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Linear systems on curves with no
Weierstrass points

Masaaki Homma

Abstract. We study order-sequences of linear systems on smooth curves and establish the
formula: b; + by _; < by for all 7, where {bg < by < ... < by} is the order-sequence of a
linear system on a curve. As an application of the formula, we describe all linear systems on
curves which have no Weierstrass points.

0. Introduction

In the characteristic-free approach to Weierstrass points of a linear system on a
curve, we meet the concept of Weierstrass order-sequences of a linear system
(see, Schmidt [14, 15], Matzat [13], Laksov [11, 12] and StShr-Voloch [16].)

Let D be a linear system of projective dimension N on a smooth curve C
over an algebraically closed field and let P € C. A nonnegative integer m
is a Hermite invariant of D at P if there is a divisor D € D such that the
multiplicity of D at P is m. It is obvious that there are N + 1 Hermite invariants
{ro(P) < ... < un(P)} of D at P. A basic result is that there are N + 1
integers {by < ... < by} such that the Hermite invariants of D at P coincide
with {bo < ... < by} for all but finitely many points P € C. This sequence
is called the Weierstrass order-sequence of D. A point P € C is a Weierstrass
point if {uo(P) < ... < un(P)} # {bo < ... < by}. If the characteristic of
the ground field is zero, then every Weierstrass order-sequence is classical, that is
bj = j for every j. In positive characteristic p, however, this is not always true.
In this case, as Schmidt has shown [14, Satz 6], each Weierstrass order-sequence
{bo < ... < by} has the following property: if b is a nonnegative integer such
that

(bé‘) #0 mod p

for some k, then b = b; for some j. Conversely, as Stohr and Voloch have shown
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[16], a sequence of nonnegative integers with this property is the Weierstrass
order-sequence of a certain linear system of a curve.

Recently, relations between projective geometry of curves and their Weier-
strass order-sequences have been studied by several authors e.g., Ballico-Russo
[1], Garcia-Voloch [2], Hefez-Kakuta [3], Hefez-Voloch [4], Homma [6, 7, 8],
Homma-Kaji [9], Kaji [10]. In this paper, we prove the following formula on
Weierstrass order-sequences.

Theorem L If {by < ... < by} is a Weierstrass order-sequence of a linear
system on a curve, then we have

bj +bn_; < by

forallj=0,...,N.

As an application of the formula, we prove the following theorem. A Weier-
strass order-sequence {bo < ... < by} will be called symmetric if the equalities
b; +bn-; = by (j= Q500 w5 ,N) hold.

Theorem IL Let C be a smooth curve over an algebraically closed field k
and L a line bundle on C. Let V be a nonzero k-subspace of H°(C,L)
and D = PV the linear system corresponding to V. Then C has no D-
Weierstrass points if and only if C = PL, the Weierstrass order-sequence
{bo < ... < by} of D is symmetric and by coincides with the degree of D.
In this case, taking suitable coordinates S and T of P!, V is spanned by
(s%T'N-i | j=0,...,N}in H(PY,0(bn)).

1. Abstract Order-Sequences
Throughout this section, we fix a prime number p.
Let m, n be two nonnegative integers with p-adic expansions:

m=a,p’+oe1p” 1 +...+a (0< 0 <p)
n=Bp°+ Pt +...+ P (0<Bi<p).

Then we denote by m >, n (or n m) if o4 > B; for all 7. It is easy to

show that
(:’:) £#0 mod p

if and only if m >, n. In this case, we say that m dominates n or m is a

dominator for n.
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Definition 1.1. An AO (= abstract order)-sequence of dimension N with respect
to p is an sequence of N + 1 nonnegative integers {bg < b3 < -+ < by} with
the following property: if b is a nonnegative integer such that b < by for some
k, then b = b; for some 5. A member of an AO-sequence will be called an order.

Note that by = O by the definition. In particular, the only example of an
AO-sequence of dimension 0 is {0}. Thus, from now on, we assume that N > 1.

Definition 1.2. An AO-sequence {bp < b3 < ... < by} is said to be of
separable type if b; = 1.

Remark 1.3. If an AO-sequence {bp < b; < ... < by} is not of separable
type, then by is a positive power of p and divides every b;. In this case,

{b0(= 0) < bl/bl(z 1) < bz/bl <...< bN/bl}

is an AO-sequence of separable type.

