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Expansive Flows on Seifert Manifolds
and on Torus Bundles

Marco Brunella

Abstract.  We show that any expansive flow on a 3-manifold which is a Seifert
fibration or a torus bundle over S is topologically equivalent to a transitive Anosov
flow. This is achieved by analyzing the trace of the stable foliation (with singularities)
of the flow on incompressible tori embedded in such a manifold.

1. Introduction

Let M be a closed connected 3-manifold and let ¢t : M — M be an
expansive flow: ¢; has no fixed points and Ve > 0 3§ > 0 s.t. if T, yeM
satisfy d(gbt(x),(j)h(t) (y)) < 6 Vt € R and for some continuous homeo-
morphism A : (R,0) — (R,0), then y = ¢,(z) for some s € (—e€,€). Here
d(-,-) denotes the distance with respect to any metric on M, and the
flow may be only continuous.

The aim of this paper is to prove the following result.

Theorem. If M is a Seifert manifold or a torus bundle then ¢ 1s topo-
logically equivalent to a transitive Anosov flow.

We recall that a 3-manifold is said to be Seifert if it admits a foliation
by circles with the property that every circle has an orientable tubular
neighborhood; for example any circle bundle over a surface is a Seifert
manifold, more in general there are “exceptional” fibres ([Hem)]).

E. Ghys classified in [Ghy] up to finite covering and up to topological
equivalence all Anosov flows on circle bundles, and so our theorem allows
to extend such a classification to all expansive flows. Moreover, it seems
that Ghys’ classification holds also in the case of Seifert manifolds, the
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geodesic flows on orbifolds with constant negative curvature playing the
role of models for the classification.

Recall also that J. Plante showed in [Pla] that any Anosov flow on a
torus bundle is topologically equivalent to the suspension of A : T2 —
T2, where A € SL(2, Z) is hyperbolic and represents the monodromy of
the fibration.

Observe that our theorem contains, as a particular case, the theo-
rem of [Pat2]: an expansive geodesic flow on a surface is topologically
equivalent to the (Anosov) geodesic flow corresponding to a metric of
constant negative curvature.

M. Paternain and T. Inaba, S. Matsumoto ([Patl], [I-M]) proved
that an expansive flow on a 3-manifold possesses stable and unstable
foliations with circle prong singularities (see the next section). This
property is used in [Bru] to show that the theorem of D. Fried on surfaces
of section ([Fri]) holds also for transitive expansive flows: any such a flow
admits surfaces of section with first return maps topologically conjugate
to pseudo-Anosov maps. The results of [Fri] and [Bru] imply that if the
stable and unstable foliations of a transitive expansive flow have no
singularities then the flow is topologically equivalent to an Anosov flow.

Hence the above theorem is a consequence of the following two propo-

sitions.

Proposition 1. Let ¢ : M — M be an expansive flow and let M be a
Seifert manifold or a torus bundle, then the stable and unstable foliations
F$, FY have no singularities and their liftings Fs, F in the universal
covering M = R3 are product foliations (i.e. topologically equivalent to

the foliation by horizontal planes).

Proposition 2. Let ¢, : M — M be an expansive flow such that the
foliations F3, F* satisfy the conclusion of proposition 1, then the flow

¢y is transitive.

Remark. Proposition 2 is proven in [Sol2] in the Anosov case; in the
expansive case it is required a little more work, due to the absence of
strong stable and strong unstable foliations. On the other hand, it seems
that proposition 2 is not really necessary for the proof of the theorem,
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because it seems very plausible that an expansive flow whose foliations
are without singularities is always topologically equivalent to an Anosov
flow, even in the non-transitive case.

We conclude this introduction with two natural questions.

a) Is it true that if M supports an Anosov flow then every expansive flow
on M is topologically equivalent to an Anosov one? This is true if M
admits an “algebraic” Anosov flow (i.e. obtained by taking the quotient

of a translation on a Lie group), because in this case M is Seifert or a
torus bundle;

b) Seifert manifolds and torus bundles are examples of graph manifolds
(= unions of Seifert manifolds, glued along their boundaries); is our
theorem true if M is any graph manifold? Recall that there are examples
of Anosov flows on manifolds which are not graph manifolds.

