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Expansive Flows and the Fundamental Group
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Abstract.  In this paper we construct stable and unstable foliations for expansive
flows operating on 3-manifolds. We also prove that the fundamental group of the
manifold has exponential growth.

I. Introduction

In ([7]) Lewowicz proved (see also [3]) that an expansive homeomor-
phism of a surface is conjugate to an Anosov or Pseudo Anosov map.
This result and the methods used to prove it indicate that several facts
of hyperbolic dynamics hold in the expansive case.

A flow ¢; acting on a metric space K without fixed points is said to be
expansive if for every € > 0 there is ¢ > 0 such that if dist(¢¢(x), qbg(t) (y))
< ¢ for every t € R, some z, y € K and some homeomorphism o: R — R
with 0(0) = 0, then y = ¢r(z), where |7| < e.

Anosov flows and suspensions of Pseudo Anosov maps are examples
of expansive flows.

Here we study expansive flows and we obtain some results not de-
pending on the dimension of the manifold, namely, the existence of a
Lyapunov function and the non-existence of stable points. However, we
construct stable and unstable foliations only in the 3-dimensional case
due to the nature of the techniques of Lewowicz.

© Let m (M) be the fundamental group of M. We say that a finitely
generated group has exponential growth if given a finite set of generators
the function I'(n) = (number of distinct group elements of word-length
< n) dominates Aexp(an), for some A > 0, a > 0. This definition is
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equivalent to the function P(r) = (number of distinct free homotopy
classes of loops in M of length < r) dominating B exp(br), for some
B > 0, b > 0, in the case the group is the fundamental group of a
manifold M (see [8]).

We prove the following

Theorem. Let M be a compact connected 3-manifold and ¢p: M — M
an expansive flow, then w1 (M) has exponential growth.

A similar result was proved by Plante and Thurston ([8]) for codi-
mension one Anosov flows and by Margulis ([1]) for Anosov flows on
3-manifolds.

We show here that a proof similar to that of [8] also works. The
exponential growth is obtained in the following way (see section VI of
this paper): A piece of unstable manifold, whose length is bounded
from below, flows forward to give exponentially many such pieces of
unstable manifold connected by pieces of trajectory (in the absence of
hyperbolicity this construction needs some care). The resulting long
path gives rise to exponentially many loops based in a single stable disc,
which are pairwise non-homotopic.

This paper is part of my PhD Thesis at IMPA under the guidance
of R. Mané. T am grateful to him for proposing this problem, and to J.
Lewowicz for having interested me in these topics. I am also in debt to

Carlos Gutiérrez for helpful conversations.

II. Lyapunov functions
Let M be a compact connected 3-manifold endowed with a Riemannian
structure and ¢: M x R — M be a flow without fixed points.

In the following paragraph we obtain a continuous family of local
sections topologically transversal to the flow; i.e. a continuous function
x — H(x), where H () is a local section through = which is topologically
transversal to the flow (see [2], IV, 1.3 and the references therein). If
the flow is C'! it is enough to define each section by

H(z) = {exp, v such that |v| < &, (X(z),v) = 0}
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where X (z) = ¢(z,0) and € is a suitable fixed positive number.
Assume that our flow is only continuous. Let B.(z) stand for the
open ball of centre 0 and radius €. Define B(¢) by

B(e) = {(z,y) € M x M such that dist(z,y) < &}
Take a finite open covering of M by sets G; defined as
Gi={(¢(z,t) | € Dy t| <e and D; is a local section}

Set D;(x) = ¢¢(D;), where ¢ is the unique real number such that
¢_t(x) € D; and |t| =c,

Let r be the Lebesgue number of the covering {G;}. Define contin-
uous functions 0;: G; x G; — R by the condition '

¢(ya O'i(l,', y)) S Dl(x)

Let {f;} be a partition of unity subordinate to the covering {G; x Gi}
(of the set B(r)). Next define o: B(r) — R by

= Zfz‘Ui

Define a local section H(x) as

H(z) ={o(y.0(x,y)) | (z,y) € B(r)}

Let H.(x) be the connected component of B, (z)N H (x) that contains
z. Define N(e) by

N(e) ={(z,y) | ye H.(x)}

Take (8 such that dist(¢¢(x), ) < r/3 for [t| < B. If dist(z,y) < r/3

def : .
and [¢| < 3, then 0 = o(¢¢(x),y) is the unique real number close to 0

for which
P(y,0) € Hy(¢e(x))
Define a continuous function #: B(r/3) x -8, 5] — R by

72(1"7 Y, t) = U(¢t($), y)

Remark. It is easy to check that ¢ is expansive if and only if there is a
number 0 < ag < r/3, such that if for a pair of points z, y there exists a
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continuous, surjective, increasing function Tzy: R = R, 73 4(0) = 0, with
the property

(Y, Tay(t)) € Hay(¢r(x))
Vt € R, then z = y.