Proof. A proof of this fact is an easy exercise. [

Remark 1.4. Let D be a linear system of projective dimension N > 0 on a curve.
It is easy to show that if B is the set of base points of D, then D’s Weierstrass
order-sequence coincides with D(—B)’s. So every Weierstrass order-sequence is
an AO-sequence (cf. [16, Cor. 1.8]). When the linear system D has no base
points, the corresponding morphism ®,:C — P is separable if and only if the
Weierstrass order-sequence of D is of separable type.

Remark 1.5. A sequence of nonnegative integers {ag < ... < apn} is the
Weierstrass order-sequence of a linear system on a curve if and only if it is an
AO-sequence.

Proof. See [16, Remark after Prop. 1.6]. O
In the rest of this section, we take up several properties of AO-sequences,
which will be used in the next section.

Lemma 1.6. Let B = {by < ... < by} be an AO-sequence. If by is a
maximal element with respect to the order >, i.e., b; > by implies
b; = by, then B\{by} is also an AO-sequence.

Proof. Let b’ be a nonnegative integer such that ¥’ < b for some b € B\{b;}.
So we have b’ € B. Suppose b’ = by, then b; = by by maximality of b, which
is a contradiction. So we have b’ € B\{b;}. O



96 MASAAKI HOMMA

Corollary 1.7. Let B = {bo < ... < by} be an AO-sequence and M be
any integer such that 0 < M < N. Then {bo < ... < bar} is also an
AQO-sequence.

Proof. This is a consequence of Lemma 1.6. O

Corollary 1.8. Let B = {bp < ... < by} be an AO-sequence. For a fixed
element by, let D = {b; € B | b; >p bi}. Then B\D is also an AO-sequence.

Proof. This is also an easy consequence of Lemma 1.6. O
Let m be a nonnegative integer. We denote by coeffp; m, the coefficient of
p* of the p-adic expansion of m.

Definition 1.9. The height of a positive integer m is the maximum in the integers
1 with coeffp,' m # 0. For an AO-sequence B = {bo < ... < bn}, we define
the height of B, denoted height B, to be the height of bn.

Example 1.10. Obviously, if an order b of an AO-sequence is of height 0, then
every nonnegative integer less than b is also an order. Therefore, if B is an AO-
sequence of dimension N and of height 0, then B coincides with {0,1,... ,N}.

2. A Basic Formula
The purpose of this section is to prove the following theorem.

Theorem 2.1. Let {by < ... < by} be a Weierstrass order-sequence of a
linear system on a curve. Then we have bj + bn—_; < by for every 3 =
o,...,N. )

When the characteristic of the ground field is zero, since bj = j(Jj =
0,...,N), the assertion is trivial. So we may assume that the characteristic
of the ground field is p > 0. In this case, as explained before, each Weier-
strass order-sequence is an AO-sequence with respect (o p. So our theorem is a
consequence of the following theorem.

Theorem 2.2. Let {bo < ... < by} be an AO-sequence with respect to a
prime number p. Then we have bj +by_; < by for every 4.5 Gyt .oV,
We start with an example.

Example 2.3. An AO-sequence {bo < ... < by} is said to be classical if
bj = j for every 5 = 0,...,N. Obviously, every classical AO-sequence is
symmetric, that is b; + by_; = by for every 4. In particular, Theorem 2.2 is
true for all AO-sequences of height O (cf. Example 1.10).

LINEAR SYSTEMS ON CURVES WITH NO WEIERSTRASS POINTS 97

Now we prove Theorem 2.2. Let A be the family of AO-sequences with
respect to p. If B = {bg < ... < by} € A, we define the index of B to be -
(N,bn,bn_1,... ,bo). We define a total order on A by the lexicographic order
of indices. Obviously, every nonempty subset of A has the minimum element
with respect to the total order.

Suppose that there is an AO-sequence for which the conclusion of Theorem
2.2 does not hold. Let B = {bp < ... < by} be the minimum element of the
such AO-sequences. By Example 2.3, we have height B (say e) > 1. Let j
be the minimum integer such that b; + by_; > by. Note that 7 > O because
bo + by = by and that b; < by_; because of the minimality of j. Setting

coeffpe b; =

coeffpe by_; = 8

coeffpe by = 7,
wemust have 0 < a < <y <pand vy #0.

