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On the Poles of Regular Differentials of
Singular Curves

Karl-Otto Stohr

Abstract. We describe the pole behaviour of the regular differentials of projective
algebraic curves in terms of discrete invariants of the singular points.

Introduction

The regular differentials of a projective algebraic curve may have poles
on its non-singular model. In this paper we describe their pole behaviour
in terms of discrete invariants of the local rings (Section 2), and apply
this to study Weierstrass points of singular curves (Section 3) and to an-
alyze how the Hasse-Witt invariant and the zeta-function change under
desingularization (Section 4). In Section 1 while introducing our nota-
tion we indicate — influenced by Roquette’s analysis [R2] of Gorenstein’s
theorem — how Weil’s approach [W] to the Riemann-Roch theorem for
function fields generalizes nearly literally to curves with singularities.

1. Singular Curves
Let X be a complete irreducible algebraic curve with constant field &
and let K be the field of rational functions on X. This means that K is
a function field in one variable with the constant field k& and that X is
(the index set of ) a set {Op}pex of local k-algebras, properly contained
in K with quotient field K, satisfying the two properties:

i) For almost all P € X, the local ring Op is a discrete valuation ring.
ii) For each discrete valuation ring B of K|k there is an unique P € X
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such that Op C B.
(In the language of schemes, X has one more point namely its generic
point whose local ring is the function field K.) The first condition
means that the number of singular points of X is finite. By the second
condition we have a morphism m: X — X where X is the non-singular
model of X defined to be the set of all discrete valuation rings of K|k.
For each P € X the elements of the fiber 7=1(P) are called the branches
of X centered at P. By the extension theorem of valuation theory there
is at least one branch centered at P. On the other hand the branches at
P (are zeros of each rational function vanishing at P and so they) are
finite in number.

By a divisor of X we mean (a coherent fractional ideal sheaf of X
or equivalently) a formal product

a= Hap

PeX

where ap is a (non-zero fractional) ideal of Op for each P € X and
ap = Op for almost all P. A divisor a is called locally principal (or
a Cartier divisor) if each component ap is a principal ideal. For two
divisors a and b we define the product a - b and the quotient a:b by
setting:

(a-b)p:= ap - bp = Op-ideal generated by the products ab with

a€apandb€bp o,

(a:b)p:=ap:bp = {z € K|zbp C ap}
Note that the locally principal divisors form a multiplicative group
whose neutral element is the structure divisor

0:= [] Oep.

PeX

We define
a>b:<=>ap Obp foreach PeX

and call a divisor a positive when a > O. It is common in the literature
but it would be inconvenient in our approach, to invert the ordering
and consider as positive the divisors a with ap C Op for each P (which
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correspond bijectively to the zero-dimensional closed subschemes of X).
The degree of a divisor is defined by the properties deg(O) =0 and

deg(a) — deg(b) = Z dimap/bp whenever a > b.
PeX
For each non-zero rational function z € K* we define the principal divi-
sor:
div(z): = H 2 10p
PeX
Let
L(a):= m ap = {z € K|div(z) -a > O}
PeX
be the k-vector space of global sections of a (also denoted by HY(X, a)).
To get the link with Rosenlicht’s paper [R] we assign to each element
YnpP of the free abelian group generated by the non-singular points of
X the locally principal divisor whose P-component is equal to m;np
(respectively, Op) when P is non-singular (respectively, singular), where
mp denotes the maximal ideal of Op.
Since K is a function field in one variable with constant field k, each
integral k-algebra with quotient field K has finite k-codimension in its
integral closure A (cf. [R, Theorem 1], [R1, Satz 3]). The integer

Op:= dim @p/@p

is called the singularity degree of P. Denoting by Q1,...,Qm € X the
branches centered at P, the integral closure

@pZOQlﬂ---ﬂOQm

of Op is a principal ideal domain whose maximal ideals correspond bijec-
tively to the branches @1, ..., Qp,. Thus the divisors of the non-singular
model X correspond bijectively to the O-divisors of X defined as the
divisors whose P-components are @ p-ideals. The structure divisor of X
corresponds to the @-divisor

& ] Bp.
PeX
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Since §p < oo, by the Artin-Rees lemma the topology of Op is
induced by the topology of Op, and so the completion Op is a closed
subring of (’) p of codimension 6p. By applying the chinese remainder
theorem to the residue rings of Op and passing to the projective limit
one obtains: R

@pZ@Ql Xoeee X@Qm-
Thus the completion ap of the P-component ap of a divisor a is con-
tained in the product KQl X oee X KQm, and thus the paralleletope of a,
that is, the cartesian product
ey H ap
PeX
is contained in the k-algebra A = Ak of adeles of K|k defined to be
the restricted product of the local fields KQ of the branches @ € X.

The two dimensions

{(a): = dim L(a) = dim A(a) N K
and

i(a): = dim A/(A(a) + K)

are finite. In fact, since a: O<a<a- O we can assume that a is an
-divisor and thus corresponds to a divisor A of the non-singular model
X, hence A(a) = A(A),£(a) = {(A) and i(a) = i(A), and we can apply
the non-singular case (cf. e.g. [L, Ch. I, §2]). Since we have an exact
sequence

0 — L(a)/L(b) — A(a)/A(b) a) + K)/(A(b) + K) — 0

whenever a > b, we conclude that £(a) — deg(a) — i(a) does not depend
on the divisor a and so we obtain (cf. [G1, Theorem 5.4]):
(1.1) Riemann-Roch theorem for singular curves. Each divisor a of X
satisfies

{(a) = deg(a) + 1 — g +1i(a)
where g: = i(O) is called the arithmetic genus of X.

In particular the degree of a only depends on the linear equivalence
class {div(2) - a|z € K*} of the divisor a, and so the product formula
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extends to the singular case:
degdiv(z) =0 for each 2z € K™. (1.2)

In particular L(a) =0 whenever deg(a) <0.Ifaisan O-divisor of X
corresponding to the divisor A of X then

deg(a) = deg(A) + deg(O) = Z op
PeX
and so by the Riemann-Roch theorem we get the genus formula
=g+ > bp (1.3)
PeX

(cf. Hironaka [H, Theorem 2]) where g is the geometric genus of X
defined to be the genus of the non-singular model X.

