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Survival of Multidimensional contact Process
in Random Environments

Enrique D. Andjel

Abstract. We consider contact processes in dimension d > 2, with death rates identically one
and random infection rates i.i.d distributed on the space. We show that the process may survive
although the distribution A of the infection rate is such that the expectation of [log(1+ A))¢—¢
is as close to zero as one wishes.

1. Introduction and Statement of Results
Consider the d dimensional integer lattice Z¢ and suppose that for each (unordered)
pair of elements z and y at Euclidean distance one there is an edge joining then.,
Denote the edge joining z to y by zy and the set of all edges by E;. Let
Y = {all subsets of 7%} and suppose that Azy is a collection of ii.d. random
variables indexed by Eg, defined in a probability space (£2, P) and taking values
in Ry. Call elements of {2 environments and for each environment w define a
Markov process on Y in the following way: Give in another probability space
(€, P,) two collections of Poisson processes Ny, (-) and M, (-) such that

a) all these Poisson processes are independent,

b) the collections Nzy and M, are indexed by E4 and 7¢ respectively,

¢) Vz € 7%, M, has intensity one and Vzy € B4, N,y has intensity Az (w).
Then consider 7 x [0,00) as a subspace of R? x [0,00), and add to it the
following (randomly placed) objects:

i) Horizontal edges joining (z,s) to (y,s) for each s such that N,,(s) —
Nzy(s-) =1.

i) 6's at points (z, s) such that M,(s) — My(s—) = 1.

For s < t and z,y € 79 say that there exists a path from (z,8) to (y,t)
if there is a chain of upward vertical and horizontal edges which starts at (z, s),
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ends at (y,t) and does not cross any §. Denote this event by

{(z,s) — (v,1)}

For any A C Z¢ say that the event

A
{(x,s) i (y>t)}
occurs if there exists a chain as above entirely contained in A x [s,t]. Note that
for a fixed environment the events.

A A
(x’sl) ——1—) (y’tl) and (u,32) —_2" (U,tz)

are independent if either
(Sl,tl) N (32,t2) =D

or
AlﬁAz = .

Note also that

{(@8) =2 @0} < {(@:5) — 0}
if AC B.
Now, fix an z € Z¢, let
5 = {=}
and for t > 0
Af ={ye1%(2,0) — (y,1)}-
The process A? is called the contact process in the environment w with initial
condition {z}. For a more general initial state B €Y, we define AP as U,ep A7
We say that the contact process in the environment w survives if for some z € 7¢,
P,(Af #£ @, Vt) > 0.

Note that the set of environments in which the process survives is translation
invariant. Hence, by the Ergodic Theorem, it has probability zero or one. If this
probability is one, we say that the contact process in the random environment
(Q, P) survives and if it is zero that it dies out. The expectation operators
corresponding to P and P, are denoted by E and E,, respectively. Finally, A
will be a random variable arbitrarily chosen among the Azy’s.

Liggett (1992) showed that in dimension 1, the contact process in a random
environment (CPIRE) dies out if Elog A < 0. In higher dimensions there exists
1o ¢ € R for which Elog A < ¢ implies extinction. This was observed by Holley
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who gave the following argument: for any c there exists a distribution of A
satisfying both E'log A < ¢ and P(X > 2) greater than the critical value for bond
percolation on Z¢. For this distribution, there exists for almost all environment
an infinite path of bonds for which A > 2. Since the one dimensional contact
process survives when A = 2 (Holley and Liggett (1978)), this yields an imbedded
one dimensional process that survives. In this paper we build up on Holley’s
argument to show that in dimension d > 2, for any ¢, 6 > 0 there exists a CPIRE
that survives for which E[log(1 + A)]4~¢ < §. To do so we will only need
distributions of A taking two values Ap and A;. For this reason, in the sequel we
assume that
P(/\:/\l):p and P(/\:/\o):].—p

where 0 < p < 1. We now state our results:

Theorem 1.1. Given Ay > 0, there exists a constant C(Ao) such that V0O <
p < 1 the CPIRE survives if Ay > exp[C()\o)p_é]

Corollary 1.2. Given €,6 > 0, there exists a CPIRE that survives for which
Ellog(1+ A)]4 ¢ < 6.
To derive the corollary from the theorem observe that if

A1 = exp[C(Ao)p~ 1],
then
Ellog(1 + X)]*~ < [log(L + A0)]*¢ + pllog(1 + exp(C(Ao)p~4))] ™.