Claim 1. If by is a maximal element of B with respect to the order >,
then we have k > N — 3.

’

Proof. By Lemma 1.6, B\{bs} is also an AO-sequence. Suppose k < N — j
and put

B\{bx}={bp < ... <by_1}.
Then we have b; = b; if ¢+ < k and b; = b;4; if ¢ > k, in particular, b} > b;,
'(N_l)_]. = by_; and by_, = by. Hence we have
b; + bl(N_l)_]- > bj + bN—j > by = bIN—l'

Hence B\{by} gives a counter-example to the assertion of Theorem 2.2, which is

a contradiction, because B\{b} is smaller than B with respect to their indices.
O

Claim 2. Let € be an integer such that 0 < € < . Let
B(e):= {b e Blep® < b < (e +1)p°}
B(e):= {b— ep®|b € B(e)}.
Then we have
B(0) > B(1) >...> B(v)

and each B(e) forms an AO-sequence.
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Proof. First we prove B(e) D B(e+ 1) for each € with 0 < € < v — 1. Let
¢ € B(e+1). Since ¢ < p°, we have (e + 1)p° + ¢ > €p®+ c. Hence
€p® + ¢ € B, because (¢ + 1)p® + ¢ € B. This means ¢ € B(e).

Next we prove that B(e) forms an AO-sequence. Let ¢’ be a nonnegative

integer such that ¢! < ¢ for some ¢ € B(e). Since ep® + ¢ >, €ep®+c' and
€p® + ¢ € B, we have ep® + ¢' € B. So we have ¢’ € B(e). O
Claim 3. B(0) =...= B(f).
Proof. We may assume that 8 > 0. Let ¢ € B(0). From Claim 1, there is
an integer b € B such that b >, c and b > by_;. Letting coeffpe b = 6, we
have § > B because by_; € B(8). Writing as b= 6p° + ¢, we have ¢ > c,
because ¢ < p®and b >, c. Hence §p®+c' > Bp°+candhence Sp°+c € B.
So ¢ € B(f). Therefore, by Claim 2, we have B(0) = ... = B(#). O

Claim 4. Let B(0) = {co < c1 < ... < ¢n}. Then we have
B(0) = ... = B(f) == =By —1) 3 B(y)

and

B(’Y): {Co Ll € oK Ch}
for some h < n. So we have y(n+1)+h=N.
Proof. The last assertion is a consequence of the preceding assertion because

il
N=*B-1=) #B(e) - 1.
e=0
To prove the first assertion, we may assume that B(0)2B(v). Let § be the

minimum integer such that B(0)2B(6). Note that § > S by Claim 3. For each
integer € such that § < € <, put

B, (€): = {ep® + c|c € B(0)}.
Obviously,

By:=B(O)UB@)U...UB(6 - 1)UB4(6)U...U B(v)

is also an AO-sequence. Note that By D B and the first successive §(n+1)
elements of By are contained in B. Let B' = {by < b} < ... < by} be the first
successive N + 1 integers of B,. From Corollary 1.7, B’ is an AO-sequence.
Since 6§ > B, we have b} = bj, byy_; = by-; and by < by. Hence we have

B+ bly_; = b+ bv—j > by > by,
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which means B’ is a counter-example to the conclusion of Theorem 2.2. Since B
is the minimum member of among all counter-examples and B’ is smaller than
or equal to B with respect to the total order of A, B must coincides with B'. O
By Claim 4,
by =P+ cn
and there are integers f, g with 0 < f, ¢ < n such that
by-j = Bp° + ¢4

bj = ap® + cy.
bn = cn l] ap®+cn Il ﬁpe+cn—|"'l(’7“‘1)pe+cn—|
by —; :
o=e ][ o ][ o ][ a-vr | [2]
B(0) ... B(a) st B(B) o B(y-1) B(y)

Claim 5. a=f8=0and y=1.
Proof. Since
j=*beBb>by j}=h+1+(y-1-8)(n+1)+(n—g)
and
j=*{beBlb<b}=0an+1)+f,

we have

h+14+(n—-g)+(y-B-1)(n+1)=f+a(n+1). )
Since n —g > 0and f < n+ 1, (1) implies

(v=-B-1(n+1)< fH+a(n+1)<(a+1)(n+1).

