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A Chebotarev Theorem for finite homogeneous
extensions of shifts

Mohd. Salmi Md. Noorani! and William Parry

Abstract. We derive a Chebotarev Theorem for finite homogeneous extensions of shifts of
finite type. These extensions are of the form 5: X x G/H — X x G/H where G(z,gH) =
(02, a(z)gH), for some finite group G and subgroup H. Given a o-closed orbit 7, the periods
of the g-closed orbits covering 7 define a partition of the integer |G/H|. The theorem then
gives us an asymptotic formula for the number of closed orbits with respect to the various
partitions of the integer |G/H|. We apply our theorem to the case of a finite extension and
of an automorphism extension of shifts of finite type. We also give a further application to
‘automorphism extensions’ of hyperbolic toral automorphisms.

0. Introduction

The Chebotarev Theorem for a group extension of a shift of finite type o gives us
an asymptotic formula for the number of o-closed orbits according to how they
lift in the extension space and how they lift is completely determined by their
Frobenius classes. It is with respect to these classes that the asymptotic formula
applies. This, and indeed many more distribution results for closed orbits of shifts
of finite type has been derived by the second author together with Mark Pollicott
(see [3] for the entire collection).

Strictly speaking the above mentioned result is for a suspension flow over a
shift of finite type. To obtain the appropriate result for the discrete case, all one
needs do is use the constant function 1 as the suspension function.

Our aim in this paper is to study the analogous problem for a more general
extension of the shift. In fact, our considerations here were motivated by two
examples: a finite extension and a so-called automorphism extension of the shift.
It will become apparent that to cater for these examples, the appropriate extension
one should consider is a homogeneous extension, i.c., of the form &: X x G/H —
X x G /H for some (finite) group G and subgroup H.
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We observe that, unlike the group extension case, the lifted closed orbits may
not have the same length. This unevenness will then be the basis for classifying the
o-closed orbits. To proceed with the asymptotics with respect to this classification
we have to understand how these classes come about. We show that this is
equivalent to looking at actions of certain cyclic subgroups on G/H. This is
done by resorting to a certain group extension. Thus it is no surprise that our
main result is just a direct application of the Chebotarev Theorem for group

extensions.

1. Basic facts and Definitions
Let {1,2,...,n} be given the discrete topology and A be a n X n irreducible
0 — 1 matrix. Define the set

Xa={z€ H{I,Z,... n}: Az, zip1) = 1,Vi € 2}

Then X 4 is a compact zero dimensional space. Let o: X4 — X4 be defined
by (¢z); = zi+1. Then o is called a shift of finite type (with transition matrix
A). From now on we shall write X for X4.

Recall that a homeomorphism 7T:Y — Y is said to be topologically transitive
if T has a dense orbit. Also T is said to be topologically mixing if for any two
non-empty open sets U,V in Y, there is an integer N such that TYU)NV £
foralln > N.

For shifts of finite type, it is well-known that these two notions are equivalent
to the requirement that the transition matrix A-be irreducible and aperiodic re-
spectively. The topological entropy of o is log 3, where B is the maximal positive
eigenvalue of A as furnished by the Perron-Frobenius Theorem.

Given a closed orbit (i.e. periodic orbit) 7 of o, we shall denote its least
period by A(7). Then the zeta function of o is defined as '

&lzy= T — e
zA(‘r)n

:expzi " for |2| < A7

7T n=1

In fact we have the following well known result of Bowen and Lanford.

Proposition 1.1. Let o be a shift of finite type with transition matrix A. And
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let B be the associated maximal positive eigenvalue. Then
1
det(I — zA)

An immediate corollary to the above result is

$o(2) = for |z| < g71.

Corollary 1.2. Let o be a topologically mixing shift of finite type. Then $o(2)
has a non-zero analytic extension to a disc of radius greater than B! except
for a simple pole at 1.

Using this result Parry and Pollicott (see [3] pg 104) deduced the Prime Orbit
Theorem for shifts of finite type:

Theorem 1.3. Let o be a mixing shift of finite type and let n(x) = Card{r C
X|A(r) < z}. Then

z
7r(:z:)~%-%— as z — oo.