I thank V.V. Solodov and A. Verjovsky for useful discussions about

the subject of this paper.

Stable and unstable foliations and their
universal coverings.
We refer to [I-M] for definitions and notations about foliations with circle
prong singularities.

Let ¢ : M — M be an expansive flow (M= closed connected 3-
manifold), define Ve > 0 and Vz € M:

W (@)={y € M|3h € Homeo([0, +00))s.t. d(@1(x), by (¥) < € V¢ > 0}
W(@)={y € M|3h € Homeo((—00,0))s.t. d($y(x), ds)(y)) < € ¥t < 0}

Proposition.  ([I-M], [Patl].) There exist two ¢i-invariant foliations
with circle prong singularities F5, F* with the following properties:

. . . de : : .
1) Sing(F®) = Sing(F¥) LIS 15 a finite union of closed orbits of ¢; and
F*,F*" are (topologically) transverse in M \ S; the number of prongs of
Fe,F* at each singular circle C € S is > 3
2) if € > 0 is sufficiently small, then Yo € M W2(z) (Wh(z)) is a
neighborhood of x in the extended leaf of F° (F*) through x
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3) every separatriz of F° or F¥ 4s an open cylinder, with a unique
singular end; the other leaves are planes, cylinders, or Mdoebius strips
4) there are no closed transversals to F° or to F* homotopic to zero;
every leaf injects its fundamental group in w1 (M). o
Consider now the universal covering 7 : M — M and let F5, F" be
the lifted foliations; S = 7~1(S) is a countable discrete set of lines. Let
j:é and .7:6‘ be the foliations (without Sinfi{ularitie?) on M\ S obtained by
restriction of F* and F*. The leaves of F§ and F{ are all planes, closed
in M\ S, by 4) of the above proposition. Remark that F§ and F¥ may
be not transversely orientable, for the possible existence of odd-prong
singularities.
Lemma 1. Let j: R — M\ S be an embedding transverse to .7:8, then
every leaf of .775 intersects j(R) in no more then one point.
Proof. Assume that a leaf L intersects j(R) in two points j(q),j(p), ¢ >
p, and let 7 : [0, 1] — L be a curve joining j(q) and j(p). Fix a continuous
co-orientation of L in M along +, then there are two possibilities:

AJR)
—— [, I\J(R>
J(9) =y
. J@)
J@)

Jp)

Figure 1
i) the co-orientations in (0) and (1) are both compatible or both
incompatible with the co-orientations induced by j (R): then it is easy
to perturb the cycle v([0,1]) U3 ([p, g]) to obtain a closed curve transverse
to Fg, but this is absurd because F* does not admit closed transversals

homotopic to zero.
ii) the co-orientation in 7(0) is compatible with the one given by
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J(R) and the co-orientation in 7(1) is incompatible (or vice versa): take
a disk D®> — M with boundary «([0,1]) U j([p, q]) such that (cfr. [I-
M]) F° induces on it a foliation G with centers, saddles, prongs (=
transverse intersections with the singular set of the foliation), without
connections between two prongs or a saddle and a prong, and without
prong self-connections. Then a Poincare-Hopf argument shows that G
has at least one prong (with an odd,> 3, number of separatrices), and all
the separatrices of this prong must intersects j([p, q]), because the leaves
of G are closed in D? \ Sing(G). Two of these separatrices separate a
sub-disk D% C D? with a piece of boundary on j((p,q)), and we may
repeat the above argument for ]D%. An iteration of this construction
would produce an infinite number of prongs on ID)2, which is absurd. O

As a consequence of the lemma we have that V' %/ (M\S)/ ]-"5 (and
similarly V% 4ef (M\S)/ j—"g) is a one-dimensional connected manifold,
with countable base, possibly non-Hausdorff ([God]).

