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Entropy of non-uniformly hyperbolic
plane billiards

N. Chernov and R. Markarian

Abstract. We prove exact formulas for measure theoretic entropy of plane billiards systems
with absolutely-focusing boundaries with non-vanishing Lyapunov exponents. In particular, our
formulas hold for the billiards introduced by Wojtkowski, Markarian, Donnay and Bunimovich.
As an illustration, we calculate the entropy of a “perturbation” of the boundary of a polygon
by absolutely focusing “ripples”. .

1. Introduction

In 1970 Ya. G. Sinai proved that plane billiard systems with strictly concave
boundary are hyperbolic and ergodic. L. A. Bunimovich (1974, 1979) extended
these results to billiards with a strictly convex boundary with regular form (consist-
ing of circular arcs). Recently M. Wojtkowsky (1986) and R. Markarian (1988)
introduced far larger classes of plane billiards with focusing boundaries which
arc also (non-uniformly) hyperbolic. Finally, R. Markarian (1990), V. Donnay
(1991) and L.A. Bunimovich (1991) introduced more general classes of convex
curves which may serve as parts of the boundary of chaotic billiards. Donnay and
Bunimovich have called them (absolutely) focusing arcs. Note that billiards with
smooth (C®) convex boundary have caustics that occupy a set of positive measure
(L’azutkin, 1973) and are therefore not chaotic.

Sinai (1970) obtained exact formulas for the measure-theoretic entropy of
plane billiards with concave boundaries. Chernov provided another proof of the
Sinai formulas and extended them to Bunimovich billiards with circular arcs.
Here we will prove the same formulas for all non-uniformly hyperbolic billiards
with absolutely focusing boundaries, including those studied by Wojtkowsky and
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Markarian.

2. Notations

A complete and fairly detailed introduction-to the theory of billiards can be found
in (Comnfeld et al., 1982). As this paper is a continuation of (Chernov, 1991), the
same notation has been used. The following paragraphs provide a brief summary
of the basic notations used in this paper. Differences with other papers by R.
Markarian should be observed.

A plane billiard is the dynamical system describing the free motion of a point
mass inside an open, bounded, connected region Q of the plane, with elastic
reflections at the boundary. The boundary consists of a finite set of closed curves
Q) that can be either Crt+l y > 3, with non-zero curvature, or real analytic.
In both cases, the curvature |K| is bounded. The regular components of the
boundary

3Q; = 0Q:\|J9Q;
J#i
can have positive (dispersing components), strictly negative (focusing) or zero
curvature (neutral). Angles between adjacent regular components are not equal to
zero. The union of regular components with positive curvature is represented by
g+,

Let z = (g,v) be a moving point ¢ € Q, and |jv|| = 1. The billiard flow
{S*} can be defined on M = Q x S (the phase space). It preserves the Liouville
measure du = cudqdv. Here ¢, = (27|Q|)~! is the mormalizing factor and Q|
stands for the area of Q. :

Consider the cross-section

M ={(q,v),q €9Q,< v,n(gq) >> 0}

of the phase space M, where n(g) denotes the inward unit normal vector to 9Q).
The coordinate system in M is constituted by the arc length parameter r along
8Q and the angle ¢ between n(g) and v. Clearly lp| < m/2. -

Consider the measure dv = c, cos pdrdp. Here ¢, = (210Q|)~1 is the
normalizing factor and |8Q)| stands for the length of Q. The free path of a
point z € M until the first reflection is denoted as t(z), and the natural projection
from M to Q and from M to 0Q as . If n(r(S*#)z) is well-defined and
st@)te € M for x € M, then Tz = St=)+ ¢ defines almost everywhere the
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first return map T: M — M. T is called the billiard map.

If N Cc M is the set of points where T* is not defined or not continuous for
some k € Z, then T is a C”, r > 3, diffeomorphism from H = M\N onto H.
v(H) =1 and T preserves the measure v.