When o is not topologically mixing, we can decompose X into a disjoint
union of d (= period of A) closed-open sets Xj,..., Xy such that o(X;) =
X;(7=1+1 mod d) and ¢%|x; is topologically mixing, i = 1,... ,d. Hence
applying (1.3) to this case we have

Proposition 1.4. When o is not topologically mixing, then
d dz
w(dz)~%-—’3— as T — oo
where d is the period of the transition matrix A.

All groups considered in this paper are assumed to be finite. So let G be
such a group and a: X — G be a function depending on a finite number of
coordinates. The group extension 6: X X G — X X G of ¢ is then defined
by the skew-product é(z,g) = (oz,a(z)g). We shall always assume that & is
topologically transitive. Thus by definition & is also a shift of finite type. Letting
mX X G — X be n(z,g9) = z, we have 76 = o.

We are interested in how o-closed orbits lift into the extension space. To
classify these closed orbits, we introduce a free right-action of G on X x G
by h-(z,9) = (z,g9h),h € G. This action commutes with &. Thus given a
closed orbit 7 of o with least period A(r) and a §-closed orbit 7 covering 7 (i.e.
() = ), there exists a unique element y(#) € G such that if p € #, then
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In fact y(#) depends only on 7. This group element ~y(7) is called the Frobe-
nius element of #. Moreover if 7' is another §-closed orbit also covering 7, then
since G acts transitively on fibers, there exists an h € G such that hp € 7'. Thus
the Frobenius element ~(7') of 7' satisfies

v(#')hp = 6 Mhp.

Hence ~(7#') = hy(#)h~1. In other words, the Frobenius elements of the lift of
r are all in the same conjugacy class which is uniquely determined by 7. This
conjugacy class is called the Frobenius class of 7 and is denoted by [r].

Let R, be an irreducible representation of G with character x. The L-function
(with respect to 7: X X G — X) of x is defined as

L(z,x) = [] det (I — zA(T)Rx([T]))_l

where the product is taken over all o-closed orbits. By comparing the above
expression with the zeta function of the shift we deduce that L(z,x) is non-zero
and analytic on D = {z||z] < #~!}. Observe that when x = xo, the principal
character, L(z,x0) = ¢s(2). In fact one can show

Proposition 1.5. Let 6 be a group extension of o with skewing function
a: X — G depending on a finite number of coordinates. Then

1 .
L) = gar—gary o M <8

for some matrix M, closely related to the representation R,.
The Chebotarev Theorem of Parry and Pollicott for group extensions is as

follows:

Theorem 1.6. Let 6 be a topologically transitive group extension of a shift of
finite type o. For a conjugacy class C of G, let nc(z) = Card{r C X:[r] =
C,A(r) < z}. Then
a) if 6 is mixing, n¢(z) ~ l%llFiLl . P; as z — oo,
b) if o is mixing and & not mixing with d = period of the.transition matrix
of 6,
lcl_B* g
— «— as :
IG|B -1 = e
We indicate how one proves this result. We shall restrict our attention to the
case when & is mixing. To capture the o-closed orbits with a given Frobenius

rc(z) ~d
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class C, we introduce the following zeta function,
-
o) = H (1 8 zA(r)) !
[rl=c

Let g € C. Then by the orthogonality relation for irreducible characters of G we
have

1G] se(2) _ 1L (2,x)
C156() ™ iz VTl
x irreducible ?
Then we identify the poles of ¢4 (z)/¢c(z) in a small neighbourhood D' of
{2l|2] < B~} and thus calculate their residues. We know that L(z, x0) = ¢, (2)
has a simple pole at z = 8! on the circle {z||z| = 8~} and if we take D' to
be small enough, z = 871 is the only pole in this region. To do this we bring in
the identity (see Prop. 4 of [4])
5(2) = o(2) [ Lz
X#Xo

Since ¢ is a mixing shift of finite type with the same topological entropy as
o (because 7 is |G| to 1) we deduce, via (1.5), that L(z,x),x # Xo has a
non-zero analytic extension to some neighbourhood D" of {z||z| < #~1}. Thus
s¢(#2)/¢c(z) has only one pole in the smaller of the two regions, namely z = -1
and its residue is —|C|/|G|. Then the proof proceeds analogously with the proof
of the Prime Orbit Theorem for shifts of finite type (1.3).