By a ( Weil) differential of X we mean a k-linear functional Ax, — k
vanish}ng on A(a) + K for some divisor a of X. Since A(a: O) C Aa) C
A(a - O) this notion only depends on the non-singular model X. Note
that i(a) = dim Q(a) where Q(a) stands for the k-vector space of all
differentials vanishing on A(a).

Let A\ be a non-zero differential say A € Q(a) \ {0} for some divisor
a. As in the non-singular case one proves Riemann’s theorem which
says that deg(a) < 2g — 2. (In fact, if b is a locally principal divisor
with deg(b) > deg(a), then deg(a: b) = deg(a) — deg(b) < 0 and therefore
{(a:b) = 0, and if 21,...,2, form a basis of L(b) then 21A,...,2,A €
Q(a:b) are linearly independent and therefore £(b) < i(a:b), and by
applying the Riemann-Roch theorem to the divisors b and a: b we obtain
deg(a) < 2g —2.) Thus among the paralleletopes where A vanishes there
is a largest one, say A(c). We put div(A): = c. Note that the divisor of A
on the non-singular model X corresponds to the divisor c: O of X which
is the largest O-divisor smaller than or equal to c.

Since the space Qi of differentials is a one-dimensional vector space
over the function field K (cf. [L, Theorem 6]), the class of the divisor
¢ = div(\) does not depend on the choice of the non-zero differential A,
and it is called the canonical class. Moreover we deduce Q(a) = L(c:a)A
and therefore

i(a) = {(c: a).
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In particular we get
dim Q(O) ={(c) = g.

Now by applying the Riemann-Roch theorem to the divisor ¢ we

obtain
deg(c) = 2g — 2.

(We will see in a moment that c:c = O, but it is enough to observe 0 <
a:a < O in order to deduce f(a:a) = 1 for each divisor a.) Conversely,
each divisor c satisfying #(c) > ¢ and deg(c) = 2g — 2 is a canonical
divisor.

The P-component Ap of the differential A is defined to be the com-

position homomorphism:

m
)\p:K 3 @ KQ’i = AK\k A k.
i=1

Since the P-component cp of ¢ = div(]}) is the largest Op-ideal on which
completion ¢p the homomorphism @i~ KQ@' — Ak — k vanishes, and
since by the approximation theorem the field K is dense in &;%; Kq,,
we conclude that cp is the largest Op-ideal where \p vanishes, or equiv-
alently cp = {z € K|A\p(Opz) = 0}. More generally, for each Op-ideal
ap we have:

cp:ap = {z € K|\p(apz) = 0}. (1.4)
(In fact, Ap vanishes on apz = Opapz if and only if apz C cp that is
z € cp:ap.) For each P € X we define the Op-module

Q(ap): = {u € Qx| div(u)p 2 ap} = {ulup(ap) = 0}.

Note that
Q(ap) = (cp:ap)A

and

Qa) = ) Qap) = L(c:a)X.
PeX

Theorem 1.5. (Local Duality.) Ifap O bp then there is an isomorphism

of k-vector spaces

Q(bp)/Qap) — Homy(ap/bp, k)
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defined by pn + Q(ap) — (a + bp — up(a)). Equivalently, there is a
k-isomorphism ‘
(cp: bp)/(cP: ap) = Homk(ap/bp, k)

defined by ¢ — (@ — Ap(ac)).

Proof. By (1.4) we have an injective homomorphism K/(cp:ap) <
Homg(ap, k) and in particular (cp:bp)/(cp:ap) — Homg(ap/bp,k).
Thus dim(cp:bp)/(cp:ap) < dimap/bp, and it is enough to prove the
equality of the dimensions. Since bp:Op C bp C ap C ap - Op, we
can assume that ap and bp are Op-ideals. Then cp:ap = dp:ap and
cp:bp = dp:bp where dp: = cp: @p is also an Op-ideal. Since Op is a
principal ideal domain, (dp:bp)/(dp:ap) is isomorphic to ap/bp. O

It follows from the local duality that degp(ap) + degp(cp:ap) does
not depend on the ideal ap and therefore

degp(cp:ap) = degp(cp) — degp(ap)

where the local degree function degp is defined by the properties
degp(Op) = 0 and degp(ap)—degp(bp) = dimap/bp whenever ap D bp.
By summing up we obtain for each divisor ap of X the formula:

deg(c: a) = deg(c) — deg(a). (1.6)
In particular deg(c: (c:a)) = deg(a), and since c: (c:a) > a we deduce:
(1.7) Reciprocity. c: (c:a) = a.
In the special case where a = O we obtain:
ce=il (1.8)
By the reciprocity, the assignment
ap — cp:ap

defines an anti-monotonous permutation between the @p-ideals. In par-
ticular we deduce:

cp:(ap+bp) = (cp:ap) N (cp:bp)

cp:(apNbp) = (cprap) + (cp:bp).
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It now follows from [HK, Satz 2.8] that a divisor d satisfies d: (d:a) = a
for each divisor a if and only if d = b - ¢ for some locally principal
divisor b.

Theorem 1.9. For any two divisors a and b of X, for each P € X and

each function z € K we have:
zQ(ap) C Q(bp) <= zbp C ap

If bp O ap and z € Op then this follows by noting that by the local
duality (1.5) the Op-modules bp/ap and Q(ap)/Q(bp) have the same
annihilator (cf. Serre [S2, Ch. IV, §3.11]). The theorem simply says
that

(c:b):(c:a) = a:b.
Since (c:b):(c:a) > a:b and (c:a’): (c:b’) > b’:a’ where a’: = c:a and
b’:= c: b, the theorem follows from the reciprocity (1.7). Taking b= O
we even see that it is equivalent to the reciprocity.

2. The pole behaviour of the regular differentials
A differential u € Qg is called regular at a point P € X when u €

Q(Op) that is up(Op) = 0 or equivalently div(u)p 2 Op. Note that
Q(0p) 2 Q(Op)

where Q(Op) is the space of the differentials regular at the branches
centered in P. It may happen that a regulaf differential on X has
poles at branches centered in singular points. In order to analyze the
pole behaviour, we study the space Q(O) of regular differentials on X
modulo the space Q(O) of regular differentials on X.