Strelcyn, in (Katok, Strelcyn, 1986), part V.7, described classes of arcs -
including those indicated above - that may constitute parts of the boundary of
billiards whose billiard map is a smooth map with singularities (or discontinuous
dynamical system). Then Pesin’s theory may be applied in order to construct
invariant manifolds and to obtain explicit formulas for the entropy.

We will say that the system is non-uniformly hyperbolic or chaotic if the
Pesin region has measure one. Recall that the Pesin region (X(7)) is the set of
points where none of the Lyapunov exponents equal to zero. Good descriptions
of billiards that have Pesin region of measure one may be found in (Wojtkowski,
1986), (Markarian 1988, 1990), (Donnay, 1991).

3. Absolutely - Focusing Arcs and Invariant Manifolds
A C* focusing curve T is an absolutely- focusing arc if
a) any infinitesimal parallel incoming beam of trajectories focuses between

each pair of collisions with T' and focuses in @ after hitting " for the last time
(Figure 1), and

Figure 1
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/O .
Figure 2

b) the angle between the oriented tangents at the end points of T' is not greater
than = (Figure 2).

Bunimovich (1991) realized that condition (a) is equivalent to the following
simpler requirement: the beam which falls parallel upon I' focuses after the last
reflection.

Donnay (1991) proved that any sufficiently small focusing curve is absolutely-
focusing. Earlier, Markarian had proved that sufficiently small focusing arcs
may be parts of the boundary of (non-uniformly) hyperbolic billiards, but under
different conditions. Curves that satisfy both size conditions will be called short-
focusing arcs.

Donnay also proved that if @ is a convex region whose boundary consists of
absolutely-focusing arcs connected by straight lines of sufficient length, then the
billiard is (non-uniformly) hyperbolic. '

In billiard systems with Pesin region of measure one, at a.e. phase point
z € M, the unstable manifold is a C? curve 7 framed with normal vectors. The
curvature of 7 at the point 7 (z) (with respect to its normal, directed as the velocity
vector of z) will be denoted by k(z). In the interest of time we will call k(z)
the curvature of the unstable manifold (at x).

Projecting an unstable manifold to the space M, we obtain an unstable man-
ifold for the billiard map T which is a smooth (C*) curve 4y* in M. If z € M
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then it is easy to see that

‘i_f = —K(z) + k(z) cos (=)

is the equation of ~*.
Consider now the countinued fraction

01(1‘) =t
az(z) +

1
as(z) + —
aqs(z) + i

The analytical expression for k(z) is a continued fraction of the form (1),
with
2K (T *z)

m) agk(x) — t(T_kx)

azk+1(z) =
with K (y) being the curvature of dQ at x(y). Observe that

aze+1(T*y) L(y) = 4,

if L(y) is the part of the trajectory at y contained in the circle of curvature of
7 (y)-

The convergence of the expression (1) for k(z) is proved for semi-dispersing
billiards (Sinai, 1970), as well as for circular arcs (Bunimovich, 1974). Based
on the work of Bunimovich (1991), we provide a proof of its convergence for a
large of (non-uniformly) hyperbolic billiards (Proposition 2). We Believe that it
is valid for all chaotic billiards.

It is very important to observe that the continued fraction k(z) may converge
but may not necessarily describe the curvature of the unstable manifold. This is
the case of the circle where

~2
Rcosp’

az(z) = ask+1(z) = 2Rcos p,

and it results k(z) = (Bunimovich, 1974). In this case, the differential

Rcosp
. dp . .
equation becomes e 0, which describes the corresponding invariant curve in
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the phase plane.

4. Main Results and Examples »
In (Wojtkowski, 1986) it was proved that curves that verify the formula

|L(z)| + |L(Tz)| < 2¢(=) )

are absolutely-focusing. The proof is based on the fact that parallel incoming
beams “containing” z focus at distance L(z)/2 on the trajectory of z = (g, v).

