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On the Geometry of Non-Classical Curves

Abramo Hefez* and Neuza Kakuta

Abstract.  In this paper we relate the numerical invariants attached to a projective curve,
called the order sequence of the curve, to the geometry of the varieties of tangent linear spaces
to the curve and to the Gauss maps of the curve.

1. Introduction
Let X ¢ P(V) = PY be an irreducible projective curve defined over an
algebraically closed field K. We will assume that X is non-degenerate, that is,
it is not contained in any hyperplane. For a natural number m, let 3™ and K™
be respectively the image and the kernel of the map of locally free sheaves over
XSm
b Um

VXsm —s P m(F ) ;
where F' = ¢* O, (1), with ¢ the inclusion map of X into PV, and where
P™(F) is the sheaf of m-principal parts of F. (see [K], [L] or [P].) It is shown
in [L,Prop. 1] that there is an increasing sequence (sn)n=0,._., ~ of non-negative
integers characterized by the following conditions:

rk(Bj) =n+1, Vj such that e, <7< epy1.

This sequence is called the order sequence of the curve X. We always have that
€0 = 0, €1 = 1 and ey < deg(X). When &, = n for all n, we say that X
has a classical order sequence or shortly that X is classical. It is known that if
char(K) = 0 or if char(K) > deg(X), then X is classical.(See for example
[L, Thm. 15].) So non-classical curves may only occur in positive characteristic.
Since the curves we are going to study are non-classical, we will assume from
now on that char(K) = p > 0.

The relationship among this approach and the classical theory of Wronskians
as found in [FKS] or in [S-V] is the following:
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Let K(X) be the field of rational functions on X, and let Xo,.:. , Xn, be
homogeneous coordinates of PY. We denote by f;, for y =0,1,..., N, the
rational function X;/Xo on X. Let ¢ be a separating variable of K(X)/K. We
denote by Dj™ the Hasse differential operator of order m with respect to ¢. (For
the properties of these operators needed here, we refer to [H-1].) Then the order
sequence of X is the minimal sequence, with respect to the lexicographic order,
such that the determinant of the wronskian matrix,

W = (D f;)

is not zero as a rational function on X. Geometrically, the order sequence of
X represents all possible intersection multiplicities of X with the hyperplanes of
PN aa general point of X, that is, points in an open dense set of X which we

) )

§,j=0,...,N

denote by U in the sequel.

Let IPV* be the dual projective space of PY. Define for n = 1,...,N—1,
the set C() X as the closure in PV x PV of the projective bundle LK)V,
So we have a chain of varieties,

cW-Vx coW-Ix c...c cWx c PV x PV,

which we call the higher order conormal varieties of X, and whose projections

on the second factor are:
X(N_l) C X(N'z) G C X(l) C PN*’

which we call the higher order dual varieties of X. In particular, we have that
Cc(W X is the conormal variety C X of X, and its projéction X(1) onto the second
factor is the dual hypersurface X’ of X. Finally, X(¥-1) is the strict dual of X.

The variety C(") X is irreducible of dimension N — n. The variety X (™ is
then irreducible, and since X is non-degenerate, it has dimension N — n too. Set
theoretically we have that c(™ X is the closure in PV x PN* of any one of the
following sets:

{(P,H) € U x PN*/I(P,X.H) > ¢€,},
or
{(P,H) e U x PN*/H > TEX},

where I(P,X.H) denotes the intersection multiplicity of X and H at P and
TpX is the osculating linear space of dimension n to X at P. For P general,
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the linear space T X is generated by the points

(D7 fo(P);... . DY fw(P)), j=0,...n.
We denote by
rCW X X,
and by,
al:CMx ., xr)

the natural projections.
For n such that 1 < n < N — 1, we define the n-th Gauss map,

'7,,:X——>PM,

where M = (f{:ll) — 1, as the rational map from X to the grassmannian of
n-planes in PV, associated to the surjection Vxsm — Ben, followed by the
Pliicker embedding of the grassmannian into projective space. This map associates
to each poirit P of U the Pliicker coordinates of the linear space TpX. We will
denote by X(*) the closure in PM of the set Yn(U). Remark, for future use,
that wp_, is birational,

T (N-1 i
XON-1) — x(n-1),
and
YN-1=7p_;0 w,}l_l.