The fundamental group 71 (M) acts on M preserving S and F 5, ;and
so there is an induced action on V*. Fixed points of a € w1 (M) on V*
correspond to leaves which project on M to leaves containing a closed
orbit representing «.

Lemma 2. Let 6 € m1(M) be a central element, different from the iden-
tity, then 6 acts on V* without fized points.

Proof. It is exactly the same of lemma 2.4 of [Ghy]: the set
Fiz™(6) = {x € V®|z and §(z) are not separated}

is closed, countable and 71 (M)- invariant, and if it is not empty then the
foliation F§ = F°|an s has a closed saturated set K which is transversely
countable. It is easy to see that if { K, }aers is a collection of closed F5-
saturated non-empty sets, totally ordered with respect to the inclusion,
then Naer Ky is non-empty (in spite of the non-compactness of M \ S:
we use here the particular structure of 7§ around the singular set S).
Hence we may apply Zorn lemma to deduce that K contains a minimal
set, which is a closed leaf because of the transverse countability. But
this is in contradiction with Inaba-Matsumoto-Paternain theorem, hence
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Fiz~(6) = @. O

Remark 1. If 3 € w1 (M) \ {id} is such that 8% € Z(m(M)) for some
k # 0, then also (8 has no fixed points.

Remark 2. In the transitive case it is possible to prove the above state-
ment as follow: if v C M is a closed orbit of ¢;, representing o € 71 (M),
then using the fact that the stable leaf of v accumulates on itself it is
easy to construct a closed transversal to F*° representing a:* Bra~lxp1
for some 8 € (M), and the non-triviality of this element implies that
a & Z(m (M)).

Proof of proposition 1 - Seifert manifolds

Let now M be a Seifert manifold. The results of Paternain (71 (M) has
exponential growth) and Inaba-Matsumoto (M is aspherical), together
with the standard theory of Seifert manifolds ([Hem]), imply that M =
R? and that there is an exact sequence

1—=Z->m(M) -m((E)—1

where ¥= base of the Seifert fibration = orbifold of genus > 2 and Z is
the cyclic infinite normal subgroup generated by a regular fibre.

It is sufficient to prove proposition 1 for some finite covering of
(M, ¢¢), so we may assume that M and ¥ are orientable, and in partic-
ular Z is central in w1 (M). Hence the regular fibres represent central
eleménts, and the exceptional fibres roots of central elements. Lemma
2 means that there are no closed orbits of ¢; freely homotopic to a fi-
bre, and consequently every closed orbit projects to ¥ to a curve non
homotopic to zero. '

Let w C X be a simple, smooth, closed curve, non homotopic to
zero and disjoint from the singular points of ¥, and denote by TE the
incompressible torus p~!(w) € M, p : M — X being the canonical
projection. The following lemma is obvious. ‘

Lemma 3. If v C M is a closed curve such that Yw C ¥ as above vy
is homotopic to a curve which does not intersect T2, then p(y) C ¥ is

homotopic to zero.
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Assume now that S # &, let v € S be a singular closed orbit of ¢,
and let w C ¥ be any closed curve as above. We will show that with an
isotopy v can be disjoined from T2, and the arbitrarity of w together
lemma 2 and 3 will give a contradiction and will prove that we must
have § = @.

First of all we put Tg in general position with respect to the foliation
F* ([Soll]): the induced foliation G has only a finite number of centers
and saddles due to tangency points, and a finite number of prongs due
to the transverse intersection 7,2 NS; there are no connections between
two different saddles, and no saddle-prong connections. An isotopy of
TE will ensure that, moreover, there are no connections between two
different prongs and no prong self-connections ([I-M]). We claim that,
at this point, we have T2 NS = @.