Remarks.

1. The argument used in the above discussion comes from [4].

2. Obscrve that the assumption that the skewing function depends only on a finite
number of coordinates plays two roles: Firstly it turns & into a shift of finite
type. Secondly, it also implies a meromorphic (in fact rational) extension of
L(z, x) to the whole plane.

3. There exists a similar formula for the case when ¢ is not mixing.

2. The Homogeneous Extension

As before let o be a shift of finite type and G a finite group together with a
map o: X — G such that a depends on a finite number of coordinates. Let H
be an arbitrary subgroup of G. Form the coset space G/H = {9H:g € G}.
A homogeneous extension :X X G/H — X x G/H of ¢ is defined by the
skew-product 6(z,9H) = (oz,a(z)gH). We shall always assume that & is
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topologically transitive. Let #: X x G/H — X be such that #(z,gH) = =
Then 7#6 = o7.

Observe that the group extension 6: X x G — X X G defined by 6(z,9) =
(0, c(z)g) is, by using the obvious projection map, an extension of 5. We have

the following multi-commutative diagram:
XxG@-5HXx%xG

\

gl XxG/H- X xG/H

Note that we cannot expect ¢ (o be also topologically transitive. For our
purposes, it suffices to note that if & is not transitive then, as with all intransitive
shifts of finite type, we can decompose X X G into G-invariant transitive pieces
Xo, ... ,Xs—1. Moreover | % is a G;-invariant extension of X where G; is
the subgroup of G such that ¢X; = X;Vg € G;. This follows since the group
action commutes with & and the fact that o is transitive. Note that the subgroups
G;,i =0,1,...,s — 1, are conjugate to each other. More importantly, by the
transitivity of &, we can identify X x G/H with the H;-orbit space X;/H; where
H; = H N G;. Hence by restricting to any X; if necessary, there is no loss in
generality in assuming that 6: X X G —» X X G is topologically transitive.

Recall that a partition of a positive integer k is a cellection of positive integers
Ii,ls,... Iy such that k > I3 Slg> - >lp>landli+...+lp=k In
this case we write { for the m-tuple (I1,... ,Im).

Let 7 be a o-closed orbit with period A(r) and 7 be a g-closed orbit with
period A(7) such that #(7) = r. Then the degree of 7 over  is defined by the

() -2

Note that this is where the finiteness of G comes in. For in this case the lift of
7in X x G/H also consists of closed orbits. Moreover if 71,...,7m are the
distinct 7-closed orbits that covers 7 then the following basic relation holds:

f T\ e
dea [V + ... ddeg [ =) = =
eg<r)+ + eg(f) |H|’

integer
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so that the above equation gives us a partition of |G|/|H|. Thus we say 7 induces
the partition [ = (I3,... ,l,,) of the integer |G|/|H| if

l=|de h d I ing i
l g gl SESERL.. - (after reordering if need be).

Let K be another subgroup of G. We can define a left action of k € K on the
coset space G/H by k- gH = kgH. Let Ky,... , K., be the distinct orbits of
this action and r;,7 = 1,... ,m, be their respective ‘sizes’. Notice that these
ri’s form a partition of |G|/|H|. In this case we say K induces the partition
r=(r1,...,rm) of |G|/|H| (after reordering if need be). It is easy to see that
if k is conjugate to k' then the respective cyclic subgroups generated by them
induces the same partition of |G|/|H|.

For each partition [ of |G|/|H|, let A; = {r C X:r induces the partition [}.
Then we are interested in characterizing those A;’s that are non-empty. We have

Proposition 2.1. Ler 7 be a o-closed orbit. Then r induces the partition |
of |G|/|H| <=> the action of the cyclic group generated by some (and hence
all) Frobenius element g associated with 1 induces the partition L on |G|/|H]|.