The main result of this paper is that for all n = 1,... N —1, the inseparable
degrees of the maps #/, and ~, are equal to the highest power of p that divides
€n+1. This is a generalization of the Generic Order of Contact Theorem of Hefez
and Kleiman ([H-K,Theorem 3.5]). The result for curves in P> was previously
obtained by the first author and announced in [H-2].

2. Inseparability of rational maps

Let X ¢ P" and Y C P™ be projective curves and let G: X — Y be a
rational dominating map. The inseparable degree of G, denoted by deg; G, is the
inseparable degree of the field extension K (X)/K(Y). By standard ramification
theory, deg; G is the ramification index of G at any point of its general fiber, so
it is the ramification index of G at a general point of X.
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Let K((t)) be the field of fractions of the ring of formal power series in ¢
with coefficients in K. A parameterization of X at a point P € X is a point

P(t) = (Po(t);. .- ; Pa(t)) € Pk
which is not rational over K and such that P(0) = P and P(t) € X(K((t)))-

The parameterization will be called primitive if it is not rational over K ((t")) for
all r such that r > 2.

Lemma 1. Let t be a separating variable of K(X)/K. If P is a general point
of X and P(t) is a primitive parameterization of X at P, then deg; G > P
if and only if G(P(t)) is rational over K((*)).

Proof. Let G = (Go;. .. ;Gm). One of the coordinates of G(P) is not zero;

without loss of generality we may assume that Go(P) # 0, so Go(P(t)) is
invertible in K[[t]]. Put g; = Gi/Go. So the ramification index of G at P is
equal to
min{ord(g:(P(t)) — :(P(O))si = 1,... ,m}.

It is clear now that if G(P(t)) is rational over K ((t*")), then deg;G > p".
Conversely, suppose that deg; G > p, then we have that [D7g;(P(t))];=0 = O
for all s such that 1 < s < p', so as rational functions on X we have that
Djg; = 0 for all s as before. Now from basic properties of the Hasse differential
operators and the fact that the coefficients of g;(P(t)) are the Hasse derivatives
of the rational function g; evaluated at P, it follows that g;(P(t)) € K (17",
from which the result follows.

The following result gives a criterion for rationality of parametrizations over

K((#))
Lemma 2. A point Q(t) of Pk (s)) is rational over K((¢*")) if and only if
Q(t) and DfiQ(t) are linearly dependent over K((t)) for alli =0,... ,r—1.
Proof. Suppose that Q(t) is rational over K ((t*")), then we have, :

Q(t) = h(t)(Ho(#"); - s Hm (),

with h(t) € K((t))*. Differentiating both members of the above equality we get,
for all 7 with 0 < ¢ < r — 1, that

DY Q(t) = (D h(t))(Ho(#); ..

This shows that Q(t) and Df’Q(t) are dependent for all t =0,... ,r — 1.

().
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The converse will be proved by induction over r. Without loss of generality

we will assume @, (t) # 0. Suppose that Q(t) and Q'(t) are linearly dependent
over K((t)), then

Q,(t)Q;(t) :Qj(t)Q:-(t), \7’:,]:0, ,m

Hence for all # = 0,... ,m, we have
( Qi (t) )I =L Qm(t)Q' (t) QI (t)Qi (t) =0
Qm(t) (@m(2))? '
This implies that
Qi)

Qm(t) & K((tp))’ V= 0,...,m,

s0 Q(t) is rational over K ((tP)), proving the assertion for r = 1.