Theorem 2.1. There is a canonical isomorphism
20)/2(0) = @ AOP)/AO0P)

where P varies over the singular points of X.

Thus it is enough to study the pole behaviour of the differentials
u € Q(Op) at the branches centered at P. To prove the theorem
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we simply observe that the inclusions Q(O) C Q(Op) induce an injec-
tive homomorphism of Q(0)/Q(O) into the direct sum of the quotients
Q(Op)/Q(Op), and that by the Riemann-Roch theorem the dimension
of Q(0)/Q(O) is equal to g — § = 3. 6p, and so it remains to note that

dim Q(Op)/UOp) = 6p.
More generally, by the local duality (1.5) we have an isomorphism:
Q(0p)/2(Op) = Homy(Op/Op, k)

We denote by f the conductor divisor of X, that is, the largest O-divisor
of X smaller than or equal to the structure divisor O. Note that

Q(Op) C Qfp) = (Op: £p)2(Op).

Thus the pole orders of the regular differentials of X are not larger
than the corresponding exponents of the conductor. Since £ = ©: O, by
Theorem 1.9 we have

{Z & K|ZQ(OP) - Q(@p)} =fp

or equivalently (c:O):c = f where, as in Section 1, ¢ is the divisor of
some non-zero differential \. From now on we will assume in this section
that the constant field k is infinite.

Proposition 2.2. Q(@p) = fp - Q(Op). This means that c: O=fc, and
holds trivially when the ideals cp are principal.

Proof. For each branch () centered at P let cg be an element of cp such
that and ordg(cg) = min{ordg(c) | ¢ € cp}. Since the constant field k is
infinite, by taking a suitable linear combination of the functions cg we
obtain an element z = zp € cp such that ordg(z) = ordg(cg) for each @
that is Op - ¢ p=20p or equivalently

ZO P g cp g Z@ P .

Since as just observed (c: O): ¢ = f and since (a: O):a = a: (a-O) for each
divisor a we have
ci(c-O0)=f

and therefore cp: Op = 2fp = cp - fp. O
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Theorem 2.3. (Rosenlicht [R, Theorem 10].) We have dim Op/fp
< 6p, and equality holds if and only if the Op-module Q(Op) is free (of
rank 1) or equivalently the ideal cp ts principal.

Proof. We keep the notation of the preceding proof. Since zOp C cp C
2Op and since Op is the only principal ideal between Op and its integral
closure Op, the ideal cp is principal if and only if it is equal to zOp.
Since

Op/fp = 20p/zfp C ep/zfp = cp/(cp: @p) o Q(Op)/ﬂ(@p)

we have dim Op/fp < §p, and equality holds if and only if cp = 20p.0
The one-dimensional local ring Op is called a Gorenstein ring when

Corollary 2.4. The curve X is a Gorenstein curve (that is, all its local
rings are Gorenstein rings) if and only if its canonical divisors are locally
principal.

For the remainder of this section we will assume that the constant
field k is algebraically closed. As usual by the residue formula the
(Weil) differentials are identified with the differential forms. Thus the
P-component of a differential form p of K|k is given by

m
pp(z) =Y resq(zp) foreach ze€ K
i=1
where Q1,...,Qm € X are the branches centered at™P.
For each i = 1,...,m let p; be the maximal ideal of the principal

ideal domain Op = Og, N---N Og,, corresponding to the branch Qi,
that is, p;: = {z € Op| ordg,(z) > 1}. We write '

fpzp{l pfnm
where the exponents f1,..., f, are non-negative integers. In order to

study the pole behaviour of the regular differentials we consider the set

R: = {(ordgq, (W), - - - yordQn, () |n € R(O) \ {0}} C Z™.

This set is finite, because for each (r1,...,mn) € R we have

2 —fi B=1000,mMm)
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and 71+ +7Tm <29 — 2+ D gex\(P} dim@Q/fQ. The set R is non-
empty whenever g > 0 or equivalently when X is not isomorphic to the
projective line. Since for each ¢ = 1,...,m the function ordeg;: Kis -
Z U {oo} is a valuation with the infinite residue field k& and since Q(O)
is a vector space over k, the set R satisfies the two properties:

(2.5) Ifr=(r1,...,mm)ands = (s1,...,Sn) are elements of R then
the vector with the coordinates min{r;, s;} also belongs to R.

(2.6) Ifr,s € Randr; =s; for some 4, then there is a vector t € R
such that ¢; > r;, t; > min{r;,s;} for each j and t; = min{r;,s,;}
whenever 7; # s;.

We compare the set R with the additive semigroup
Sp:= {(ordg, (2),...,0rdQ,(2))|z € Op \ {0}} € N™

which has been studied by several authors (cf. [Wa], [G], [B], [D1], [D2]
and [GL]). Since the conductor fp is the largest Op-ideal contained in
Op, the vector (f1,..., fm) is the smallest vector (with respect to the
product ordering of N™) such that

(f1s-++» fm) +N™ C Sp.
Since Sp also satisfies properties of type (2.5) and (2.6), one deduces
(cf. Garcia [G]):

(2.7) A vector (s1,...,8m) € N belongs to Sp if and only if the
vector with the coordinates min{s;, f;} belongs to Sp.

In particular, it follows from the minimality of the conductor vector
(f1,-. -, fm) that the vectors (ry,...,ry) with r; = f; — 1 for some 7 and
r; > f; for each j # i do not belong to Sp. Note that the zero-vector
(0,...,0) is the only point of Sp having at least one coordinate equal to
zero. If P is a singular point of X then f; > 0 for each ¢ =1,...,m.

Theorem 2.8. Let (ny,...,ny,) be a vector of non-negative integers.
There is a reqular differential u on X such that

ordg,(p) = —n; when n; >0
ordg,(p) = 0 when n; =0
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if and only if for eachi = 1,...,m the vectors (ri,...ry) withr; =n;—1
and r; > nj for each j # i do not belong to the semigroup Sp associated
to the point P.

Furthermore, by Theorem 2.1 we can impose that ordg(u) > 0 for
each @ € X\ {Q1,...,Qm}-

Corollary 2.9. If g > 0 then there is a regular differential p on X such
that
ordg,(u) = —fi foreach i=1,...,m

and ordg (i) > 0 for each Q € X \ {Q1,...,Qm}.

