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On a Theorem of Fatou
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Abstract. We prove a result on the backward dynamics of a rational function
nearby a point not contained in the w-limit set of a recurrent critical point. As a
corollary we show that a compact invariant subset of the Julia set, not containing
critical or parabolic points, and not intersecting the w-limit set of recurrent critical
points, is expanding, thus extending a classical criteria of Fatou. We also prove that
the boundary of a Siegel disk is always contained in the w-limit set of a recurrent
critical point.

1. The Results

Let C be the Riemann sphere. Given a rational map f: C <, we say that
A C Cis an expanding set of f if it is compact, invariant (i.e. f(A) = A)
and there exists a positive integer n > 0 such that |(f*)'(z)| > 1 for
every z € A. A not very difficult to prove, and yet very useful criteria
to recognize this fundamental class of invariant sets was given by Fatou
(P.Fatou, Sur les équations fonctionelles, Bull. Soc. Math. France
47, 1919, 161-271). He proved that if a compact invariant set A of
a rational map f:C «, is contained in its Julia set J(f), and the w-
limit set w(c) of every critical point of f satisfies w(c) N A = ¢, then
A is expandihg. Here we shall provide an improvement of this result,
that roughly speaking states that one has to be concerned only about
intersections with recurrent critical points. Recall that a periodic point
p of a rational map f is said to be parabolic if (")’ (p) is a root of unity
when n is the period of p.

Theorem 1. Let f:C «— be a rational map and A C J(f) a compact
invariant set not containing critical points or parabolic periodic points.
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Then either A is expanding or A Nw(c) # ¢ for some recurrent critical

point c of f.

It follows immediately from Theorem I that every periodic orbit of -

f, that is not parabolic or a source, is contained in the w-limit set of a
recurrent critical point.
This theorem will be a corollary of the following result:

Theorem II. Let f:C < be a rational map. If a point x € J(f) is not
a parabolic periodic point and is not contained in the w-limit set of a
recurrent critical point, then for all € > 0 there exists a neighborhood U
of x such that:
(a) For all n > 0, every connected component of f~"(U) has diameter
<&
(b) There exists N > 0 such that for all n > 0 and every connected
component V of f~™(U) the degree of f*/V is < N;
(c) For all 1 > 0 there exists ng > 0 such that every connected compo-
nent of f~™(U), n > ng, has diameter < 1.
The core of the theorem is (a), from which properties (b) and (c)
will easily follow.
We begin by proving Theorem II. The deduction of Theorem I from
Theorem II will be given afterwards, when we shall also prove the fol-

lowing corollary to Theorem II.

Corollary. IfT is the boundary of a Siegel disk or a connected component
of the boundary of a Herman ring, there exists a recurrent critical point
¢ such that w(c) DT.

2. The Proofs

Given an open set U C C denote ¢(U, n) the set of connected compoﬁents
of f~"(U). Observe that V € ¢(U,n) implies fi(V) € e(U,n — j) for all
0<j<n IfV € cUn) define A(V,n) = #{z € V | (f*)(x) = 0}
counted with algebraic multiplicity. Given z as is the statement of
Theorem II we can assume without loss of generality that f(co) = oo
and oo # x. Hence, if U is a neighborhood of x not containing oo, it
follows that oo ¢ f~™(U) for all n > 0. This means that from now on we
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shall have to deal only with subsets of the complex plane C. A square
is a set S of the form S = {z € C | |Re(z — p)| < §,|Im(z —p)| < 6}.
The point p is the center of S and ¢ its radius. Given a square S with
center p and radius 6, then, given k > 0, denote by S* the square with
center p and radius k.

Lemma 1. Givene > 0, 0 < k <1, ¢ > 0 and N > 0, there exists
6 = 6(N,e, k,c) > 0 such that if S is s square of radius < § such that
d(S,p) > c for every parabolic or attracting periodic point p, and, if for
somen >0,V € c(9,n) is such that A(V,n) < N, then diam W < e for
all W € ¢(S*,n) contained in V.

Remark. Clearly, if follows from the lemma that diam f*(W) < ¢ for all
0 < i < n because fi(V) € ¢(S,n — i) and fi (W) € ¢(S*,n — 1) and is
contained in f*(V'), which has at most N points = where (f"~%)'(z) = 0.
Proof. Suppose that for e > 0,0 < k <1, c>0and N > 0 the Lemma
is false. Then, there exists a sequence S,, n = 1,2,... of squares with
radius 6, — 0 such that d(S,,p) > c for every parabolic or attracting
periodic point p and sets V,, € ¢(S,, my,) satisfying A(V,,,m,) < N,
but with diam W,, > ¢ for some W,, € c(Sf,f,mn) contained in V,,. The
condition 6, — 0 implies that m, — +o0o. Take 0 < 7 < 1 such that
yN*1 = k. Then, there exists 0 < j < N + 1 such that, denoting by
S, = SY, the set S, — 87 doesn’t contain critical values of f™n/V,,.
Obviously, S;{ ) S,’i. Take W, € c(S’,ﬁ{,mn), such that W,, ¢ W,, C V,,.
Then, diam Wn > €.
Take 0 < j, < m, such that