Assume now that the result holds for r and suppose that Q(t) and D? iQ(t)
are linearly dependent over K((t)), for all ¢+ = 0,...,r. By the inductive
hypothes1s we have that Q(t) is rational over K((¢*")), that is, there exist

hi(t?") € K((t*")), i =0,... ,m such that
Q,'(t) " S
—Qm(t) =h(t*), ¢=0,...,m.
Now,
r r r o r_. ;
DY Qi(t) = Df (Qm()hi(t")) = 3 DY ~Qum(t) Dihs(t*")
7=0
= hi(t"") D} Qm(t) + @um(t) DI hi(t¥"),
from which we get for 1 =0, ... ,m, that
r( Qi) \ _ Qm(t)D} Qi(t) — Qi(t) DY Qi
. ()0 Qm(t)
M (ong) = @) -0
It then follows that
Qi r+1
e k@™,

hence Q(¢) is rational over K ((tPH'l))
Lemmas 1 and 2 yield the following result:

Proposition 1. Let t be a separating variable of K (X)/K. If P is a general
point of X and P(t) is a primitive parameterization of X at P, then deg; G >
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p" ifand only if, for alli = 0,... ,r—1, the vectors G(P(t)) and Df'G(P(t))
are linearly dependent over K ((t)).

3. The inseparable degrees of the Gauss maps

The theorem in this section will relate the inseparable degrees of the Gauss maps
with the order sequence of a given curve. This together with section and projection
techniques, which we will develop in the next section, will allow us to prove the

results for the maps m,,.
In the proof of the theorem we will need the following two lemmas.

Lemma 3. Let €,c,j and a be positive integers such that p does not divide
¢ and
0<cp*—e<j<p?,

(E i j) =0 (mod p).

then

€
Proof. The hypotheses imply that
(¢ —1)p® < e < cp™.

The above inequalities imply that there exists an integer ¢ with 0 <t < p* such
that
e=(c—1)p* +t.

So, .
e+j=cp*+({t+7-0p%).
From the above equality and the fact that € + j > cp®, it follows »that
u=t+j5—p*>0.
The inequality j < p* and the above one, give

0<u<t.

Now, from a well known congruence among binomial coefficients (see for
example [H-1, 3.5]), and the fact that 0 < u <t < p%, it follows that

€+' cp® +u " c u'_
( €J> B ((c —pl)pa+t> - (6_1) (t) =0 (mod p).

ON THE GEOMETRY OF NON-CLASSICAL CURVES 85

Notation. For a square matrix A = (ar,s) we will denote by cof(a; ;) the
cofactor of the element a; ;. i

Lemma 4. Let A = (ay,) be an n x n matrix with coefficients in K (&)
and m a positive integer. Then we have, ’

D*det(A)= > det (D{"a,\ “) _
Jit-+in=m ,

Proof. The proof will be by induction on n. For n = 1, the equality is trivially
satisfied. Suppose now the result is true for n — 1. Then,

Y d(pheu)=3 ¥ au(bhe,)

It tin=m n=0 jot-+jin=m-j;

ST Fbuget(ohe)

71=0 jo+--+in=m—j p=1

i i zn:(D{lal,u) Z cof (D{lal,“)

n=0p=1 Jat - +in=m—j,
= (Dglal,p)D:n_jl cof(a1 — Dm
p,:l j]=0 ’M) l‘gl t (al’“ cof(allu))
= Di" det(ay,,).
In the theorem below we will use the following notation. For n = 1 N
3

let I = (do,... ,1,) and J = (jo, ... ,dn) be (n+ 1)-tuples of integers such that
0<ip<i; < - <1y, 0<jp<s<:+<jp<N.
Define
W(1,9) = (D} 1;,)

where ¢ and the f’s are as in (1).

Au=0,..n

"l“heorefn 1. Foralln=1,... ,N -1, the inseparable degree of the map ~,
is the highest power of p that divides En+l1.