Corollary 2.10. Let i € {1,...,m} and let n be a positive integer. There
is a reqular differential on X having at Q; a pole of order n if and
only if the vector (f1,..., fi—1,mn—1, fit1,..., fm) does not belong to the
semigroup Sp.

In fact, if there is a regular differential 4 on X with ordg, (1) = —n,

then by Corollary 2.9 and Property 2.5 we have (—fy,...,—fi_1,—n,

—fi+1s--.,—fn) € R and this by Theorem 2.8 and Property 2.7 means

that (fl’ oo 7fi—1an - ]-a fi+17 LR 7fm) ¢ SP‘

Proof of Theorem 2.8. For each vector n = (n1,...,n,,) we abbreviate
p’“::p;11 Cppm

and consider the divisor
an:= (Op+p") - H OQ.
QeX\{P}
Note that

Q(an) = {p € QO)|ordg, (1) = —n1,...,0rdg,, (1) > —nm}.

-----

Wy, —1,esmam,) if and only if there is a differential (respectively, no
differential) j;, with ordg,(ni) = —n; and orde(,ui) > —n; for each
j#i

Let I be a non-empty subset of {1,...,m}. Now, by Property 2.5,
there is a differential p € Q(O) with orde (1) = —n; for each i € T and
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ordg, (k) = —n; for each j € {1,...,m} \ I if and only if

Wn = Wny,..n;~1,..nm T+ 1 for each i€ I.
On the other hand by the Riemann-Roch theorem (1.1) we have

l(ay) = deg(an) + 1 — g + wy.

Note that
deg(an) = dim(Op + p")/Op
= dimp”/(Op N p")
=ln+ép—(N1+ - +1np),
where

fn: = dim Op/(Op Np")
is the codimension of the valuation ideal
Opnip* = {z € Op|ordg, (2) = ny,...,0rdg,, (2) = np}.

Now we will use the assumption n; > 0 for each ¢ = 1,...,m. Since
O < a, < O we have L(a,) = k. Taking

Ii= {6 € {1;:..ym}n; > 0}
we deduce
b(ay) = E(anl,...,nrl,...,nm) =1 foreach ¢€l.

Thus we have proved that there is a differential © € Q(O) with
ordg, () = —n; for each i € I and ordg, (u) > 0foreach j € {1,...,m}\[

if and only if, for each i € I, ¢, = €n17._,,ni_1 or equivalently there

oMy
is no function z; € Op with ordg, (2i) = n; — 1 and orde(zi) > n; for
each j #1i. O

‘Alternatively, by introducing the set

Rp:= {(ordg, (1), - - -, ordq, (1) |1 € 2Op) \ {0}}

the proof of Theorem 2.8 can be divided in two parts. In fact we have
R C Rp and conversely, since by Theorem 2.1

Q0p) = 2(0) +2AOp)
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* there is for each (rq,...,mn) € Rp a differential 1 € Q(O) such that
ordQ, (1) =i when 7; <0

and
ord,(p) =20 when 7 > 0.

Now, Theorem 2.8 is a consequence of the first part of the following
theorem which expresses Rp in terms of the semigroup Sp.

Theorem 2.11. Let (nq,...,nm,) € Z™.

(i) There is a differential p € Q(Op) with ordg, (1) = —ni  for each
i=1,...,mif and only if for eachi =1,...,m the vectors (r1,...Tm)
with r; = n; — 1 and r; > n; for each j # i do not belong to the
semigroup Sp associated to the point P.

(ii) The vector (ni,...,nm) belongs to the semigroup Sp if and only if
for each i =1,...,m the vectors (r1,...,Tm) with r; = —n; — 1 and
r;j > —n; for each j # i do not belong to Rp.

Proof. For each vector n = (nq,...,n,) we consider the Op-ideal
dnp:=Op+p® where p™:= p?l e pam,
Note that

Q(dn) = {1 € AOP)|ordg, (1) = —n1, ..., 0rdgu, (1) > —1m}.

Thus dim Q(dn)/Q(dnl,...,ni—l,.u,nm) = 1 if and only if :chere is a differen-
tial p; € Q(Op) with ordg, (1s) = —n; and orde (i) > —nj; for each j. If
such a differential p; exists for each i, then by the Property (2.5) there
is even a differential u € Q(Op) such that ordg, (1) = —n; for each i or
equivalently (—ny,...,—nny) € Rp.

On the other hand by the local duality we have:

Q(dy) O - p(nl,.;.,nifl,...,nm)
dlm = -

Q(d(nl,...,ni—l,...,nm)) Op+p

p(nl,...,nifl,...,nm) OpnN p(nl,...,ni—l ..... nm)
= dim — dim

p” Opnp"
(/)P m p(nl,...,ni-l,...,nm)
=1—dim .
Op Np™
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Thus the vector (—n1,..., —ny,) belongs to Rp if and only if, for each
i, OpN p(mi=lnm) = Op A p" or equivalently there is no z; € Op
with ordg,(z;) = n; — 1 and orde(zi) > n; for each j. This proves Part
(i)-

The proof of Part (ii) is similar.0]

Theorem 2.12. If Op is a Gorenstein ring then
RP:SP—(fla---afm)'

Proof. Since Op is a Gorenstein ring, by Theorem 2.3 there is a differ-
ential A such that Q(Op) = Op A and therefore

Itp = Sp + (ordg, (A), . .., ordg,, (A)),

and it follows from Corollary 2.9 that ordg,(A\) = —f; for each i =
15wzl

By combining Theorem 2.11 and 2.12 we get symmetry properties
for Sp and Rp:

Corollary 2.13. Assume that Op is a Gorenstein ring.

(i) A vector (s1,...,8m) € Z™ belongs to the semigroup Sp if and only
if for each i = 1,...,m the vectors (r1,...,rm) withr;=fi—1—s;
and rj > f; — s; for each j # i do not belong to Sp.

(ii) A wvector (ri,...,rm) € Z™ belongs to Rp if and only if for each
i = 1,...,m the vectors (ni,...,Ny) with n;, = —r; — f; — 1 and
nj > —r; — f; for each j # i do not belong to Rp.