Consider a center p € T2 and define (cfr. [R-R]):

Ep = U{D2 C T3|P € D? and Q|D2\p is a foliation by circles}

as in [R-R], the absence of vanishing cycles in F* implies that 9E, is
formed by one or two separatrices and a saddle point ¢:

q

Ep Fp

Figure 2

In this way we associate to every center p a saddle ¢ = q(p). It may
happen that two centers p1, ps are associated to the same saddle ¢:
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q

>

but the absence of vanishing cycles in F* implies that there exist em-
g 91 3 2 _ = )

Tbeddmgs ]D) — T.w such that E,',1 U Ep,, C (D) and G| 02\ (Bp, Uy

is a foliation by circles. The union of all these embeddings is again a

Figure 3

region bounded by one or two separatrices and a saddle point.

In conclusion we see that the number of saddles must be greater or
equal than the number of centers, and the Poincare-Hopf formula shows
that these two numbers are in fact equal, and the number of prongs is
zero, i.e. TE NS = &. As remarked before, this means that S = &.

It remains only to prove that F° and F* are product foliations. But

now F* and F* are without singularities, so we may repeat the proof of
Ghys ([Ghy], lemma 2.4-2.7). O

Proof of proposition 1 - Torus bundles
Let M be a torus bundle: M = T? x [0,1]/(z,0) ~ (Az, 1), where 4 €
GL(2,7Z) is hyperbolic, because 71 (M) has exponential growth.

The same argument as above shows that a fibre T2 < M is isotopic
to an embedded torus which does not intersect S. After this first isbtopy
we may apply the technique of Roussarie of elimination of centers ([Rou)
to isotope this torus to one transverse to F*, and again disjoint from S
(the fact that the foliation is only CY and perhaps is not transversely
orientable does not give any trouble).

If we cut M along such a torus we obtain the manifold M = T2 x]0, 1],
equipped with a foliation F with circle prong singularities S, transverse
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to M = T? x {0,1}. The foliations Gy = Flr2, 0y and Gy = f\sz{l}
correspond each other via A: A,(Gg) = G1. Because A is hyperbolic, the
compact leaves of Gy cannot be homotopic in M to the compact leaves
of gl.

We will pass to the double 2M ~ T3, equipped with the double
foliation 2F, and we will analyze the trace of 2F on incompressible tori
in 73, as in the Seifert case. However, before to do this we have to
choose carefully the torus 72 < M transverse to F?.

Let v € S, we will say that a separatrix L € F at ~ reaches the
boundary if LN &M =T ~ S! and T is homotopic to (a multiple of) v
on L. Then I must be a simple closed curve in 72 x {0} or T? x {1},
non homotopic to zero (and hence representing a non-multiple element
of m1(M)), and L realizes a “cobordism” between T' and v (and not a
multiple of 7); in particular the foliation is not twisted around ~, i.e
#{ prongs at v} = #{ separatrices at v}. Observe also that I is a limit
cycle for Gy or Gy, and that if a separatrix at + reaches T2 x {0} then
no other separatrix at v can reach T2 x {1}. This is essential for the
proof.

A singular half Reeb component of F is a closed saturated set Q C M,
homeomorphic to a solid torus, such that:

1) 80 = AULqULyU~, where vy €S, L1 and Lo are separatrices at
reaching the boundary, A C OM is an annulus, with 04 = (L1 N M) U
(Lo N oM )

2) intQ is foliated as the usual half Reeb component.

In particular, A is a planar Reeb component for F|y;. Remark
that a singular circle v € S may be in the boundary of several singular
half Reeb components 1, ...,Q,. In this case the corresponding annuli
A1, ..., A, are all on the same connected component of OM.

We will say that v € S is bad if all except at most one of its separa-
trices are in the boundary of singular half Reeb components.

