n € span{c(Y; i ]k) :1 < k < p— 1}, which is a contradiction.

(i) Choose 7 to be smooth and a local vector field X; # 0 so that AX; = uXj,

© > 0. By Codazzi’s equation

u{Y, 2], X1) X1 = Agy,Y — AgynZ )
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for all Y, Z € Ker A,. At z € M", consider the linear map ¢:Ker A, — L
defined by

$(X) = Vxn,
where L is the orthogonal complement to n in T, M*. Suppose that r =
dimIm ¢ is positive. For a basis 61, .. .,6, of Im ¢, we have from (5)

Ang €span{X;}, 1<j5<r

for all Y € Ker ¢. Hence dim Ker A5j > dim Ker ¢ — 1. It follows that

-
dim ﬂ KerAgj >dimKer¢ —1—(r—1) >n—2r — 1.
j=1
For r = 1, this is a contradiction to p > 4. The assumption r > 3 implies
that dim ﬂ;zl Ker Agj < n — 3r. This provides a contradiction for r > 2.
Hence r = 0, and this concludes the proof. O

Proof of Theorem 1. At each point, the second fundamental forms oy and oy
satisfy the conditions in Lemma 1 by the Gauss equations and our assumptions
on the type number and rank of ay. Therefore, oy splits orthogonally at each
point as
a; =70 <A-‘,’,, > n

where 7 is a unit normal vector, v = ay and either A = 0 or A} has rank
one with a positive cigenvalue. In particular, Af has constant rank since we are
assuming that g is 1-regular.

If Af, = 0, it follows from Lemma 28 in [Sp] that g reduces codimen-
sion by one dimension and the proof follows from Allendoerfer’s result. If rank
Ay = 1, we easily conclude from the rank assumption on vy = ay that n is
continuous. Thus, Lemma 4(i) applies, and the orthogonal splitting has to be
smooth. Let :TyM*+ — L = {n}* be the smooth vector bundle isometry
along g o f~1: f(M) — g(M) so that y = 7 o ay. We claim that 7 is parallel
where L is considered with the connection V' induced by V. A straightforward
computation using Lemma 4(ii) shows that ~y satisfies the “Codazzi equation”

(Vy)(2,W) = (V)Y W)

for all Y, Z,W € TM. The claim now follows from Theorem 1 of [No].
Let X € TM be the proper unit vector field so that A7 X = pX, u > 0.
We define a vector bundle isometry T: TyM* @ span {X} — L@ span {X} by

IV UIL L T UR IDWUIVIL LN LIVAVLZIND IVIND 1)

T(6+ ¢X)=7(6)+cX. Let A C L & span {X} denote the vector subbundle
whose (N — n) dimensional fibers are the orthogonal complements to Vxn =
—pX+V3%n. Since p # 0, each fibre is transversal to T'M. Therefore, the same
holds for the subbundle 2 C TyM* @ span {X} defined by TQQ = A. Thus, the
map F:Q — RY defined by
F(z,6) = f(z) +¢
restricted to a neighborhood U of the 0-section is an embedding and parameterizes
a tubular neighborhood of f(M).
Now consider the map G: Q2 — RN+ defined by

G(=,€) = g9(=) + T(¢).
We claim that G|y is an isometric immersion with respect to the flat metric

induced by F'. To see this observe that for { =6+ cX € Qand any Z € TM,
we have

G.(2,6)Z = V(9 +T(§))
= 9.(2)(Z — A Z + Vz¢X) + V5 7(8) + ag(Z, cX).

But, (T(g),€7X17> = 0, thus

0= <6X(r(5) + cX),n> = <nglr(5) + ay(Z, cX),n) .

We conclude that
G.(z,8)Z = g.(z)(Z - Af(s)Z + VzeX) + Viyr(8) + v(Z,cX)
= (g0 f Vu(ful2)(Z — ALZ + VzeX))+
(V56 + as(Z,cX))
and now the claim follows easily. By the above, the map
k= (Glo) o (Flo)™: F(U) - G(U)

is an isometric immersion and g = h o f. This concludes the proof. O

Proof of Theorem 2. Since minimal immersions are real analytic, it is sufficient
to argue for an open subset V' C M where g is 1-regular and f has type number
7 > 3. Moreover, we may assume that p = N —n > 2, since the case p = 1 was
already considered in [B-D-J]. We conclude from Lemma 2 that the first normal
spaces Ni(z) of g have all dimension p. By Lemma 28 of [Sp], g reduces
codimension to p and, therefore, g is congruent to f. O
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Proof of Theorem 3. Let §: M™ — R"'P*! be the isometric immersion ob-
tained by composing g with the inclusion of SP**? in R*tP*1, Because f is free
of umbilical directions, we argue that g is 1-regular. In fact, if at some point
the dimension of the first normal space of g is less than p + 1, then the second
fundamental forms of f and § must be congruent. This implies that f has an um-
bilical direction which is a contradiction. Since Theorem 1 applies, there exists
an isometric immersion h: U c R**? — R™"*P*1 guch that § = ho f. Using that
g is an embedding, we can easily see from the construction of h in the proof of
Theorem 1, that U can be taken so that h is an embedding transversal to S*?.
Set NJJP~H = h(U) n S, O

Remark. The assumption that f is free of umbilical directions is not essential in
the sense that, if there exists an umbilical vector field globally defined, then the
proof of the theorem still works.
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