Proof. The map «,, has coordinates

In,Jg = det W(Eo,... ,En,J),

withJ:(jb,...jn)suchthatOS_yb<j1<---<jn§N.
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Let P(t) be a primitive parameterization of X at a general point P. We will
use the following notation

WL, ) = (D P (1)) |

By Lemma 4 we have

=010

D{n'Yn,J(P(t)) =
Z (VO +50> <Vn€+ En) x det We(vo +€0y--. ,Vn + €n, J). s

€0
vo+---tvp=m

Write €p41 = cp® with ¢ not divisible by p. For m < p®, we have from
Lemma 3, where we put € = ¢}, that the non-vanishing terms in (2) are multiples
of determinants of matrices with rows of the form,

. N
(DT Py(8),... , DT B, (1), 3)

withy <m <p*and 0 < A <nsuchthat ey + 7 < gp41.
Now, by the minimality of the order sequence, we have that the vectors,

(DT Ro(t),..., DA Pa(t)), A=0,...n,

with €) + 7 < €n41 are linear combinations, with coefficients in K ((t)) of the
vectors
(D" Po(t),... ,Di"Py(t)), r=0,...,n. 4)
Hence for all m with m < p%, and all J, it follows from (2) that there exists
an element @,, € K((t)), not depending on J, such that

D" n, g (P(t)) = Som’Yn,J(P(t))- ’
This implies by Proposition 1 that deg; v, > p®.

To show that deg; v, = p%, we have, according to Proposition 1, to show that
By a'yn(P(t)) and ~y,(P(t)) are linearly independent over K ((t)).

From (2) and Lemma 3, we have that the non-vanishing summands of the
expression of DY a'yn, 7(P(t)) may be expressed as determinants of matrices with
rows as in (3) with either €y + 7 < epqy or y =p* and €y + 7 > €p41.

It then follows from this, and from the first part of the proof that
Dfafyn, 7(P(t)) is a multiple of ~, y(P(t)) (with factor independent of J), plus
terms of the form

ex+p°
( AE,\p )det Wileo, ... ,ex-1,6x + %, 6241, - , €y J) o)
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with A such that ) 4+ p* > €p41.
Since for any A, the vector

(2" Roo) . D By(),
is a linear combination of vectors as in (4), but with r = 0, ... , N, we have that
(5) is equal to
by det We(eo,. .. ,en,J) + af:“ det Wi(eo,.-. , €0, 1EnyEnt1,J) + o+
ay det Wi(eo, ... , &), ... yEny €N, ),

with by and a), in K ((t)) and independent of J.

Since ((cf’f)tpa) # 0 mod p, we have that (c — 1)p* is an order (see for
example [S-V, Cor.1.9]], say

gs = (c — 1)p°.
It then follows that €, + p* = €p41 and therefore b, = 0. Also for p =

n+2,...,N we have aj, = 0 and

s _ n— cp®
a4l = (-1 ((c B l)p"‘) #0 (mod p).

So we have, for some d in K
aQ
D} 4n,7(P(t)) = dyn s(P(2)) + ap1det We(eo,... ,&5,... ,6n,Ent1,J)+

Z Zazdetwt(eo,...,éA,...,an,e,,,J) (6)

p>n+1A>s

We will now verify that -y, (P(t)) and DY % (P(t)) are linearly independent
over K((t)). Suppose the opposite true, then from (6) we have that
det Wi(eo0,... ,&s5... y€n,€n+1,J) is a linear combination, with coefficients
independent of J of terms of the form

det Weleiy,- - 1€insJd)s  (€igy-v- »Ein) 7 (€05- -+ 885+ -+ »EnyEnt1)-
This implies that the row

(det We(eo,--- ,€55- - 1€n,Ent1,J))

of the matrix A" Wi(eo, ... ,en,0,...,N) is a linear combination of other

rows. This is a contradiction since the above matrix is invertible because the

n oo~ " e . wr s oan as s = mene
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matrix W(eo, ... ,en,0,...,N) is invertible (see for example [F, Theorem

1]).

4. Projections
Using Theorem 1 and projection arguments, we will prove in this section our
result concerning the maps =,

Let W be a codimension r vector subspace of the (N + 1)-dimensional K-
vector space V' and consider the induced linear projection

progw : P(V) — P(V/W) — P(W).