Hence we have

Y2 at+f+1. 2
Similarly, since n — g < n+ 1 and h < n, (1) implies
@t f <y ©)
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From (2) and (8), y=a+Bora+ B8+ 1.
First we consider the case ¥ = a+ (. Substituting a+ 3 for « in the equation
(1), we have

h+1+(n—g)+(a—1)(n+1)=f+aln+1).
So we have h = f + g. On the other hand, since
(a+ﬂ)pe+0f+cg=bj+bN_j>bN:'1pe—|-ch

and v = a+ B, we have c; + ¢, > cp. Those mean {co < ¢1 < ... < Chls
which is an AO-sequence because of Claim 2, is a counter-example to Theorem
2.1. Since the height of the AO-sequence is less than e, that contradicts the choice
of B as the minimum member among all counter-examples. Therefore ~ must be
equal t0 o + B + 1. Substituting o + 8 + 1 for « in the equation (1), we have
(n+ 1) + h = f 4 g. On the other hand, since

(a+ﬂ)pe+0f+cg=bj+bN_j>bN:’7pe+ch

and v = o+ B + 1, we have ¢y + ¢4 > p° + ch.
Now, consider the sequence

B':{co<cl<...<cn<pe+co<...<pe+ch}.

Obviously, B’ is an AO-sequence of height e and of dimension n + h + 1.
Writing as B' = {b}) < b} < ... < bl p41)> We have b = ¢; if ¢+ < n and

b, i =p°+cio1 Since n+h+1— f =g and c; + ¢, > p° + cp, we have

by + blntht1)-5 = €f T €9 > P°+ch = bpihtr-
This means B’ is also a counter-example to the conclusion of Theorem 2.2. Since
B' Cc B, we have B’ = B by the minimality of B. In particular, we have
a=fF=0andy=10
By the previous Claims, our situation was reduced to the following: There is
an AO-sequence C = {co < ¢1 < ... < cn} of height < e such that

B={by<...<bn}
={c0<cl<...<cn<p°+co<...<p‘+ch}

for some h < n and b;, by_; € B(0) = C. Note that N = n+h +1 and
h+1 < j (because by_; € C).
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" |

bN-j = Cn—(i-(h+1)

| bv=p+cn |

[ 0= | | P+ oo ]

Claim 6. ¢ > 2.

Proof. Suppose that e = 1. Then since C is of height 0, C = {0,1,... ,n} and
n < p. Hence b; = ¢; = j and by_; = cp_(j—(n+1)) = n+h+1— 3. Since
n<p wegetb;+by_j=n+h+1<p+ h=by, which is absurd. O

Setting
COeffpe——l bj = a'

coeffpe—x bN__.,' = ﬂ'
we must have 0 < o' < ' < p.
Let €’ be an integer such that 0 < ¢ < p — 1 and let
C(e):={ceClép*t <c< (¢ +1)p* 1}
C(e"):= {c - €p* |c € €(¢)}.
Then, by arguments similar to those in the proof of Claim 2, we can show that
c0)oC(1)>...o0C(p-1)
and each C(¢€’) is an AO-sequence.
Claim 7. C(0) =...=C(#).
Proof. Suppose that there is an order d € C(0) such that d¢C(B'). Let Dy: =
{be Blb > d}.

First we show that if b € Dy, then b < ¢, or p® < b. Suppose the contrary:
let ¢, € C such that ¢ >, dand ¢ < cg. Writing as ¢, = €'p®~! + €”, we
get € >, dbecause d < p* L If ¢ > B, then ¢ > ,H’pe‘i + d and then
B'p~! +d € C. Hence d € C(B'), which is a contradiction. So ¢ < 4. In

particular, ¢y < by_; because

— e—1 7] 1, e—1
ck=€p T+ <Bp" <bn_;.
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Hence, by Claim 1, there is b € B such that b >p ck and b> by_;. If b > °,
then we can write as b = p¢ + ¢; for some ! < h. But, since b= P +a > ck
we have ¢; >, ck. So we have h > | > k. This contradicts the assumption
ch < cg. Thus b € C. Writing b = 6'p*~1 + 6" (0 < §" < p*~1), since
E 5lel+6ll>_ Ck'—epel—l—E", " >pd
and 8’ > B’ (because b > bn-—;), we have b > B'p*~! + d. Hence we get
d € C(p'), which is a contradiction.
Now letting