The symmetry of the semigroup Sp has been discussed by Kunz [K]
in the case of one branch, by Waldi [Wa] and Garcia [G] in the case of
two branches, and by Delgado ([D1], [D2]) in the general case.

~For each ¢ = 1,...,m we denote by Sl(Di) C N the semigroup of
the algebroid curve corresponding to the branch @);. Since S](Di) is the
projection of Sp on the i-th coordinate axis, we obtain:

Corollary2.14. Assume that Op is a Gorenstein ring. Leti € {1,...,m}
and let n be a positive integer. There is a regular differential on X having
at Q; a pole of order n if and only if f; —n € Sl(gl).
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Proof. Since as already noted Q(Op) = Q(O) + Q(Op) there is a regular
differential p with ordg, (1) = —n if and only if

(T1y-++sTicls =M, Titl, -+ -5 Tm) € Rp
for some integers 7, or equivalently by Theorem 2.12,
(817 .. '7Si71’fi — N, Si41,y-- .,Sm) & SP

where s; = r; + f; for each j. O

If Op is a Gorenstein ring, then by comparing the Corollaries 2.10
and 2.14 or by applying the symmetry (2.13) of Sp we obtain the equiv-
alence:

fl_nesj(j) @(fla"'vfiflan_lvfi—}—la""fm)¢SP-
(1)

If m > 1 then f; is not the conductor of the semigroup Sp’.

3. Projective representations and Weierstrass points of singular
curves

Let X be a complete irreducible algebraic curve defined over an alge-
braically closed field k. Let xq,...,z, be k-linear independent elements
of the function field K. If n > 1 then there is a morphism defined on
the non-singular model

whose image by the extension theorem of valuation theory is a projective
irreducible non-degenerated algebraic curve in P"(k) (cf. [SV1, §1]).
There is a morphism X — P"(k) such that the diagram

x —  P*(k)
Sy /!
X

commutes if and only if for each P € X there is an integer i(P) €

{0,...,n} such that i~ € Op for each i or equivalently the Op-ideal

Ti(P)

n
Z(’)pmi is principal. In this case for each hyperplane in P"(k), say
i=0
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n

E ¢ X; = 0, its intersection theoretic inverse image under the mor-

=0
phism X — P"(k) is defined to be the locally principal positive divisor

div(Zeiz;) - [T (2Opx;) of X, whose support — as easily seen — is the in-
PeX
verse image of the hyperplane. By the product formula (1.2) the degree

of this divisor is equal to

Z degp(Opxg + -+ -+ Opxy)

PeX
and so it does not depend on the choice of the hyperplane; and it will
be called the degree of the morphism X — P™(k). It coincides with the
degree of the image curve if and only if the morphism is birational.

More generally, if h(Xg,...,X,) is a homogeneous polynomial of

degree d say, then the intersection theoretic inverse image of the corre-
sponding hypersurface of degree d under the morphism X — P"(k) is
the locally principal positive divisor

div(h(zo, ..., zn)) - [ (Opmo+ -+ + Opay)*
PeX

whose degree is equal to d times the degree of the morphism X — P™(k).
This recovers the classical theorem of Bezout.

Theorem 3.1. Let a be a locally principal divisor of X and let xg, ..
Zn, be a basis of L(a).
(i) If deg(a) > 2g then

=9

ap =0Opzg+ -+ Opzxy

(i1) If deg(a) > 2g + 1 then the morphism X — P™(k) is injective and
- birational.
(iii) If deg(a) > 2g + dimmp/m2P for each P € X then the morphism
X — P"(k) is an isomorphism onto the image curve.
Recall that by Nakayama’s lemma the dimension of Zariski’s cotan-
gent space mp/m% is equal to one if and only if P is non-singular.
By the theorem, the complete curve X is already projective (see also
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[R, Theorem 5]). In the non-singular case the theorem is proved in
Hartshorne’s book (cf. [Ha, Ch. IV, Cor. 3.2]).

Proof. (i) Let P € X and let b be the divisor of X with bp = mp-ap
and bg = ag for each Q € X\ {P}. Since deg(b) = deg(a)—1 > 2g—2, by
Riemann’s theorem we have ¢(b) = £(a) — 1, and so there exists z € L(a)
with = ¢ mp - ap and therefore ap = Opz.

(ii) Assume by way of contradiction that there are points P, P € X
with P; # P, whose images in P (k) coincide. After a projective coor-
dinate transformation we can assume that the common image point is
equal to (1:0:...:0) that is i—é,...,% € mp, (¢ =1,2). By the first
part of the theorem we deduce that ap; = Op;xg. Let d be the divi-
sor of X defined by dp, = mp, - ap, (i = 1,2) and dg = ag for each
Q € X\ {P, P}. Then z1,...,z, € L(d) and therefore ¢(d) > n. On
the other hand, since deg(d) = deg(a) — 2 > 2g — 2, by Riemann’s the-
orem we obtain /(d) = /(a) — 2 = n — 1. This is a contradiction. The
birationality will follow from the proof of (iii) applied to a non-singular

point P of X.

(iii) Let Y be the image of the injective morphism X — P"(k), let
P € X and Q its image in Y. We can identify k(Y) C k(X) and so
Og C Op. We have to show Og = Op and this will also imply the
birationality k(Y) = k(X). Since by the second part P is the only
point in the inverse image of @), the local ring Op is tontained in the
integral closure of Og in k(X), and so Op is finitely generated as Og-
module. Thus by Nakayama’s lemma it is enough to show that Op C
Og + mg - Op. We can assume that @ = (1:0...:0) and so ap = Opxg
by (i). Let d be the divisor of X defined by dp = m% -ap and dg = ap
for each R € X \ {P}. Since deg(d) = deg(a) — dim Op/m?% > 2g — 2, by
Riemann’s theorem we have £(a)—£(d) = dim Op/ m%. Thus the injective
homomorphism L(a)/L(d) — ap/dp = 20Op/zom? is surjective that is
20Op = L(a) + a:om% and therefore

n
T
Op 22k$—1+m% - OQ+m2p.
. 0
=0
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In particular mp C mg + m% and thus by Nakayama’s lemma mp C
mg - Op. Since

Op/mp = Oq/mq (¥ k)

this implies Op € Og + mg - Og. O

For the remainder of this section we assume that X is not isomorphic
to the projective line or equivalently that the arithmetic genus g of the
complete curve X is different from zero. Let A1,..., 4 be a basis of the
space of regular differentials on X. Let X be a non-zero differential of
X and c its divisor. Then we can write

Ai=zA (1=1,...9)

where 21, ..., 24 is a basis of L(c). In particular we have (A1:...: \g) =

(211 : 2g).