Proof. Let 7 be a o-closed orbit of period m such that 7 induces the partition
{=(ly,...,1,) of |G|/|H|. Suppose 71,... ,7, be the distinct 7-closed orbits
that covers 7. For z € 7, we write am(z) = a(c™ 1(z))...a(z). Then the
fiber above z contained in 7; consists of the elements

(z,0:H), (2, am(z)a;H),... ,(z, (am(z))1a; H)

for some (z,a; H) € 7;. Note that l; is the least integer such that (ap, (z))%a; H =
a;H. Thus l; = deg(7;/7). Let J; = {a;H,...,(am(z)) 1a;H}. Then
clearly J; N Jy = & when ¢ # k and G/H = UL, J;.

Let < aym(z) > be the cyclic group generated by cy, (z). Evidently the J;’s
are the distinct and indeed the totality of the orbits of the action of < ap(z) >
on G/H. Thus < am(z) > induces the partition [ on G/ H. By the definition of
the group extension §: X X G — X x G and the right action g - (z, k) = (z, kg)
of G on X X G we deduce that o, (z) is indeed a Frobenius of 7.

Conversely, let z € 7, then reversing the previous argument we can construct
the fiber above z by considering the distinct orbits of the action of < ap,(z) >
on G/H. Then these distinct orbits constitute distinct &-closed orbits covering
7. In fact this construction is independent of z since if y € 7 then ap,(y) is
conjugate t0 ap, (). This completes the proof. O]
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Remark. Observe that in general, we cannot expect the lift of 7 in X X G /H to
have equal period. For in this case we are dealing with a double coset partitioning
of G. In the special case when H = {e} (i.e. group extension), we do get equal
period since the orbits of the subgroup action are just right cosets. In fact the
degree of any 7 over r in this case is then equal (o the order of the Frobenius
element ~(7) of 7.

Let C(g) denote the conjugacy class containing g. As an immediate corollary
to (2.1), we have

Corollary 2.2. Let C; = {r ¢ X:[r] = C(g:)} be the distinct classes of o-
closed orbits with Frobenius class C(g;) respectively such that < g; > induces
the partition l,i =1,... ,m. Then

m
A=1)C
§=1

For each partition [, with A; # @, let m(z) = Card{r C X:7 € Ay, A(r) <
z}. Hence by a direct application of the Chebotarev Theorem of Parry and
Pollicott, we have, for e.g, the following result for a homogeneous extension.

Theorem 2.3. Let & be a homogeneous extension of o where the associated
group extension & is topologically mixing. Let | be a partition of |G|/|H|
such that Ay # &. Then
1 m
m(z) ~ G| > _1C(gi)Im(z)

=1

where the C(g;)’s are as in (2.2) and

m(z) ~ —+— as z— 0.

3. Application I: Finite Extensions of shifts of finite type !
Let F = {1,2,...,k}. A finite (k-point) extension of the shift o is a skew-
product &: X X F — X x F defined by &(z,1) = (0, a(z)(s)) where o: X —
G, as usual depends on a finite number of coordinates and G is the symmetric
group Sy on k-symbols {1,2,... ,k}.

Now, let H = {h € G:h(1) = 1}. Then H = Sj_1. Also it is clear that the
map from F to G/H sending 1 to gH where g(1) = ¢ is a bijection. Therefore
we can identify X x F with X x G/H and obtain the homogeneous extension
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G:X x G/H — X X G/H defined by 6(z,gH) = (0z,a(z)gH). Letting
#:X x G/H — X be #(z,gH) = = we have #6 = 0. We shall assume that
& is topologically transitive.

‘ Also we have 6: X X G — X X G where 6(z,g) = (sz,a(z)g). So that &
is a gr.oup extension of ¢. As mentioned in §2 there is no loss of generality in
assuming ¢ is also topologically transitive.

Recall that an element g of a symmetric group G is said to have cycle decom-
position m = (my, my,... ,m;) if it can be written as the product of disjoint
cycles of length my, mg,... ,m; where my > my > ... > m,. Recall also
that two elements of G are conjugate if and only if they have the same cycle
decomposition.

Proposition 3.1. Let [ be an arbitrary partition of k. Then A, # @. Moreover
Ay = {7 C X:[r] = Ci} where C) is the conjugacy class of G consisting of
elements with cycle decomposition 1.