Suppose that W' is such that X doesn’t meet the center of projection IP(V /W),
so the composition map,

xS pw) - Pv/w) "W pw),
is well defined. If we put Y = IP(V') and Z = IP(W), we have
F =10y (1) = (progw o1)*0z(1).

Let U be the open subset of X*™ such that projw o ¢ |y is an embedding and
for all m, the map Vx, — B]" is onto for all z in U. Such U is not empty if
W is general and N > 3. :

Let B{™ be the image of Wy via the morphism v™ : Vy — P™(F) and
let K{™* be the kernel of the restriction v™ ]wU. There is clearly a commutative
diagram of sheaves on U':

B K = W e B

j 1 1
0 — Klm — Wy — Blm 2 ) @
i T T
0 0 0
Denote by €p, ... ,&y_, the order sequence of Xw = projw (X).

Proposition 2. If N > 3 and W is general of codimension rin V, then

& =g Jorain=0,...,N~r.

Proof. It is obviously sufficient to prove the result when r = 1, because we may
iterate the process.
Choose coordinates Xg,... ,Xn for V and Yy, ... ,Yx_; for W in order

ON THE GEOMETRY OF NON-CLASSICAL CURVES 89
that Xg = Yo and projw is given by
N
K:Zainj, i:O,...,N_l, (8)
j=0

where A = (a;;);,; is an N X (N + 1)-matrix with entries in K and of rank N.

Let t be a separating variable of K(X). Since W is general, we have that
K(Xw) = K(X), so tis also a separating variable of K (Xw ). Let f; = X;/Xo
forj=0,...,Nand f{ =Y;/Yyfor j =0,... , N —1, considered as functions
on X and Xy respectively. From (8) we get

W(io, ... yin—1) = W(io,... ,in_1).AT,
where AT is the transposed matrix of A,

Wio,... ,in-1) = (D:Afj),\=0,...,N—1;j=0,...,N
and |
Wi, in-1) = (D f}),
Since W is general, the matrix A is general, so it may be chosen in order
that for all io, ... ,in—1 we have Ker (W(io,.-. ,in-1)) ¢ Im (A7), where
AT and W(io,... ,in_1) are viewed respectively as linear transformations from
K(X)N to K(X)N*! and from K (X)N*+! 10 K(X)". From this it follows that
for all 1o, ... ,inx_1, the matrices W' (o, ... ,tn_1) and W(io,... ,in_1) have
the same rank, and therefore €, = €], foralln =0,... ,N — 1.

0,..,N—1;5=0,... N—-1

Proposition 3. The inseparable and separable degrees of nl, for 1 < n <
N — 2, are invariant under general central projections.

Proof. Let W be general and of codimension one in V' . Put Uy = projw (U).
For 1 < n < N -2, diagram (7), for m = ¢,,, yields the following exact diagram
of sheaves on U,

Wbt KAT)Y “ s 10

Wy — (KM — 0

0 0
This gives the following cartesian diagram:
C"U — UxPWV) — P{V)
oo o1
chUy — UxPW) — PW)*
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It then follows that for 1 <n < N — 2, and for all Q € Ul(") @ U("), the fibers
of CMy — UM and cMy; — Ul(") over @ are isomorphic as schemes. Now
the result follows by observing that for general W, a general point of X‘(;,’) is a
general point of X (n). The result for any codimension follows by induction.

Theorem 2. For all n, with 1 < n < N — 1, the inseparable degree of =, is
the highest power of p that divides €,41.

Proof. For n = N — 1, the result follows from Theorem 1 and the fact that
YN-1= Ty_; 0Tyt With mnx_; birational.

Suppose now that n < N — 2. By a sequence of general central projections,
project X onto Xw C P™. Now applying Theorem 1 at the level n to Xy,
the result follows from the above discussed case, Proposition 2 and Proposition
3.
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