Theorem 3.2. For each P € X we have
CP:OPZ1+---+OPZQ

or equivalently Q(Op) = OpA1+---+0OpAg. The morphism (Aq:...:Ag) :
X — P Y (k) induces a morphism X — P9~ L (k) if and only if X is a
Gorenstein curve.

Proof. Since by Corollary 2.4 the canonical divisor c is locally principal
if and only if X is a Gorenstein curve, it is enough to show that cp =
YOpz; for each P € X. O

We will first assume that P is a singular point of X. Then fp C mp
and so by Nakayama’s lemma it is enough to observe that cp C X kz; +
fp - cp or equivalently Q(Op) C Q(O) + fp - Q(Op), and this holds by
Proposition 2.2 and Theorem 2.1.

Thus we can assume that P is a non-singular point of X. Then Op is
a discrete valuation ring and cp is a principal ideal. Let b be the divisor
of X defined by bp = mp - cp and by = cg for each Q € X \ {P}. If
there is a function y € L(c) \ L(b) then cp = Op y and we are done.
Thus it its enough to show that ¢(b) < ¢(c). By the Riemann-Roch
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theorem, since deg(b) = deg(c) — 1 this means that ¢(c:b) < 1. Note that

c:b:mIE1 H Og>0
Q#P
and therefore L(c:b) 2O k = L(O). Assume by way of contradiction that
there is a non-constant function z € L(c:b). Note that z has a simple
pole at P, and does not have any pole in X \ {P}. Thus K = k(z) and
in particular the genus § of X is zero. Let Q@ € X \ {P} and let ¢ be the
value of z at . Since z — ¢ vanishes at () and since P is the only pole

of z — ¢, by the product formula (1.2) we conclude dim Og/(z —¢) =1, .

and therefore ) is non-singular. Thus X = X has genus 0, and this is
excluded by hypothesis. O

Note that the morphisms of X onto the projective line P! (k) corre-
spond bijectively to the non-constant functions z € K satisfying z € Op
or % € Op for each P € X. The degree of such a morphism X — ]P’l(k)
is equal to the degree of the field extension K|k(z). A curve X is called
hyperelliptic when there is a morphism X — Pl(k) of degree 2. By
applying theorems of Rosenlicht (cf.[R, Theorem 15 and 17]) we obtain:

Theorem 3.3. Assume that X is a Gorenstein curve. Then the mor-
phism X — Pg_l(k) is an isomorphism onto the image curve if and
only if X is non-hyperelliptic.

Weierstrass points of singular curves have been studied by several
authors (cf. [K1], [K2], [WL], [LW], [F] and [GL]). Our approach con-
sists in applying the theory of Weierstrass points of linear systems on
non-singular curves to the morphism X — P9=1(k) (cf. [SV1, §1]).
For each Q € X let £¢(Q) < £1(Q) < -+~ < €4-1(Q) be the hermitian
Q-invariants that is the intersection multiplicities of the correspondiﬁg
parametrized branch with the hyperplanes in ]P’g_l(k). If @ is (centered
at) a non-singular point of X then it follows from the Riemann-Roch
theorem (1.1) that

5n(Q) = £n+1(Q) — ]

for each n =0,...,g—1 where £1(Q), ..., {y(Q) are the Weierstrass gaps

Bol. Soc. Bras. Mat., Vol. 24, N. 1, 1993

ON THE POLES OF REGULAR DIFFERENTIALS 125

of X at Q. There are integers €, (n=0,...,g — 1) such that
en(Q) =¢, for almost all Qe X

and e,(Q) > e, for all Q € X. The curve X is called classical when
en = n for each n; this always happens when the characteristic p of k
is zero or larger than 2g — 2. Non-classical Gorenstein curves have been
first studied by Freitas [F], who established a complete classification
when the arithmetic genus is three or four.

Theorem 3.4. Let Q1,...,Qn be the branches centered at a point P ¢ X,
and let f1,..., fm be the exponents of the conductor of Op. For each
i=1,...,m an integer h with 0 < h < f; is a hermitian Q;-invariant
if and only if the vector (f1,...,fi_1, fi—h—1, fix1,..., fm) does not
belong to the semigroup Sp associated to the point P. Moreover if the
local ring Op is a Gorenstein ring this means that h belongs to the
SEmigroup Sl(pi) of the algebroid curve corresponding to the branch Q;.

In the special case where P is a one-branched point of a Gorenstein
curve this has also been noted by C.F. de Carvalho (IMPA-seminar
1991) and by Garcia-Lax [GL].

Proof. Let 19 < ry < --- < rg_1 be the orders of the non-zero regular
differentials at @);. By Corollary 2.9 we have rg = — f; and therefore

en(Qi) =Tn + fi

for each n = 0,...,9 — 1. Now, the theorem follows by applying the
Corollaries 2.10 and 2.14.0

Remark 3.5. There is an hermitian @);-invariant larger than or equal to
fi if and only if m > 1 or g > 0 or X \ {P} is singular. In this case f;
is a hermitian @);-invariant, as follows by applying the Riemann-Roch
theorem to the divisors
pi [l v Il Oc
J#e QeX\{P}

withn=0and n=—-1. O

Denoting by w(Q) the Weierstrass weight of a branch Q € X, and
calling @ a Weierstrass branch when w(Q) is positive, the number of
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Weierstrass branches counted with their weights is given by the formula

> w(@Q) = g(2g — 2) + (Seq) (2§ — 2)

QeX

(cf. [SV 1, p.6]). Now by applying the genus formula (1.3) we obtain

Y W(P)=(g+Zen)(29 —2)

PeX
(cf. Garcia-Lax [GL]), where the Weierstrass weight of P € X is defined
by the formula

m

W(P):=Y w(Q;) +20pTey .
i=1

Remind that, for each Q € X,

w(Q) = X(en(Q) — €n)

and equality holds if and only if det((E”E(TQ)) # 0 (mod p). Thus Theorem
3.4 provides a lower estimate of the Weierstrass weights of the (branches
centered at) singular points of a classical curve.