’gake now Ag > 0 and such that the first term of the right hand side is less than
3 Then note that the second term goes to zero as p | 0.

Recent work of A. Klein (1991) shows that the CPIRE dies out if E[log(l +
A)]/() is small enough, where f(d) is a function growing as 2d2. It would be
interesting to know whether this situation or the one described in Corollary (1.2)
holds when considering E[log(1 + A)]* for values of « in the interval [d, f(d)].

To prove Theorem (1.1) we need to introduce two percolation models on
X'= Z+ X Z+.

Oriented site percolation
Call elements of X sites and consider a family {Z;},¢x of i.i.d. 0 or 1 valued
random variables, such that P(Z, = 1) = p. Then say that a site y is open
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(closed) if Z, = 1(Z, = 0).

Standard techniques show that there exists a critical value p, € (0,1) such
that Vp > p, there exists with probability one an infinite sequence zp, 21, ..., Of
open sites such that:

VieN z—2z-1= (1,0) ofr 2z — 2i-1= (0, 1).

Oriented bond percolation with finite range dependence.

To each element z € X we associate two O or 1 valued random variables U,
and V. Assume that z is joined by a bond to z + (0,1) and by another bond to
z + (1,1). Say that the first (second) of these bonds is open if U =1z =1)
and that it is closed if U, = 0 (V, = 0). For z,y € X say that y can be reached
from z if there exists a finite sequence o = ,Z1,. .. ,Zn = Yy such that for all
ie{1,...,n} either z; — zi_1 = (0, 1) and Uz, =1,0r i — i1 = (1,1)
and V,_ = 1. Then define Co as {y € X:y can be reached from (0,0)} and
denote by |Co| the cardinal of this random set. Suppose now that the random
vector (U, V,) satisfies the following finite range dependence condition:

Vz € X, (Ug,V;) is independent of

{(U,,V,):y € X\{z,z + (1,0),z+ (2,0),z — (1,0),z — (2,0)}} (1.3)

Then, contour methods similar to the ones used in Toom (1968) show that there
exists a value po € (0,1) such that for any model as above and for which

gggf{min(P(Ux = 1)’P(Vz == 1))} > Po

we have P(|Co| = o) > 0. )
In the next section we prove some preliminary lemmas involving these per-
colation models and the proof of Theorem (1.1) is given in Section 3.

2. Preliminary Results

Our first lemma is a consequence of the result concerning oriented site percolation
mentioned in Section 1. Before stating it, we introduce some notation that will
remain valid throghout this paper. Fix a real number A >"1 and such that
1— e 4 > p,, denote by [ ] the integer part of its argument, by (e1,... ,eq) the
canonical basis in R and by | | the Euclidean norm. Finally let

- (]
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and note that £(p) > 1.

Lemma 2.1. For all p suficiently small there exists for P almost all environ-
ment w, a' sequence (ki)icz L in 7% and a subsequence (kij)jez + satisfying
the following properties:
2 ki#k; Vi#j,
b) |k¢+1 — k‘l =1 Viely,
C) io =0,
d) #j41 — 15 < 2d€(p),
e) Vel /\zj,,].(w) = Xy, Where gy = k,-j and y; = i1
Proof. For z € 7% let Ay, be the set of edges in Z¢ whose vertices are contained
in:
d
{Z(p)-z—i—Za,-e;:l <a;<f(p)—1 1= 1,...d},
i=1
where £(p) - z is the element of 7% obtained by multiplying each coordinate of
z by £(p). The number of such edges is d(£(p) — 1)*~1(£(p) — 2), which for p
small enough is bigger than ; Hence, for those values of p, the probability that

for at least one edge in A, the corresponding A is equal to A; is bigger than
1—(1—p)% >1-et > p,.
Since Ay, N Ap,r = D if 2z # 2/, the events
B, ={\A =), for at least one edge in A,,} z¢€Z¢,

are independent and we can apply the result mentioned in the previous section on
oriented site percolation, to conclude that for almost all environment there exists
a sequence (2;)iez,, in 7% such that Vi € 7, ;11 — % € {e1,... ,eq} and Aps,
has at least one edge for which A = A;. The sequence k; and the subsequence
k;]. are easily derived from (z;).