diam f7n(W,,) > ¢ (a)
diam fj”+1(Wn) <e (b)
observe that
fjn(Wn) € C(S’%,mn = Jn)-
Taking e > 0 small enough, it follows from (a) and (b) that f/»(W,,) is
a topological disk. Set W, = fj”(Wn). Since S, — S;Z doesn’t contain
critical values of f™"/V,,, the element Wn+ € c(S'n, mn—Jn) that contains
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W, € c(S’ﬁ,mn — jn) is also a topological disk. Let D = {z||z] < 1}
be the unit disk. Take conformal representations v,: D — Sy, @n: D —
W with ¥,(0) = zn, fmn=in(p,(0)) = T,. Define:

Fy = w;lfmn_jn@n y LY

Then -F, : D « is a Blaschke product of degree < N. Hence, {F,} is
obviously a normal family and then there exists disks D D Dy D Dg
centered at zero such that:

Dy > Fl(y;'8%) o D1

Moreover, -
W = @By (W 55) O on(D1) (1)
on(D2) D on(Fy (471 81) = Wa. ®
Now observe that {¢n} is a normal family because there exist three
periodic orbits not intersecting S, and then ¢,(D) doesn’t intersect

them. Hence, we can assume that ¢, — ¢ uniformly on compact subsets
of D and, by (2), ¢ is non constant because for all n:

diam @, (Do) > diam(W,,) > €.

From
0= liI_}_l diam(S,) = li{'I_l diam f™nIn (W)
follows that
Wi cJae . (4)

for all n. Moreover, (1) and the fact that ¢ is non constant imply that
Wnl N an # @ for some n; < ng. Since Wnl = fm(an) for some m,
this and (4) imply that there exists a connected component U of J(f)®
such that 5

) =0 (5)

and .
UoW, Va - (6)
But (3) implies ' |
lim diam f™ = (W,) = 0. : (7)

n—-+4oo
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Moreover,
inf diam(W,,) > 0 (8)
and
im d(e, S I(W) = 0. (9)

From (5)—(9), it follows that x is either a sink or a parabolic point, thus
contradicting the property d(Sy,,p) > ¢ > 0 for all n and every parabolic
or attracting periodic point p.

Now let us prove Theorem II. If S is a square with radius ¢, denote by
L(S) the family of squares contained in §3/2 _ 8 and having radius § /4.
Denote by L£*(S) the family of squares SS’/Q with Sg € L(S5). Suppose
that x is not a parabolic periodic point or is contained in the w-limit
set of a recurrent critical point. Then there exists 6 > 0 such that
1) There is no critical point ¢ of f such that there exist 0 < n; < ng

satisfying

d(f™(c), ) < bo
d(f"2(c), ) < bo

2) |z — p| > 106 for every parabolic or attracting periodic point p.
Given € > 0 take €1 > 0 satisfying
3) 0 < &1 < min{e/10,8/10}
4) If U is an open connected set with diam U < 2e; then diam W < §g
for all W € ¢(U, 1)
Let Np be the number of critical points of f. Take N1 > 2 such that
5) If S is a square and V € ¢(S,n) satisfies A(V,n) < Ny + 1 then
the number of connected components of f~™(5%/3) contained in V
is < Ny
Finally, take 6 given by
6) 6 = min{50/10,61/10,5(2N0,Q%M,%,éo)} where 5(2N0,25—}V1,§,50)
is given by the lemma.
Let Sy be the square of center x and radius 6. Suppose that Theorem
IT fails for U = Sp. Then there exist n > 0 and V' € ¢(Sp,n) with
diamV > ¢ > 10e;. On the other hand, by (1), diam Sy = 2/26 <
30 < €1. Hence, there exists an integer ng > 0 such that there exists
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Vo € 6(53/2,710) satisfying

7) diam(f~(m0=9(Sg) N fi(Vp)) < 1 for all 1 < i < ng, and

8) diam(f~™0(Sp) N W) > €1

Since diam Sy < €7 it follows that ng > 0. Now, starting with Sy we

shall construct a sequence of squares Sg, S1, S92, ... and strictly positive
integérs ng > ny > ng > ... satisfying

9) Sjt+1 € L*(S;)
10) There exists V; € 0(53/2, n;) such that

diam(f~ "7 (55 N fi(Vy) < 1
for all 1 <4 < mn; and
diam(f~"9(S;) N V) > e1.