4. Zeta-function

Let X be a complete irreducible algebraic curve defined over a perfect
field k of positive characteristic p. Recall that by a theorem of Tate an
operator C', called the Cartier operator, is well defined on the space of
differential forms by setting

p—1 1/p
Cl(zdz):= — (d Z) dx

dzp-1

for each z € K and each separating variable z of Kl|k. If @ is a point
of the non-singular model X, kq its residue field, ¢ a local parameter at
Q, and Sciti~ldt € kq((t))dt the local expansion of a differential form
at @, then it follows that

C(Seit™ dt) = Sey/? £ dt. |
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Since the P-component of a differential form p satisfies the formula

m
pp@)= Y, tTkg. Ik resq, (24t)
i=1
for each z € K where Q1,...,Q,, € X are the branches centered at P
we obtain

Cwe(e) = (uepz)

for each z € K. Thus if a is a divisor of X satisfying a? € ap for each
a € ap and P € X then the Cartier operator C acts on the spaces Q(ap)
and in particular on Q(a).

It follows from the Hasse-Witt normal forms of p-linear algebra that
the rank of the r-th power 06( o) does not depend on r when r > g (cf.
[HW, Satz 11]). This rank, denoted by o(X), is called the Hasse- Witt
invariant of X. If X is non-singular and k algebraically closed then
p“(X ) is the number of the p-torsion points of the divisor class group of
X (cf. Serre [S1, §2.11]). While the Hasse-Witt invariant may decrease
under desingularization, the number of the p-torsion points of the divisor
class group remains invariant.

In order to study the difference o(X) — o(X) we analyze the action

~of the Cartier operator on the quotient space Q(O) /Q(@). Since by

Theorem 2.1.
Q(0)/2(0) = P Q(0p)/2Op)

PeX

we are reduced to study the action on the quotients Q(Op)/Q(Op). Let

m m
rp:= H pPi = ﬂ Pi
i=1 i=1
be the Jacobson radical of @p. Note that:

QOp + fp) = {1 € Q(Op)|ordg, (1) > —1 for each i =1,...,m}.

It follows from the above description of the Cartier operator in terms of
local expansions that

C"Q(0Op) CQOp+rp) when r>>0
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or more precisely when p” > f; for ¢=1,...,m where fy,..., f;, are
the exponents of the conductor of Op. Thus the action of the Cartier
operator on Q(Op)/Q(Op +rp) is nilpotent. Now we describe its action
on Q(Op +rp)/Q(Op).

Theorem 4.1. There is an isomorphism

Q(Op +I‘p)/Q(@p) o {(al, s 50y Q) €

m m
G?in | 21 kg p (36) = 0}
1= 1=

defined by
p+QOp) — (resQ1 (1), ..., resQ, (,u))
The Cartier operator induces on the vectors of the right hand side the
action
(@1, y Q) — (ai/p,...,a,l,{p).
Proof. Recall that a differential form u is regular at P if and only if

wp ther Ik resQ,(zp) =0 for each z € Op.
(2

If ordg, (u) > —1 for each i = 1,...,m then

pp(z) = trepe(2( Zter lkp resQ,(u)) for each z € Op

and so the regularity of p at P means that

Zt?‘kQ lkp T€sQ, () =0. d

=
Thus the homomorphism of the theorem is well defined and injective.
Now the surjectivity follows from a dimension count, which uses the
local duality (1.5):

dim Q(Op +rp)/QOp) = dim Op/(Op +rp)
= dim @P/rp — dim(Op + I‘p)/rp

o ,
= Zdim@p/pi —dimOp/(Op Nrp)
= 1

—Zm@ — deg(P).
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Finally, the action of the Cartier operator on the vector (815 . ¢ wamis
obtained from its action on the local expansions of the differentials at
the branches Q1,...,Q,,. O

Note that Q(O +r) is the space of regular differentials on X whose
poles are all of order 1.

Corollary 4.2.
o(X) - o(X) =dim QO +r Z (Z deg(Q) — deg( P))
PeX Q|P

where the symbol “Q|P” indicates that Q ranges over the branches cen-
tered at P.

Proof. Since the action of the Cartier operator on Q(0)/Q(O +r) is
nilpotent we conclude:

rank Coo)/a6) = Coo4n9(6)

The isomorphism of Theorem 2.1 induces an isomorphism

+1)/20) = P QOp +rp)/Op)
PeX

foreach r>g—3.

and so we obtain for each 7:
ok Ciore)a(6) = 2 ok Coptep) (o)
Finally, by Theorem 4.1 we have for each 7:

rank C;Z(OP+PP)/Q(O~ ) = dim Q(OP +rp /Q @P)

—Zdeg Q;) —deg(P). O

In particular, if & is algebraically closed then o(X) = o(X) if and
only if each point of X admits only one branch.

For the remainder of this paper we will assume that the constant field
of the complete irreducible curve X is a finite field with p" elements that
is

k=F, where q=p"
Then the n-th power C"™ of the Cartier operator is k-linear. We calculate
its characteristic polynomial on Q(0)/Q(O)
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Corollary 4.3.

I (@ — tdeg(Q))

n - QP
ot (I = tCQ(O) /9(6)) - Pel;l. (1 — tdea(P))
sing

where P wvaries in the finite set Xgne of singular points of X and Q
ranges over the branches centered at P.