Proof. Let [ = (Iy,...,l,) be a partition of k. Thus there exists some g € G
such that g has cycle decomposition [. This follows since each partition n of k can
be uniquely associated with the conjugacy class Cyp of G consisting of elements
with cycle decomposition n. Now consider the action of the cyclic group < g>
generated by g on F = {1,2,...,k}. Then using the cycle decomposition
form of g, it is clear that this action gives rise to n orbits Oy, . .. , Oy, such that
|Oi| = &;,i = 1,... ,n. In other words < g > induces the partition { on F or
equivalently on G/H. Since this only depends on the cycle decomposition [ of g
and elements with such a cycle decomposition constitute a whole conjugacy class
Cy we have A; = {r C X:[r] =C;} by (2.2). O
The Cauchy formula (see for e.g [2]) for the cardinality of C; gives us

where the I,-J.’s are the distinct components of (Iy,ly,... ,l,) and @, is the

numl')er of cyc‘les of length I",- in the cycle decomposition of g € C;. Hence, for
a finite extension of a shift of finite type (c.f. (2.3)), we have

Theorem 3.2. Let ¢ be a finite (k-point) extension of a shift of finite type
o where the associated group extension & is topologically mixing. For each
partition L of the integer k, let m(z) = Card{r c X:r € A, A(r) < =}
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Then

" s
i ag, ... 10 o,

where the I's and o’ s are as above and
.. .&

F_—l - as T — O0.

n(z) ~
Example. In the case of a 3-point extension ¢ of ie. G = S3, the o-closed
orbits can lift in the extension space in 3 different ways. These corresponds to the
partition (1,1,1), (2,1) and (3). Let us define the density Dy, of the o-closed
orbits that lift in the extension space corresponding to the partition [ as

Dy = lim m(2)
1= 1 )

Since S3 has 1 element with cycle decomposition (1,1,1), 3 elements with
cycle decomposition (2,1) and 2 elements with cycle decomposition (3), we
deduce that the densities D(y1,1), D(2,1), D(3) are 1 /6, 1/2 and 1/3 respectively.

We remark that our consideration here was really motivated by an analogous
number theoretic example due to Heilbronn (see pg 227 of [1]). In this example
he considered a non-normal cubic field extension Ks/k and in particular was
interested in the densities of primes in k according to how they lift into Ks.
Roughly speaking, we can say that the primes in k splits in K3 according to the
partitions (1,1,1), (2,1) and (3) (of the number 3). To calculate the densities,
Heilbronn then considered the minimal extension K¢ of K3 that is normal over
k and argued that the primes that splits in K3 according to the partition (1,1,1),
(2,1) and (3) corresponds precisely to the primes that splits in K¢ with Frobenius
class C(e), C(2,3), C(1, 3, 2) respectively. Note that the Galois group of K¢ /k
is Ss. Then applying the Chebotarev Theorem for the normal extension Kg/k,
he deduced that (using the above notation) the densities D(1,1,1), D(z2,1) D3y are
equal to 1/6, 1/2, 1/3 respectively. '

4. Application II: Automorphism extensions of shifts of finite type
We now apply our findings of §2 to a so-called automorphism extension of the
shift. As always let o be a shift of finite type and G a finite group. Let : G—-G
be an automorphism of G and B: X — G be a function depending on a finite
number of coordinates. An automorphism extension & of the shift is defined as
the skew-product &: X x G — X x G where 5(z,9) = (oz, B(z)7(g)). Letting
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#(z,g) = = we have 76 = o&. We shall assume that & is topologically transitive

Thus by definition & is also a shift of finite type.
Note that since G is finite there exists a least n such that 4 = id. Now

consider the following cyclic extension of &. Thatis 6:Z, X X XG — Z, X X X G
defined by

5(r,(z,9)) = (r +1,(0(2), B(z)(9)))-

Also observe that except possibly for trivial 4, & is never mixing. We can rewrite
GasG: X XInXG — XX1nxG and 6(z,(r,9)) = (oz, (r+1,8(z)v(g))).
We give the set Z, X G a group structure by defining the product of (r, g), (s, k) €
Z, X G as follows:

(r,9) - (8,h) = (r + 5,977 (h))

and denoting the resulting group by Z,, X, G. Then Z,, X 4 G with this operation
defined on its elements is known as the semi-direct product of G by Z,, or a Z,,
cyclic extension of G.