From (7) and (8), it follows that Sy satisfies (10). If we construct
such a sequence of squares and integers, then Theorem II will be proved
by contradiction because the condition ng > ny > -+ > nyp > --- >0
implies that n; = n; for all j > ¢ for a certain . But (a) implies that
the radius of S; is (3/8)7; in particular diam S; — 0 when j — +oo. But
by (10),

e1 < diam(f "I (8;) N'V;) = diam(f"i(S;) N V),
Vi€ C(S?/2,n]‘) = c(Sf/Q,ni).
Taking j — +00, and recalling that ¢ is constant and ETOO diam S; = 0,
we conclude that the inequality above cannot hold. ’

The sequences {S;} and {n;} will be constructed by induction start-
ing with Sp. Suppose S; and n; constructed for 0 < ¢ < j. To find
S;+1 and njy1 we begin by observing that from (a) it follows that if
p € S € L*(S;), then, by

J
d(p,z) < diam S + Z diam S;

1=0
s 5
= 3" () diam Sp = 2v2 Y (5)'6 < 4v/26.
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Hence, if a point g satisfies d(q, S) < g, we have
d(g,z) < 4v/26 + 6y < 26p.

By (2), this means that
11) d(q,S) > ég for all S € L*(S;) and all parabolic or attracting periodic
point q.
For the induction step (i.e. the construction of S;;1 and n,1), we
shall use the following easy lemma.

Lemma 2. If U C C is an open set and V' € c(U,n) satisfies
diam f{(V) <86y 0<i<n

then
A(V,n) < Np.

Proof. If A(V,n) > Ny + 1, there exist Ny + 1 different points z;,
1 <4< Np+1,in Vj such that (f"7)'(x;) = 0. This means that for each
1 <i < Ng+ 1 there exist 1 < m; < n, such that f™i(z;) is a critical
point. Recalling that Ny is the number of critical points of f, it follows
that there exist two different points in the set {z;|1 <i < Ng+ 1}, that
we shall denote by x1,x2, and a critical point ¢ such that f™1(z1) =
fM2(x9) = c. Assume 0 < m; < mg. Then

d(f"27"™(c), 0) = d(f™*(x1), f™2 (x2)) < diam f72(Vj) < 6o

and

d(f""™(c),x) = d(f* (M (x1)), @)
= d(f"(z1),2) < 6o
contradicting property (1) of 6g. O
Now, to find S;41 and n;1 we first claim that there exists S € £(S;)

that for some 0 < n < n; has V € ¢(S,n) with diamV' > €1/10Ny.
Suppose that the claim is false. Then, for all 1 <7 < nj,
diam f(V;) < diam(f "7 () 0 £1(V5))
+ sup{diam W|W € ¢(S,n; —1), S € L(S;)}
€1

<egp 4+ — < 2¢9.
=17 30N, = 1
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From this inequality applied to 7 = 1 and property (4), we have
diam V; < ép.
Moreover, since 21 < g (by (3)),
diam f*(V;) < &g
for all 1 < i < nj, hence for all 0 < i < n;. By Lemma 2 this proves
A(Vj,nj) < No.

Then, since V; € ¢(
that

S]:-)’/Q, nj), it follows from (5), (11) and the lemma

W € ¢(Sj,n;), W C V; = diam W < £1/10N7.
Moreover, by the way N; was chosen, we have
#{W € c(S5,ny)[W CVj} <Ny
and we are assuming that
S € L(S;),U € c(S,nj) = diamU < 1/10N7.

Now observe that V; is the union of sets U € ¢(S,n;), U C V}, S € L(S))
and the sets W € ¢(Sj,n;), W C V;. Moreover, for any two sets W’,
W' in this family there exist W' = Wy, W1,..., Wi = W in ¢(S;,n;)
and contained in V; such that for all 0 < ¢ < k there exist S; € L(S))
and U; € ¢(S;,nj), such that U; N W; # ¢, U; N W41 # ¢. Then

S €1 €1 &1
diam V; < N # =L
e <10]V1'+ 10@v1> B

contradicting the last inequality in condition (11). This completes the
proof of the claim. Now we can take S € L(S;) such that diamV >
£1/10N for some V € ¢(S,n), 0 < n < n;. Take Ve 0(83/2,n) contain-
ing V. Suppose that A(V,n) < Np. Then, by Lemma 1 and condition
(5)

diam V' < €1/20N;

because V € ¢(($%/2)%/3,n) and is contained in V. This contradicts

diam V' > €1/10N7 and proves A(V,n) > Ny + 1. From Lemma 2, it

follows that
diam fZ(V) > dp
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for some 0 < ¢ < n. Now we define S;4; = 85%/29i-Thefi V) e
¢(S3/2,n — i) and diam fi(V) > 6y > 10e;. Moreover diam 5]3421 <26 <
€1. Then there exists 0 <mn;i11 <n—i <nj—iand Vj41 € c(SfiQI,nj+1)
such that
diam(f~"+1(Sj11) N V1) > €1
and
diam(f " (S 41) N F(Vig)) < ey

Observe that n;11 > 0 because diam S; 1 < 26 < 1. This completes
the construction of the sequences {S;} and {n;} and the proof of part
(a) of Theorem II.