Note. Since p, is the critical value for two dimensional oriented site percolation,
the sequence z; can be taken among the elements of Z¢ whose last d—2 coordinates
are 0. This property will not be needed later.

In the sequel k;, k;j ,x; and y; will be as in the above lemma. We now define
VJ NE Z+:

Ej =1z}, Fj={kijykin,o kg o ki )
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and

§ = P(T < min{S,1}),

where T and S are independent exponentially distributed ramdom variables of
parameters Ao and 1 respectively.

Lemma 2.2. Let 0 < s < t and suppose that w is an environment for which
the conclusion of Lemma (2.1) holds.
Then, Y3 € 74+ we have:

E.
t— 1
3 Pllens) ——— (epd)) 2 1-2—2"=

Ai+1°
E.
’ t—s+1
and =
; X ged
&) Pu((zj,8) —— (yj>1)) > {_ot=stl -9,
A1 +1

-7 .
Moreover if > t — s > 2dl(p)k for some k € N, then V3 € 74 we

also have 5
F; i— a4l
& Pulle) 2 ) 2 [1-2 ()| (- - o)

Proof. It clearly suffices to consider the case in which s = 0 and 5 = 0. This
has the advantage of simplifying the notation in this proof. To prove part a) note
that the complement of

{(20,0) — (m0,t)} °

is contained in Ule A; where
Ay = {For some u >0 My (u)=1 and Ngoy,(u) =0},
Ay = {Forsome 0 < u <t Mg(t) = Mg (u) +1 and Ny, (t) =
Nzollo (u)}’

= {Forsome 0<u<t Mz (u) = Mg, (u—)+1 and for some v2>u
Myo (v) ], Muo (u) =1 and Nzoyo (v) = Nzoyo(u)}
Ay = {Forsome 0<u<t My(u)= M,,(u—)+1 and for some v > u
Mzo (v) T Mzo(u) =1 and Nzollo(v) R Nzoﬂo(u)}'
Hence

P,((z0,0) — (zo,t)) > 1 - E P, (4;).
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We now give upper bounds for P, (A;),1 < ¢ < 4. Clearly
1

P,(A]) = ——
W(A1) = T Pulds )_A+1
P, (As|My,(t) = n) < w(®) =n) < 5 - - Vn.
Therefore: "
1 1
P,(A;
; (4:) = 5 +1+,\ 1
— A+ 1 w(Mz, (t) = n) + Pw(Myo(t) = n)]
2 N

= 2 =2
A+l 41 A+
which proves a). To prove part b) define B;(1 < ¢ < 4) as A; interchanging the

roles of zp and yp. Then procede as in the proof of part a). To prove part c¢)
define

€ = (Newun(t) = 0}

and note that the complement of

{(z0,0) — (0,1}
is contained in A1 U Bs U A3 U A4 UC.
Part ¢) now follows from the estimates already obtained and the fact that P,,(C) =
e~ 1t To prove part d) write:
Fo
Pu((y0,0) —— (21,)) 2
P,( Forsome 0<u<t (yo,O) % (z1,u) and (ml,u) (:z:l,t)) >

P,( For some 0 < u < t,(yo, ) % (z1,u)) - 1nf P ((:z:l,u) 5 (21,1)),

where the second inequality follows from the comments made immediately after
introducing the notation

{(2,0) —— (y,1)}
Hence, by part a)
Pul(40,0) — (21,1)) >

" i (2.3)
[1—2—'t—>‘ +1] - P, (forsome 0<u <t (y9,0) —— (z1,u))
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To give a lower bound to the second term in the right hand side, define, for
0< 3 <k sj=j (i1 — 1), where #; is as in Lemma (2.1), and for

F,
0<3<k-1 D;={(yo,s5) Wl (z1,u) for some s; < u < 841}
Then,
F,
P,(for some 0<u<t (yo,0) — (z1,u)) >

P, (kL—Jl [Dj N {(yo,O) =, (yO;sj)}]> =

7=0

k-1 E
B; (U DJ') infocj<k—1 Po (#0,0) —— (¥0,55))-
7=0

The last inequality being again a consequence of the comment following the
definition of