Proof. Since Q(0)/Q(0) = @pcx.  2Op)/QUOp) we have:

sing

det (Id = tC3 oy 0i69) = 11 det (18— tC80 ) 0(6,))-

PeXsing

Since CQ(OP) /Q0p+rp) 18 nilpotent we deduce:

det (Id =t Cho) (6p)) = et (Id =t Cfy

/Q0p OP—HP)/Q(éP))'

By Theorem 4.1 we have a commutative diagram with exact lines
0 — QOp+rp)/Q0) — @ kg, — kp — 0
=1
Lcor | F1 | F
0 — Q(Op+rp)/Q(@p) — @in — kp — 0
i=1

where I is the Frobenius automorphism over k. Thus we obtain

m . 1
11 det (Id = tFy, )
_i=1 i

op+rp)/ﬂ(@p)) - det(Id—tF))

det (Id — tCp

r—1

If k, is an extension field of k of a finite degree r then k, = @ k aqi for

=0
some a € k" and therefore

1 0 - 0 —t
-t 1.0 - 0
det(Id—tF},) =det [ 0 —t 1 - - |=1-t". O
g : R 0
0 0 —t 1
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The zeta-function of X is defined to be the eulerian product

1
(X, 9):= ] —3zm
A et deg(P)
when the real part R(s) of s € C is larger than 1. Thus abbreviating
t = q~° we obtain:

1 — +deg(Q)
¢(X,s) et )

— L QP
(X Y= pese (1 —tdes(P))

sing
Formally this is the same expression as in Corollary 4.3; but now we
are in characteristic zero. Since deg(P) divides deg(Q)) whenever Q is a
branch centered at P, M(X,t) is a polynomial in ¢ = ¢~° with integer
coefficients whose roots are on the unit circle |t| = 1 (or equivalently on
the imaginary axis in the s-plane). Denoting by d the degree of M (X, t),
by Corollary 4.2 we have:
d:=deg M(X,t)=dimQO +r1) — g =o(X) — o(X).
Similar to the number field case (cf. Jenner [J]), the zeta-function
((X,s), except for possible new zeros on the imaginary axis R(s) = 0,
has the same zeros as (X, s).
By the Riemann hypothesis for non-singular curves we can write

o . LX)
N A T

where L(X,t) is a polynomial with integer coefficients in ¢t = ¢~ of
degree 2§ whose zeros are on the circle |t| = ¢=1/2 (or equivalently on
the line R(s) = % in the s-plane). Thus we obtain

_ LX)
‘0= a1
where
L(X,t):= L(X,t)M(X,t) € Z[t]
and

deg L(X,t) = g+ dimQ(O +r).

Bol. Soc. Bras. Mat., Vol. 24, N. 1, 1993



132 KARL-OTTO STOHR

The importance of the zeta-function in algebraic geometry is based
on the well-known identity

C(X,s) =exp < i %Nrtr)
r=1

where N,:= card X (k,) is the number of rational points of X over the
extension field k., = Fyr of k = F, of degree r. By taking logarithmic
derivatives this means

2g d
Ne=q'+1=-3 o =3 f
i=1 i=1

where we factorize:

25
LX,t) =] @ —ast) with |oy| =g¢'/2
i=1
d
M(X,t)=]] 1 —6t) with |8]=1.
=1

In particular, abbreviating N, = card X (k) we obtain
~ d
Ne—Np=) 6
i=1

and therefore we have proved the following estimate:

<o(X)—o(X) foreach .

We denote by L(X,t) € Fpt] the reduction of L(X,t) € Z[t] mod-
ulo p. :

Proposition 4.4. ’NT - N,

Proposition 4.5. deg L(X,t) = o(X)
This is known in the non-singular case (cf. Stichtenoth [St]) and the
general result now follows by observing deg M(X,t) = d = 0(X) — o(X).

Theorem 4.6. L(X,t) = det (Id — tC’g(O))
In particular by comparing the coefficients of order 1, one deduces:
card X(k)=1-— trC’S(O) mod p
This theorem has been obtained by Manin [M] in the non-singular

case. By Corollary 4.3 the theorem holds for X if and only if it holds
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for the non-singular model X. Thus we are reduced to the non-singular
case proved by Manin. Alternatively to get an elementary proof we may
reduce to plane (possibly singular) curves where the Cartier operator
has an explicit description (cf. [SV2]). A generalization of the theorem
to complete varieties of any dimension has been given by Katz [Ka].
This is well understood by applying the Lefschetz fixed point formula
in a suitable cohomology theory to the Frobenius endomorphism.

We compare the zeta-function {(X, s) with the Dirichlet series

(O, s): = Z q—sdeg(a)
a>0
where a ranges over the positive divisors of X. Since the number of
positive divisors which are linearly equivalent to a divisor a is equal to
(ql(a) — 1) /(g — 1) and since ¢(a) and deg(a) only depend on the linear
equivalence class a of a we have
(0,8 = — Y (a"® - 1)g~<dest®

where a ranges over the linear equivalence classes of the divisors of non-
negative degree. Since by Riemann’s theorem

l(a) =deg(a) + 1 —g when deg(a) > 29— 2

one deduces as in the non-singular case that the subseries of the terms
with deg(a) > 2g — 2 converges absolutely in the semi-plane R(s) >
1 to a rational function in ¢ = ¢~° satisfying the functional equation
below. By applying the reciprocity (1.7), the degree formula (1.6) and
the Riemann-Roch formula

l(a) = deg(a) + 1 — g + {(c: a)
to the finitely many divisor classes a with 0 < deg(a) < 2g — 2 we obtain:
(4.7) Functional Equation. The function qs(g_l)C((’), s) s tnvariant un-
der the substitution s +— 1 —s.
This identity has been obtained by F.K. Schmidt [Sch] when X is
non-singular, by Galkin [Ga] when X is a Gorenstein curve and by Green

[G2] in the general case. (To indicate the connection with Green’s paper
we note that by the reciprocity (1.7) the assignment a — c:a defines a
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bijection between the set of positive divisors and the set of divisors
smaller than or equal to the canonical divisor c¢.) Furthermore there is
an eulerian product expansion

= I <©p,s
PeX
where we define
((Op,s):= Y q*ImEp/OP) | R(s) > 1,

aPQOP

where ap ranges over the Op-ideals containing Op. Local factors of this
type have been studied by Green [G2]. Since

1

¢(Op, s) = D1 q—sdeg(P)

when P is non-singular

we have (o
) S —s
09 . I a—g =B, ).
(X9 pii,
By applying the functional equation (4.7) and the genus formula (1.3)
to X and the curve obtained from X by resolving all singular points
except P, one obtains:

(4.8) Local Functional Equation. The function

¢*%P¢(Op,s) T] (1 — g2 %°8(@)
QP -

18 invariant under the substitution s — 1 — s.
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