Lemma4. We may choose T? < M, isotopic to a fibre and transverse to
F%, in such a way that the foliation F on M has no half Reeb components
and no bad singular circles.
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Proof. Suppose that the foliation F, corresponding to a choice of T2 <
M, has a bad singular circle v € S, then we isotope 72 to another torus

T2, again transverse to F*, as in the picture:

1\
Tr2

Figure 4

This is possible because F* has contracting or expanding holonomy
along . From the point of view of the foliation Go or G induced by
F on OM, this operation corresponds to the elimination of one or more
limit cycles, bounding planar Reeb components:

= .
\ﬁ @UU il

e
—

Figure 5

Similarly for the half Reeb components:
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Figure 6

After such an isotopy the number of limit cycles of Gy or G; without
closed transversals (the only ones which can be in the boundary of planar
Reeb components) strictly decreases. To this regard, observe that such
an isotopy may produce new limit cycles, but these new cycles admit
closed transversals (the axis of the old Reeb component). It follows that
after a finite number of steps we have eliminated all the bad singular
circles and all the half Reeb components. O

Consider now M, F asinlemma 4. Let R = S1x [0,1] and let R < M
be an embedding with S x {0} € T2 x {0}, S x {1} c T2 x {1}. The
general position argument ([Soll]) ensures that H = F|g satisfies the
following properties:

a) H has a finite number of centers, saddles, prongs in intR, correspond-
ing to tangencies of R with F and transverse intersections with S, and
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semi-centers or semi-saddles in R, in points where OR is tangent to Gg
or Gi;

b) there are no connections between two different (semi)-saddles or be-
tween a (semi)-saddle and a prong.

Moreover, if there is a connection between two prongs, we may re-
move it with the help of a Whitney disk ([I-M]: observe that such a disk,
which exists in M, cannot intersect T2 < M and so it exists also in M,
after the cutting). Hence we will assume that H has no prong-prong or
self-prong connections.

Now we pass to the double 2/ ~ T2x S, equipped with the foliation
with circle prong singularities 2F which induces on 2R ~ T? a foliation
2H. A small perturbation of 2R near the saddle points guarantees that
2H satisfy again a) and b) above, but now it can appear non-removable
connections between two “symmetric” prongs on two different “sides”
of 2R. Remark that the absence of half Reeb components in F implies
that 2F has no vanishing cycles, but there may be “singular” vanishing
cycles ¢ : St x [0,1) — 2M, with ¢(S' x {0}) contained in an extended
leaf.

Let p € 2R be a center of 2H and let E), be as in the previous section.
Then OF, is again formed by a saddle g together 1 or 2 separatrices, or

by two “symmetric” prongs 71,79 connected by two separatrices s1, sa:

R R

Figure 7
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Then, because there are no vanishing cycles, s1 U s is a “singular”
vanishing cycle; r1,ry correspond to singular circles v1,72 € 2F and
s1, 89 to separatrices L1, Lo joining 1 and <, such that L1 ULy is a
torus bounding a singular Reeb component, i.e. the double of a singular
half Reeb component (cfr. the appendix of [R-R]). The absence of bad
singular circles implies that 71 and 7o have at least 4 separatrices.

It may happen that a pair of prongs is associated to two or more

B || (D

== &2

R Rl |R R

Figure 8

centers:

These centers must belong to the same connected component of
OM C 2M, because a singular circle v € F cannot have two separa-
trices reaching two different components of M. If k is the number of
such centers, 71 and ro have at least k + 3 separatrices (because there
are no bad singular circles), hence they (together) contribute to the
Poincare-Hopf index of 2H with at most —(k + 1), while the contribute
of the k centers is +k; so that the total contribute of r1,r9 and the k£
centers is at most —1.

It may happen also that a saddle g is associated to two centers p1, p2,
as in the previous section. Then, as there, we have again a foliation by
circles in an annulus around E—p1 U E—pz, and this family of circles must
die on a saddle or on a pair of symmetric prongs. In the second case,
as before, the two prongs are connected by two separatrices which form
a singular vanishing cycle, contained in the boundary of a singular half
Reeb component; each prong has at least 4 separatrices. We shall say
that the two prongs are associated to the triple (p1,p2,q).
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A pair of prongs may be associated to several centers and several
triples, but then the absence of bad singular circles implies that the
total contribute to the Poincare - Hopf index of the two prongs, the
centers and the saddles and centers forming the triples will be at most
—1 (a triple contribute as it were a center).