Let a: X — Z,, X4 G be defined as ao(z) = (1, 4(x)) and let G’ = Z,, x, G.
Then we can rewrite ¢ as 6: X X G' — X x G’ and &(z,k) = (z,(z)k),
k € G', so that we can view &, as a group extension of o. We can define a
free action of G’ on X x G' by I(z, k) = (z,kl), k,I € G', and deduce that it
commutes with ¢. Thus the notion of Frobenius class exists for o-closed orbits.

Now, let H be the subgroup Z, X {e}, (e = identity of G) of G'. Con-
sider the action of H on X x G'. Then a typical element of the H-orbit space
will take the form (z,(0,g)H) where we write (z,(0,9)H) to mean the set
{(z, (r,9)):r € Z,}. Moreover it is easy to see that the induced map o5 satisfy
o2(z, (0,9)H) = (o0z,(0,8(=)v(g))H). Hence we can identify (X x G,5)
with ((X x G')/H, 03).

In other words we are in the setting of a homogeneous space extension of the
shift and thus the result of §2 applies once we have formulated the Chebotarev
Theorem for the extension 7: X X G' — X. In particular given (r,g) € G’ we
would want to look at the action of < (r,g) > on G'/H. Note that this is equiv-
alent to studying the map T(,;):G'/H — G'/H defined by T}, o)((s,k)H) =
(r,9)(s, k) H. The following result may simplify the calculationsj

Proposition 4.1. Let (r,g) € G'. Then T{rq) is conjugate to the map
S(r’g)ZG — G defmed by S(r,g)(k) — g'y"(k)
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Proof. Recall that a typical element of G'/H takes the form
(s,k)H = {(s,k)(t,€):t € Zp} = {(s5,k): s € Zn}.
Hence G'/H can be identified with G via the map (s, k) H =5 k. Also
Tir.0) (s, k) H) = (r,9) (s, K) H = (5,97" (K)) H.

Thus letting S(y,q)(k) = 97" (k). k € G, we deduce that LT{,,q) = S(r,g)L- The
result follows since L, Ty 5) and S,,q) are bijective maps. O
As usual (a,b) shall denote the h.c.f of a and b.

Proposition 4.2. Let 7 be a G-closed orbit with A7) = k and fy,. .. , 7y be
the &-closed orbits that cover 7. Then A(7;) = Le.m [k,n], i = 1,... ,r where
r = (k,n).

Proof. Let z € 7. Then for all r € Z, §™(r,z) = (r + m,8™(2)) = (r,2)
implies mn is a multiple of both n and k. Hence the least period of (r,z) =lcm
[k, n]. Recall that L.c.m [a,b] = ab/(a,b). Thus since

L /\(r, B

2 dea 5 =™

we have r = (k,n). And this completes the proof. O
Let ¢5(2), ¢5(2) be the zeta functions of & and & respectively. Then we have

Proposition 4.3. .
N
= H $6 ("‘)1 Z))
i=0
where w is a primitive n-th root of unity.
Proof. First we note that
n, if n|r;

r 2r ... (n-1)r —
e {0, otherwise.

Thus for z € C and k € Z,

o km
Z %n_{1+wkm+ +w(n l)km} Z n k)

m=1
(n,k) oo z;%t
I ;

l

2z (n, k)

=1 =1

Hence
_kn

log(1— 2z*)+1og(1— (w2)*)+- - -+log(1— (@ 22)*)=(n; k).log(l—z k).
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That is
(1-2%)(1 - (@2)F) - (1 - (W t2)k) = (1 - 2T "’)‘""

Let 7 be a G-closed orbit such that A(7) = k. Then by (4.2),

n—1
[[01-(2*@)= T (1-2M).
1=0 x(#)=F

The result follows by inverting and taking products over all &-closed orbits. [J

Corollary 4.4. If 6 is mixing then ¢s(z) has a non-zero analytic extension
to a neighbourhood of {z||z| < B~'} except for simple poles at (w'B)~1
t=0,1,...,n — 1 where w is a primitive n-th root of unity.
Proof. The result follows since § is a topologically transitive shift of finite type.
a