A
{(z,8) — (w:t)}
By part a) the right hand side above is bounded below by

k-1 :
. . (k)(11~1)+1]
P, (U DJ) - [1 S
=0
By Lemma (2.1) 11 < 2d#(p), hence

k-1
P,( for some 0 < u <t, (y0,0) Lo, (z1,u)) > [1 - 2%;&1—1] P, (U D,-) .
§=0

In view of (2.3), it now suffices to show that
k-1 .
P, (U D,-) > 1 — (1 52245))E) (2.4)
=0

To prove this, note that the events D; are independent and have the same proba-
bility. Therefore

P, (kol D,-) = 1- (1 - P(Do))* (@5)
i=0

Since s1 — sg = il — 1 and Fo = {kl = Y0, - - ,k,'l = 221}, itliS clear from the
definition of 6 that P,(Dg) > 6171, and since i3 — 1 < 2d£(p), this implies
that P, (Do) > 6244), which together with (2.5) yields (2.4).

3. Proof of Theorem (1.1)
In this proof we adopt the following convention: for a € R we let [a] = inf{z €
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Z:z > a}. We will show the following statement, which is easily seen to imply
the theorem: there exist constants ¢y and co ((depending on § and hence on g,
but not on p) such that for p small enough and

A1 2 e1p” [exp(czpd)]

the CPIRE survives. Since we have to deal only with small values of p, it suffices
to show that the contact process survives on environments satisfying the conclusion
of Lemma (2.1). To prove this, choose positive integers L and K, such that

(1— %)2 (1-¢%) > po

3
1_Z>p0)

where pq is the value appearing in Section 1 and related to oriented bond per-

and

colation models satisfying the finite range dependence condition (1.3). Then,
let

n=K[62P)] and t; = 2ndé(p)
where § is the constant defined just before Lemma (2.2). Suppose that
A1 > 2toL = 4LKde(p)[6244P)],

We will now show that PZe(A; # @, Vt) > 0; where (z;)iez, and (y;)icz, are
the sequences related to w as in the conclusion of Lemma (2.1). For this purpose,
it suffices to show that

P,(A N{zi,y:1€Z4+} #D Vn) > 0.

nto

To prove this inequality we compare the contact process in the environment w to
an oriented bond percolation model satisfying (1.3) and defined in the probability
space (€, P,,) in the following way: For ¢,n € Z identify (z;,nto) to (2¢,n)
and (y;,nto) to (2¢ + 1,n). Then let

UZ:',n =1

E'v )
{(zi,nt0) —— (2, (n+1)t0)}
Vain=1 E, )
{(zi,nto) —— (i, (n+1)t0)}

Usiv1n =1 E;
{(yi) nto) T (yi, (n’ + l)to)}
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and

Vaitin =1 F; ,

{(yi,nto) —— (zi41,(n +1)t0)}

where E; and F; are the subsets of 7% defined after the proof of Lemma (2.1).
The random variables Uj, and Vj, define an oriented bond percolation model
as in Section 1. This percolation model satisfies condition (1.3) and is related to
the contact process in the environment w by the following inclusion

{|Co| = o0} C {A7}, N {zi, 421 €L+ } # S Vn}.

Hence, to complete the proof it suffices to show that P, (|Co| = o0) > 0. To do
so we give the following lower bounds:
t 1 t
Ja AR ol TR
A1 +1 2to L
where the first inequality follows for part a) of Lemma (2.2), the second from our

8) Pu(Usip=1)>1-2

choice of A and the third from the fact that t; > 1. In the same manner we can
also prove that:

b) Pw(UZH—l,n == 1) >1- 72;

Then using part ¢) of Lemma (2.2) we obtain

c)
t0+1 = Ak
Vi = 1) > = 90—t 1to
P.( 2%in 1) > a1 e
2 5 2 1 3
B = TS s — e S ] —
=L TR M B

where the last inequality follows from the choice of A1 and the fact that tg > 1.
Finally, using part d) of Lemma (2.2) we get:
d)

P,(Vaiy1m=1) 2 <1 — 2:01:11>2 (1 _ (1 _ 52dt(p))")

> <1 = %)2 (1 - (1- 52de(p))‘5_2de(m"‘)
2 (1-3) (-,

where the second inequality follows from our choice of n and the third from the

fact that for y > 1
1 E)
(1 - —-) < e L.
Y
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By our choice of L and K, all the lower bounds are greater than py and this
implies that P, (|C| = o0) > 0.
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