Note. We use the notation 7,,(¢) and 7(z,y,t) interchangeably and
similarly with ¢¢(x) and ¢(z,t). In the sequel 4 and clos A will stand
for the closure of A.

Remark. Let 6 be a positive number, § < ag/3.

Suppose that for fixed ¢ > 0 there exists a continuous increasing
function 7;,:[0,#] — R such that ¢y, 7(x,y,x)) € Has(ds(x)) for s €
[0, ).

Choose 0 =%y < ¢; < ... < t, =t so that ti+1 —t; < B/2, then we
have:

T(2,y,8) = T(2,y, ;) + T(P(, t:), By, (2, Y, t:)), 5 — t;)
for 8 € {Hy %01,

This allows us to express 7 in terms of 7, which is continuous in B,
On account of this, for (z,7) close to (z,y), we can find a continuous
increasing function 7z 3:[0,¢] — R such that ¢(g, Tz,5(8)) € H3s(0s(T))
for s € [0,¢].

Take 8, 0 < 6 < ap/3 and define C~ as

(z,y) € M x M such that there exists a continuous,
C™ = < increasing, surjective function Tey BT — R7,7;4(0) = 0,
with the property ¢(y, 7,4 (t)) € clos Hos(o4(x)),Vt € R™

The last remark easily implies that O~ is compact.

Several of the following ideas are from [5]. :

On account of the compactness of C~ there exists ¢* > 0 such that if
(z,y) € C~ and dist(z,y) = §, then there is some continuous increasing
function 7,,:[0,¢1(z,y)] — R such that dist(¢(z, t), p(y, 7(x, y, 1)) > 6
for some ¢ with 0 < t < t1(z,y) < t*.

Choose p > 0 such that

min{dist(¢(x, £), d(y, (2, 9,1)) | 0<t <ty(z,y)} > p.
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We claim that there exist o, 0 < 0 < p and 6', 0 < 8 < 6 such that if
(z,y) € N(6),dist(z,y) < o and there exists to so that

dist(¢(z, %), ¢(y, 7(z,y, t0))) > 6

and

dist(¢(z, ), o(y, T(z,9,1))) < 6
for 0 <t < tg, then

dist(p(, t), d(y, T(z,y,t))) > 6

for some t with ¢y <t <ty +¢* and also

dist(¢(z, 1), ¢(y, 7(z,y,1))) > 6

for tg <t <tg+ti(z,y).
If this were not true, there would exist sequences, (Tn,yn) € N(6),
dist(Tn, yn) — 0, 8, — 6 and t,, — oo so that

diSt(¢($n, t)a ¢(yn, T(CCn, yn’ t))) S 6
foro<t<t,+t* and

6; < dist(@(@n, tn), ¢(yn,7($mynatn))) <é.

Set' z, = oy, t), wa = ?(Yns T(Tn, Yn, tn) and let z,y be limit points
of {2} and {w,} respectively. For ¢ > 0,

lim dist(¢(2n, 1), $(wn, T (2, wp, t))) =

= dist(¢(x, 1), d(y, T(x, y, 1)));

then (z,y) € C~ and dist(z, y) = 6.
For 0 <t < t*, we have

dist(¢(xp, t + tn), P(Yn, T(Tn, Yn, t + tn))) =
= diSt(¢(Zn7 t), ¢<wn’ T(2n, Wn, t))) < 0.
This implies dist(¢(z, t), ¢(y, 7(z, y, t))) < 6, which contradicts the
choice of ¢*.

An analogous argument allows us to choose o and & so that the
second claim holds.
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Set A &f {(z,y) | (z,y) € closN(26) and dist(z,y) > 6}. Let
a: M x M — R be a smooth function

a(z,y) =1 if (z,y) € N(26),dist(z,y) <o
a(z,y) =0 if (z,y)€A
a(x,y) >0 elsewhere
Suppose first that our flow is Cl. Then we may assume that 7(z, y, 0)

is defined in M x M (extending it arbitrarily).
Let Y be the following vector field on M x M

Y(z,y) = alz,y)(X(2),7(z,y,0) X (¥))
Let ¢((z,y),t) be the flow of Y and set dist¢((z,y),t) = dist(z,w) for

(z,w) = ¥((x,y),t). Observe that for (z,y) € N(o) and small ¢ we have
((x,y),t) = (9, 1), ¢(y, (2, Y, 1)))-

Let d: M x M — R be a smooth non-negative function that vanishes

on ‘
C™ | H(@,y) | (z,y) € clos N(26) and dist(z,y) = p}

and only there.