Dg = {b € Ddlb < ch}

D} = {b€ Dy|p® < b},
by the preceding remark Dy is the disjoint union of D and D}. Moreover,
for each ¢x(0 < k < h), ¢ € DY if and only if p® + ¢; € DI. So we

1

have #DS — #DI = 5# Dg4. We consider the sequence B\ Dy, which is an
AO-sequence by Corollary 1.8. Put B\Dy = {by <
have b; = b;._#Dg and by_; = b’N,_(]._#Dg) because by_; = b;v_j_#Dz and
N'=N-#Dy= N —2#DY. Since

. < by.}. Then we

b;_#Dg T b.,N'—(_'i—#Dg) - bJ = bN_] > bN Z b}v, )

the AO-sequence B\Dj is also a counter-example to the conclusion of Theorem
2.2. Since B is the minimum member among all counter-examples, we can
conclude that Dy = &. O

Let us write as C(0) = {do < dy < ... < d¢}.

Claim 8. C(0)=...=C(f#)=...=C(p—1).
Proof. For each integer € such that 0 < €' < p—1, let

Ci(¢) ={e'p* t+dulp=0,1,...,r}.

Then C, (0) U UCy(p—-1)U{p®+co, p°+c1,...,p°+ch}is an AO-
sequence. Let B' = {b}, < ... < by} be the AO-sequence which consists of the
first successive N + 1 integers in the above sequence. Since C4 (') = C(€) for
all ¢ with 0 < ¢ < # by Claim 7, we get b} = b; and b}v_j = by_;. Hence
B’ is also a counter-example to Theorem 2.2. So B must coincides with B'. O

End of Proof. From Claim 8, we can write as

no oo n.__ R Y721 A2 AL 1 A 10
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by = op* 1 +d, (d, €C(0)
by_; = Bt +d; (d € C(0))

bv = p +4p T +du (0<4 <p, du€C(0).
Note that, by Claim 8,

( U {€p* ! +dyld, € C(O)}) U
€'=0

q—1
(U@+451+@m60@gu

e'=0
{p°+ 4P +dy 0< p<ul

Since
j=%{be Blb>by_;(= B'p* ! + d;)}
(u+1)+4'0r+1)+(-1-8)r+1)+r—t
and
i=*{be Blb< bj(= o'p*"1 + d,)}
=a'(r+1)+s,
we have
P-1-B+4)r+1)+u+l+r—t=0d'(r+1)+s. 4)

Sinceu+1+4+r—t>0and s < r+ 1, (4) implies
(P—1-F"+9)(r+1) < (o' +1)(r+1).
Hence we have
pty o+ +1 )
Similarly, since u+1 < r+1and r — t < r, (4) implies
od+8 <p++'. (6)
From (5) and (6), we get ¥ =o'+ 3’ ' —pora’+ ' +1—p.

Case 1. First we consider the case 4/ = o’ + ' — p. From (4), we get u = s+t.
On the other hand, since

bi+bn_j= (! +8)p  +ds+di = p* + 4'p* " + d, + dy,
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by = p*++'p 1 +dy and bj+by_; > by, we obtain ds+d; > dy. This means
that the AO-sequence {do < ... < dy} is also a counter-example to Theorem
2.2. But the AO-sequence is of height < e, which contradicts the minimality of

B.
Case 2. Next we consider the case 7' = o' + ' +1 — p. By the same argument

used in the first case, we have u + (r + 1) = s+t and ds + d¢ > p* 1+ dy,
which mean the AO-sequence

{do<...<dr<pl+dp<... <pl+d,}
is also a counter-example. This is a contradiction because the height of the

sequence is e — 1 (< €). So we can conclude that Theorem 2.2 is true for every

AO-sequence.

3. Proof of Theorem II
Now we prove Theorem II stated in Introduction. Our proof is divided into two

parts.

Theorem 3.1. Let D be a linear system on a smooth curve C of degree
d > 0 and of (projective) dimension N > 0 and let {bp < ... < bn} be the
Weierstrass order-sequence of D. Then C has no D-Weierstrass points if and
only if C =P, by =d and bj + by_;j = by for all j=0,1,...,N.