A repetition of these arguments (whose formalization is left to the
reader) shows that the total index of 2H is < 0, and strictly less than 0 if
some prongs is associated to some center (or triple, quintuple,...). From
Poincare - Hopf formula it follows that these prongs cannot occur in
the previous analysis, and consequently # saddles > # centers, as in the
Seifert case. Hence f saddles = § centers and § prongs = 0, i.e SNR = @.
The arbitrarity of R and the fact that v € S cannot be homotopic to
zero show that S = @, i.e. S = @, F° and F* are nonsingular.

Finally, the fact that F* and F* are product foliations is a conse-
quence of theorem 3 or theorem 4 of [Mat].

Proof of proposition 2

We return to the general case of an expansive flow ¢; : M — M on any
3-manifold, and assume that F*°, F* are without singularities and that
the liftings F5, F% in M = R3 are product foliations.

It is sufficient to prove the transitivity of some finite covering of
(M, ¢¢), so we may assume that F° and F* are orientable and trans-
versely orientable. A transverse orientation of F“ allows to distinguish
between a “positive side” F5T and a “neéative side” FJ~ of every
leaf F2 € F5: F = F5 U [¢gr(z)] U FS~. Similarly we decompose
Fo=F3t Ulgm(a) U Fp.

Define (cfr. [Ver]):

Cy ={z € M|F:TNnF! =2}

as in [Ver|, C4 is a finite union of closed orbits of ¢;. If x € C4 and
if z € R is a lifting of z, then j—"§+ (obviously defined) does not
intersects w1 (M )(fg); but any other point § € .7-"% which is not in the
orbit of ¢; through # does not project to a closed orbit of ¢+, hence .7-'§+
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must intersects some a@(j:glj), for some oy € 71 (M). The fact that Fu
is a product foliation (i.e. R3 /F* =R is totally ordered) implies easily
that if 1, 92 are two such points, then there exists « € 71 (M) s.t. fgj
and fg; both intersects a(fg). Choosing 77 € j’éﬁ and o € f;i“ we
see that also .7-"§+ must intersects a(fg), i.e. x € Cy. This means that
Ct = @. Similarly C_ = {z € M|F:~ N F¥ = &} is empty.

Lemma 5. Every leaf of F*° intersects every leaf of F.

Proof. Assume by contradiction that L® € F° and L* € F“ do not
intersect, then also L® and L* do not intersect. Let L® € F* be any
lifting of L® and let K = 7~ Y(I%), 7 : R - M being the covering
projection. Then L*® divide R3 into two open subset 07,09, and the
intersections A = KNO1, B = KNO3 are two disjoint, closed, nonempty
sets, separated by L*® and saturated by F.

Let Ag, By, K be the projections of A, B, K to V% = R?’/j—"’“ ~ R,
fix any a € Ap, b € By, and assume that a < b (the case a > b is
similar), then define

ag = Maz{r € Ap|r < b} bo = Min{s € By|s > ag}

ag and by are well defined, because Ay and By are closed and disjoint,
moreover ag < by and (ag, bg)NKg = &. On the other hand, the property
C+ = @ means that there exists a leaf Ly € F* which intersects the leaf
corresponding to ag and a leaf corresponding to some kg € Ky, kg > ag.
Such a leaf Ly must intersect also the leaf corresponding to by, and this
contradicts the fact that L® separates A and B. O

To complete the proof of proposition 2 we observe that (thanks to the
existence of stable and unstable foliations) Smale’s spectral decomposi-
tion theorem holds also for expansive flows on 3-manifolds: the nonwan-
dering set Q(¢¢) is the closure of the set of closed orbits and is a finite
union of closed, invariant, transitive sets Qq, ..., Qy, pairwise disjoint.
Then

u-Uy=-U U=

=1 zeﬂj
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and if Q(¢¢) # M there exist a source ; (UzEij; = Q;) and a sink
Me(Ugen, Fo = )-

But lemma 5 guarantees that such a situation cannot arise. O
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