Condition (2) is equivalent to d>R/dr? < 0 where R(q) = K_tq)_ is the radius
of curvature at ¢ € 9Q.
Proposition 1. Curves that satisfy the formula

|L(Tz)|[t(Tz) + t(z)] < 2¢(Tz)t(), 3)
considered in Markarian (1988) are absolutely-focusing.
Theorem 1. If a billiard map is (non-uniformly) hyperbolic and

[ n* [k(@)ldv(z) < 0
M

then the entropy of the billiard map is

ho(T) = /M In |1+ ¢(z)k(z)|dv(z) @)

Recall that Int s = max{0,In s}.

Theorem 2. If the billiard map satisfies the conditions of Theorem 1, then
the entropy of billiard flow {S'} is

ml{SH = (D) | [ t@)avta)|
= hy(T)e e
= hy(T)|9Q|(x|QD) ™.

Remark 1. In the case of billiards with concave boundary (K > 0), Sinai (1970)
proved that

o)

h((8")) = [ k=)duo)
In our case this integral does not exist. Indeed, each unstable manifold after

reflection at a focusing arc passes a conjugate point yo. At this point k(yo) = oo,
and k(y) = d~! at the distance d to the point yo.
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Theorem 3. Billiards that satisfy conditions of Theorem I can be constructed
in the following ways.

i) Regular components of the boundary can be of any type with the ex-
ception that focusing components must satisfy (2) or be short-focusing arcs.
With reference to non-adjacent components, the circles of semicurvature in
each point of each focusing component do not contain points either of other
regular components or of the circles of semicurvature of other focusing com-
ponents. Adjacent components form interior angles greater than . Focusing
and dispersing adjacent components form angles not smaller than x, and
focusing and neutral adjacent components forms angles greater than /2.

ii) Regular components of the boundary can be of any type with the excep-
tion that focusing components must satisfy (3) or be short-focusing arcs. The
circles of curvature of focusing components can not contain points of other
components. Conditions on adjacent arcs are as in (i).

iii) Regular components of the boundary can be of any type with the excep-
tion that focusing ones must be absolutely-focusing arcs located sufficiently
apart from each other, so that they satisfy the condition (ii) of Theorem 8 in
Bunimovich (1991). Conditions on adjacent components are as in (ii).

In every case almost every trajectory must have infinite hits at non-neutral
components.

Proposition 2. For billiard tables described in Theorem 3, the expression (1)
is convergent. Since its billiard transformations are (non-uniformly) hyper-
bolic, it describes the curvature of locally unstable curves in M.

Remark 2. For Sinai (multidimensional) and Bunimovich-type billiards, theorem
1 was proved in Chernov (1991). The formula of Theorem 1 can also be applied
if the Pesin region has positive measure but not equal to one.

Remark 3. In case (iii) of Theorem 3 and Proposition 2, focusing components
are supposed to be sufficiently far apart from one another. The exact formula-
tion of that assumption is given in Bunimovich (1991). Roughly speaking, to
each focusing component I' one can assign a positive number rp. The distance,
(measured inside @), between two such components T'; and T'; is supposed to be
greater than rr, + 7r,. In particular examples the value 7t is rather difficult to
compute. But it is scale invariant, i.e., if T, is a copy of T' shrinked homotetically
with a factor €, then 7r, = erp. This property is used in our illustrative example
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in section 6.

Examples of billiards that satisfy conditions of theorem 1 are the following:

a) The cardioid: (Wojtkowski, 1986) and Theorem 3.

b) Well-designed billiards with arcs of epicycloid, cycloid and arcs of an
ellipse close to the vertices: (Wojtkowski, 1986), (Markarian, 1988), Proposition
1 and Theorem 3. If the ellipse is given by z = acosa, y =sen o, 0 < a < 2,
(a > 1), “good” arcs are defined by

2

3w
sen” a .