Thus for mixing & the second part of (1.6) holds with n = period of the
transition matrix of 6. Hence the Chebotarev Theorem for the extension 7: X x
Iy Xy G — X is

Theorem 4.5. Let 6 be a mixing automorphism extension of o and & be the
associated 1,, cyclic extension. Then, given a conjugacy class C,

ICl ﬂn ﬂz
] " -1z

We now come to the main result in this section. Since the automorphism
extension ¢ can be identified with a homogeneous extension of ¢ with respect
to the subgroup H = Z, x {e}, we can apply our findings in §2 to the above
theorem to obtain

mc(z) ~ as T — 0o.

Theorem 4.6. Let 6 be a mixing automorphism extension of a shift of finite
npe o. If L is a partition of |G'/H| such that

Ap;:={r C X:7 induces the partition 1 on |G'|/|H|}
m
i=1
where C; = {r C X:[r] = C(rs,9:)}, i =1,... ,m, then

@) ~3olCtad g g

IG,| n ﬂ"—-l.? as z — oo.

=1
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There is another situation where a “homogeneous extension” arises. Let A
be a hyperbolic automorphism of a finite dimensional torus T. Let G be the set
of all points in T with order m, say. Then G is an (abelian) group such that
AG = G. We let G act on the right of T and using additive notation we have

A(I.J,-g):;i(z)—i—;i(g) zeT,g €G.

Then A induces an action A on the G-orbit space T /G such that A: T/G — T/G
is also a hyperbolic toral automorphism. If ;1"|G = Id, then working analogously
with the automorphism extension, we can define the Z,,-cyclic extension of A and
thus is in the setting studied above. In fact, one can show that the automorphism
extension of the shift is actually the symbolic model for our toral automorphism
(see pg 137 of [4] for the main idea). Furthermore since the counting functions for
the shifts and the toral automorphisms are asymptotic (see [3]) we deduce that the
statements of Theorems (4.5) and (4.6) also holds for “automorphism extensions”
of hyperbolic toral automorphisms.
We illustrate the above discussion by the following example:

Example. Let A be the hyperbolic automorphism on the two-dimensional torus
T induced by the matrix

24 1

1 1)°

Here we take T to be the unit square on R? with respect to addition mod 1 and
the appropriate identifications. Let

G = {(0,0), (0, 1/2),(1/2,0),(1/i, 1/2)}

ie. G consists of elements of T with order 2. Then G = Z3 x Z2. Also, one
can easily check that :43|G = Id. Thus the associated semi-direct product group
is G' =173 x; (Z2 X Z;). Now G’ has 4 conjugacy classes:

C1 = {(0,(0,0))}, .

2 ={(0,(0,1)),(0,(1,1)),(0,(1,0))},

Cs = {(la (0’0))a (la (1)0))’ (1: (1’ 1))) (17 (07 1)')}a

Cy= {(2: (0’0))1 (2a (1’ 1))’ (2’ (1’ 0))’ (2’ (Oa 1))}

By using (4.1), it is straight-forward to check that Cy gives rise to the partition

(1,1,1,1), C; to the partition (2, 2) and both C3, Cy to the partition (3,1) on
|G'/Z3 x {e}|. This implies that, given a closed orbit 7 € T/G, the ‘types’ of
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A-closed orbits covering 7 can only take one of the following forms: There are
depending on the Frobenius class of 7, |

i. 4 closed orbits each of degree 1 over 7,
ii. 2 closed orbits each of degree 2 over 7, or
iii. 2 closed orbits, one of degree 3 and one of degree 1 over r.
Hence the asymptotic formulas for types i, ii, ii, are

1 B B
W(lrlylxl) (x) B E i 3 3 ﬂs " 1 : %-)
3 133 ﬁz
raaE ~ 53 G
8 ,33 ﬂa:
7’(3,1)("3) = 12 £ F;—__—I . ?, as = — oo, respectively.
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