Property (b) of Theorem II follows from (a) and Lemma 2. To
prove (c), note that (b) implies that there exists nq > 0 such that V €
c¢(U,n), n > ny implies that V doesn’t intersect the forward orbits of the
critical points. Now (c) follows from this fact and the following classical
property (Fatou, loc. cit.): If V' is an open set such that V N J(f) # @
and V doesn’t intersect the forward orbit of the critical points, then
given an open set Vy C Vj C V and gy > 0 there exists ng > 0 such
that every W € c¢(Vp,n), n > ng, satisfies diam(W) < g¢. The proof of
theorem is now complete.

Proof of the Corollary. To prove the corollary of Theorem II, suppose
that I' is the boundary of a Siegel disk or a connected component of a
Herman ring, say, B, that, without loss of generality, we shall assume
it satisfies f(B) = B, f(I') = I. Let c1,...,c, be the recurrent critical
points of f. Set I'; = w(c) NT. Obviously

f)cr;  1<i<k. (13)
Let us prove that
Bc| Jm: (14)
i
Suppose by contradiction that there exists

.’L‘EB—UFZ'.
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Let U be the neighborhood of x given by Theorem II. Take y € BUU
and take § > 0 such that d(z,T') > 6 for all y € f~"(z) N B and n > 0.
By Theorem II there exists ng > 0 such that '

VecU,n), n>ng= diam(V) <é. (15)

Take z € B such that f"0(z) = y. Let V € ¢(ng,U) be such that
z € V. Since diam(V) < ¢ and d(z,T) > ¢ it follows that V C B.
Take w € V C B such that f"0(w) = z € IT. Then w € B and
w € J(f). This contradiction proves (14). Now observe that I' supports
an invariant ergodic probability, namely that induced by the bound-
ary map of the conformal representation p: A — B, where ¢ is an
annulus or a disk (according to whether B is a Siegel disk or Her-
man ring), normalized, if B is a Siegel disk, by. mapping the center
of the disk in the fixed point contained in B. Then (13) and (14) imply
A; =T for some 1 < ¢ < k, thus concluding the proof of the Corollary.

O

Proof of Theorem I. To prove Theorem I consider a compact invariant
set A C J(f) not containing critical points, parabolic periodic points
and not intersecting the w-limit set of recurrent critical points. We
want to prove that A is expanding. Suppose it is not. Then there exists
a sequence of points {z,} C A such that |(f")(z,)| <1 for all n. Take
a subsequence {xnj} such that the sequence {f"7 (:cnj)} converges to a
point x € A. Take € > 0 such that d(A, ¢) > 2¢ for every critical point c.
Let U be the neighborhood of z associated to € > 0 given by Theorem
IT. Without loss of generality we can assume that U is a disk centered
at z. For j large, we have f" (xnj) € U. Let V; € c(U,n;) be such that
Tn; € Vj. Then f*(V;) € ¢(U,n; — 1) for all'O <1 < n;. By Theorem II,
diam f*(V;) < ¢ for all 0 < i < n;. Hence f*(V;) doesn’t contain critical
points for 0 < ¢ < n; thus implying that f"J has no critical points on
Vj. Since U is a disk and V; € c(U, n;), it follows that f™i:V; — U is a
bijection. Let ¢;: U — Vj be its holomorphic inverse. Then the family
{;} is normal because diam V; < ¢ for all j. Therefore we can assume
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that it converges to a holomorphic map ¢:U — C. But

(" @) = (7Y )|

j

and ‘1131 fri (a:nj) = z. Then |¢'(z)] > 1 and ¢ is non constant. More-
j—+oo

over

2 ]

p(x) = lim ;i (f"9 (wn)) = i zn; €A
Then ¢(U) covers a compact neighborhood W of ¢(z) € A. Since z €
A C J(f) there exists N > 0 such that f*(W) > J(f) for all n > N.
Since the univalent maps ¢;: U — C converge to ¢:U — C, it follows

that ¢;(U) D W for j large. Hence
fraW) C fYip;U) =U.

For j large, we have n; > N and then f"(W) D J(f). Hence U D J(f)
contradicting the fact that U can be taken arbitrarily small in diameter.
The proof of Theorem I is complete. O
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