4
¢) The elliptic stadium (Figure 3) with half-ellipses that satisfy 1 < a <
\/2 and with h sufficiently large: (Donnay, 1991). Numerical studies (Canale,

T
<——, o —<a<
1+a 4

Markarian, 1991) indicate that “good” billiards are obtained with h > h(a); some

values of h(a) are indicated in the following table (it seems that h(a) — +oo
when a — \/5).

a h(a)
1 0
1.1 0.46
1.2 0.7
1.3 14
1.4 7
1.41 11
1
—2 2

Figure 3

If a > /2, for very large h, KAM phenomena is observed.
d) The billiard with at least three ergodic components studied in Wojtkowski
(1986) (Figure 4) when h > a% — 1 and F}, F>, Fj, F; are the focus of each half
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ellipse.
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Figure 4
5. Proofs

Let us recall Theorem 11 in Bunimovich (1991) that will be used in the proofs of
Proposition 1 and 2: The continued fraction of (1) is convergent if the following
two conditions are satisfied:

a) all even elements are positive and their sum is infinite,

b) for any two negative elements aggi_1, aggn_ 1(k' < k") such that there are
no other negative elements between them,

min{aZk:,azku} > la2k1_1‘_1(2 o 5kl) + |a2k”+1|—1 <2 — 1 j_k:; )
kN

for some 6 > —1,1=1,2,...,
Proof of Proposition 1. As Bunimovich pointed out to us, conditions (2) and
(3) are almost the same because they can be rewritten as

azk > 2|age_1|" + 2|agks1|”" (W)

lazk+a] > 2057 +2 a5 ,, k=1,2,... M)

Bunimovich’s theorem allows to prove that if (1) verifies (W), then it is conver-
gent.
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But as (M) corresponds to a downward shift in the positions at the continued
fraction, it also implies the convergence of k(z). Recall that
1

E{z) = 1
2K(Tz) _ 1

cos@(T—1Z) = e

t(T'z) +

is the curvature of the unstable manifold before reflecting at z. If condition (W)
is satisfied, we know that sign(kw (z)) = sign (first term in kw (z)) is negative,
and sign ky, (z) = sign (second term in kw (z)) is positive. This means that
sign(ky,(z)) = sign (first term of k(<)) is positive. Finally kas(z), considered
as a part of kas(Tz), has the sign of its third term, and kps(z) < O.

k(x)<O

k(x)>0 )

Figure 5

As all these relations are satisfied at each reflection, the conjugate point of
the unstable beam (k(z) < 0) happens before the next reflection (k= (T'z) > 0).
If this is true for an expanding beam (before the reflection), it must be true for a
parallel beam as well. 0

Proof of Proposition 2. The fact that all focusing arcs are absolutely-focusing
together with conditions on the relative positions of regular components of the
boundary, allows us to apply Theorem 11 in Bunimovich (1991). For example,
in case (1) we must apply it with §; = 0. Note that for trajectories with a finite
number of strikes on focusing arcs, the result follows because continuous fractions

with terms of constant sign are convergent. [
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Proof of Theorem 1. As it was observed in section 2, our billiard map is a
smooth map with singularities. We can therefore apply the formula for entropy
proved by Ledrappier and Strelcyn. See Katok, Strelcyn, (1986) part III. Prop.2.5.
The metric entropy is expressed by

ho(T) = /M In |Tfg
Here E7 is the linear subspace corresponding to all positive Lyapunov exponents,
and TI’Eg stands for the derivative of T, restricted to EY, at .

Formula (6) is valid in multidimensional case; here we have one-dimensional
E%, so ITI'Ei“ is simply the rate of expansion of E¥ under the action of 7", in
the euclidean norm of M:dl = /dr? + dp?. In order to evaluate this rate we
consider the degenerate norm dp = cos ¢dr and the jacobian

1) = 55

dv(z) (6)

-1/2
= cos

()]

di(Tz) _ dp(Tz)J(z)
di(z) dp(z)J(Tz)

Then

; d
and, denoting by f(z) = d_f(x) on invariant unstable curves, we obtain

= |1+ t(z)k(a)] 222

TI
I B2 cos p(Tz)