Proof. Let W be the ramification divisor of D (see [12] or [16]; in the terminology
of [12], W is the highest Wronskian of D). The divisor W has the following
properties: '

(i) W is effective of degree

(Bo+ ... +bn)(29 — 2) + (N +1)d,

where g is the genus of C;
(ii) A point P € C is a D-Weierstrass point if and only if P € SuppW
Therefore, C has no D-Weierstrass points if and only if

(bo+...+bn)(2-2¢)=(N+1)d. 7)
If the equation (7) holds, then g = 0 because g > 0 implies (N +1)d < 0, which

is absurd. Hence our condition is equivalent to

9=0
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On the other hand, using the fact: by < d and the inequality proved in Theorem
2.1, we have

2(bo+ ... +bn) < (N+1)by < (N + 1)d ®
and all the equalities in (9) hold if and only if by = d and b; + by_; = by for
any 7 =0,...,N. This completes the proof. O]

The second step is to prove the following lemma.

Lemma 3.2. Let V be an (N + 1)-dimensional subspace of H°(P!,0(d))
and {po < ... < pN} a sequence of nonnegative integers (not necessary
an AO-sequence) such that uy = d and p; + pn—; = pn (7 =0,...,N).
Suppose that there are two points Py, Py € P such that the Hermite invariants
of D = P(V) at P(i = 1,2) coincides with {po < ... < un}. Then, taking
suitable coordinates S, T of P1, the N + 1 elements

SHOTHEN SHMITEN-1 .  SHNTHo

forms a basis of V.

Proof. Choose coordinates S and T of P! such that P, = 0 = (0:1), P; =

S .
oo = (1:0) and put s = T Now we consider the isomorphism

H°(P!, 0(d)) > L(doo)
Sde—k . sk

where

L(doo) = {f € k(P)| div f + doo > 0} U {0}.
We denote by £(D,doo), the image of V' under the isomorphism. To prove our
assertion, it suffices to show that £(D,doo) is generated by {sko,s#1,... | s#N}.

Since the Hermite invariants of D at P; are {po < ... < un}, we can choose a
basis o, ... ,on of L(D,doo) such that

UN .
po=sk0+ 3 ag;s*
t=po+1

EN .
Pa = gha + E aa,isi (10)
t=pa+1

sEN .

1

©N
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Furthermore, replacing ¢o, ... ,oN by
©N = ©N

‘P'N—l = PN-1— aN—l,MN‘O']V
90:1 = Pa — (aa,I‘N‘PlN +...F aa.#a+190:z+1)

/)
00 =0 — (Gouy PN + -+ + ao,u, #1)
we may assume that

o, =0 (k=a+1,...,N) forany o in(10). )

We show that ¢, = s#¢ (a = 0,...,N) under the assumption (11). Sup-
pose the contrary. For a number « such that p, # s, let 8 be the maximum

T . . :
number such that a, g # 0. Put ¢t = 3 and consider the isomorphism

H°(P',0(d)) = L(d-0)
ghpd—k _, -k

Denoting by L£(D,d - 0) the image of V' under the isomorphism, we get the
isomorphism from £(D,doo) to £L(D,d-0) via V. The isomorphism send @, to

thN - pq (%) = tHN S o ag gtV P

Since t is a local parameter at oo and aq g # 0, uy — F must be a Hermite
invariant of D at co. Hence we have uy—f8 = p., for some v. Since u;+pn—; =
pn for all 5, we have B = pn_, which contradicts (11). This completes the

proof.

Addendum. (This note was added in December, 1991). Recently, two nice papers
concerning Theorem I have appeared. The first one is

A. Garcia, Some arithmetic properties of order-sequences of algebraic
curves (Preprint, Oct. 1991) in which he has given a short proof of this theorem.
The second one is

E. Esteves, A geometric proof of an inequality of order sequences (preprint,
Oct. 1991), in which he has given a geometric proof of a generalization of
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Theorem L.

Added in proof

Recently, the author found a very short proof of Theorem 1 and another proof
of Esteve’s generalization which was mentioned in Addendum. The proofs are,
however, rather tricky. We will discuss them in another paper.
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