1+ 72(72) ]
1+ f%(2) ]

Taking logarithms and integrating on M we obtain (4) due to the invariance
of the measure v. All that is required for this is the integrability of the functions
Incos p(z) and In(1+ f2(z)). The first can be checked directly while the second
was proved in Chemnov (1991) for semi-dispersing billiards. In our case, since
In(1+ f%(z)) = In(1 + (—K(z) + k(z) cos p)?), and K(z) is bounded, the
result follows from the conditions on k(z). O

Proof of Theorem 2. It is based on Abramov’s formula (Abramov, 1959), and
is exactly the same as that in Chernov (1991). O

Proof of Theorem 3. The corresponding billiard maps are non-uniformly hyper-
bolic. See Markarian (1990), Theorems A, and B for cases i), ii); and Bunimovich
(1991), Theorem 8, for the other one.
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The integrability of In |k(z)| is proven in Chernov (1991) for non-focusing
boundary. In our case, this proof is easily extended to the non-focusing parts of
dQ with the aid of the proof of Proposition 1. For focusing ones, this integrability

follows from the estimate
k(2)] < lox(2)] = 21K (@)] cos™ o(2) ™
In fact, this estimate follows from the relation between k(z) and k™ (z):
k(z) = 2K(z) cos ! p(z) + k().
The estimates k~(z) < 0, k(z) > 0 are contained in the proof of Proposition 1

for cases (1) and (i7). Case (i7¢) may be derived from Condition ii of Theorem 8
in Bunimovich (1991), although they are not expressed explicitly therein. OJ

6. Illustrative Example

Let P be an arbitrary polygon and IT' an arbitrary absolutely-focusing curve. Glue
identical copies of the arc T' shrunk homotetically with a small factor €(T) to the
sides of the polygon. When € — 0, one observes “ripples” on dP.

Erasing the initial sides of P we obtain for small € a region Q = Q. with a
boundary that satisfies Theorem 3 (iii). (Near the vertices of the polygon some
non-admissible situations may appear. To prevent this, we can erase several
adjacent copies of I'c and restore the corresponding parts of 9 P. See Figure 6).

Figure 6
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Proposition 3. The entropy of the billiard in Q. is
h,(T) = —-Alne+ O(1) ®)

for some A = A(T') > 0. O(1) means a bounded value as € — O.

The above construction was first described in Chernov (1991). An analo-
gous proposition was proved there for semicircles instead of arbitrary absolutely-
focusing T'.

Proof. First note that

c1e ! < |k(z)| < cafecos p(z)] ™! )

for some positive constants ¢y, cy. The right hand side of (9) comes from (7). To

obtain the left-hand side note that the-distance from any point of reflection to the

nearest future conjugate point is approximately [a;(z)]~1. This follows from the

fact that curvatures of a wave front after and before the reflection are related by

k(z) = a;(z) + k™ (z), and the conjugation is obtained for k~(z) = 0. But that

distance is less than const. L(z), and L(z) < const. € due to the homoteticity.
Now consider the initial arc I' and construct a formal space

Mr ={z = (¢,v):g €T, |lv]| = 1, < v,n(q) >> 0}

Let us split M., into two parts: MIQ consists of all the pairs (g, v) such that the
ray q + tv will cross T' again for some ¢ > 0, and M} = Mp\MIQ. The above
partition of Mr induces a partition of the space M of our billiard in Q.. Each
component of M, adjacent to a copy of I' in Q. is partitioned in the same way
as Mr. We get M = MU ML

We see that t(z) < const.c for z € MP and that t(z) = constant for the
majority of points of £ € M!. Then on M1,

In(1+ t(z)k(z)) = Int(z) —lne + A(z)

with |Az| < const. and applying Theorem 1, we obtain (8) with A = v(M;). O

Note that A really depends on T', but not on the polygon. For instance, if T
is half a circumference, then A = 2/x. For details of the estimates and calculus,
see Chernov (1991).
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