Remark. Note that hm d(¥((z,y),t)) = 01if (z,y) € N(o) because either
dist ¥ ((z,y),T) > 5’ for some T > 0 and therefore d(¥((z,y),t)) = 0 if
t > T or disty((z,y),t) < ¢ for t > 0 which implies

dist(p(, ), d(y, T(z, 4, 1), < &

for t > 0 and consequently ¥ ((z,y),t) — C~ if t — oo.
Assume now that ¢ is only continuous and set

& bz, 1), oy, 7(x, 3, 1))

o((x,y),t) =
As in [7] define f(t) = sup{a(®((z,y),t)) | (z,y) € A}. Then f is
continuous and hm f(t) = 0. The same arguments of lemma 1.1 of [7]
give the ex1stence of a continuous increasing function h:R — R such

that for any A N
|| et = oo
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Moreover, such an h may be taken smooth, A'(t) > 0 if t+ # 0, and

h(1) = 1. Put g = hoa; then g vanishes on A, is positive on N(26) — A,
g=1if a =1, and for any A

A
| @@y, o)t = o0
if (z,y) € A.
Let us define . For (z,y) € N(26) — A set
w((xa y)? t) = (I)((xa y)’ U(t))

where o (t) = 04,(t) is the inverse function of

t=Aw@Wme4®

Put ¥((z,y),t) = (z,y) if (z,y) € A.
The arguments of lemma 1.2 of [7] show that our last remark holds
for this new 1.

Now we can prove as in [5].

Lemma 1. Given € > 0, there ezxists T > 0 such that d(Y((z,y),1)) < ¢,
fort > T and (z,y) € N(0).

Proof. Because of the way 8, &', p were chosen, if for some ¢y > 0 we had
pairs (z,y) € N (o) so that d(¥((z,y),t)) > go for arbitrarily large ¢, we
would have pairs (z,,,y,) € N(o) and continuous increasing functions
Tenyn' [0, tn] — R, with ¢, — oo such that

dist(P(2n, t), §(Yn, T(Tn, yn, t))) < 6
for 0 <t <t, and

A(P(Zn; tn), d(Yn, T(Tn, Yn, tn))) > €g

Then (Zo0s Yoo), @ limit point of (¢(zn, tn), $(Yn, T(Zn, Yn, tn), would be
in C~ and d(Zw, Yoo) > €0, a contradiction. [

For U: N(o) — R, define U: N(o) — R (the derivative of U along ¢)
as

d
Uz,y) = atl, U(¢($,t),¢(y7 7(2,y,1)))
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Let U denote the derivative of U. A function U as above is said to be

positive definite if U(z,y) > 0 and U(z,y) = 0 if and only if z = y.

Lemma 2. There exists a smooth function e:RT — R, e(0) =0, €'(s) >

0 if s # 0, with the property that the function V: N (o) — R defined by
View) = [ elds((e.u). o)t

has derivative V given by

V(z,y) = —e(d(z,y))

Proof. There exists a function e, in the above conditions which makes

the integral uniformly convergent (see [5]). For small
V((z,u), oy, 7(x,y,u))) = V(@ (2, y),u))
— [ eldivi@p).t +unyar

= " e{d((z, y), D]}t

and then V(z,y) = —e(d(z,y)). O
Remark. Define the function V: B (0) — R by

Vg = /0 " e{dp (@, Po(w)), )] }dt

where P.(y) = ¢(y,7(z,y,0)). Then V is a continuons extension of V.
On account of the previous remark the arguments of [5] (p. 202)

hold and consequently we obtain

Lemma 3. There exist a > 0 and a function U: N(o) — R, such that
both U and U are positive definite and admit continuous extensions to

B(a).

III. Stable points
In this part we follow the ideas of [6].

Definition. A point = of M is said to be a stable point of ¢ if given € > 0
there exists § > 0 so that if y € Hg(z), then there exists a continuous
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function 7, Rt RT, Tz,y(0) = 0 such that ¢(y, 7(z, y,t)) € H,.(¢:(x)),
for ¢ > 0.
Let us define Ky (z,t) as

Ki(2,t) ={y | y € Ha(¢e(x)) and U(gy(z),y) < k},

where a and U are as in lemma 3.

Lemma 4. An expansive flow has no stable points.
Proof. Let x be a stable point of ¢ and let € and § be as in the definition
of stable point, with § < ¢ < a.

Choose k > 0 such that if y € Ky(z,t) then dist(¢¢(x),y) < 8. There-
fore if y € 0Ky (,0), then @(y, 7(x,y,t)) € H,(¢¢(x)) for t > 0.

We shall see that the expansivity of ¢ implies that there exists T < 0
so that U(¢¢(z),y) < 0 for y € OKy(z,t) and t < T.

If this were not true, for 7' < 0 arbitrarily large there would exist an
arc a:[0,1] — Kg(z,T) such that a(0) = ¢r(x), U(¢T(w),a(1)) > 0 and
a(l) € OKy(z,T).

Let sp be the supremum of those s € [0,1] so that

¢(a(s), 7(¢r (@), a(s), 1)) € Ki(z, 1),
for ¢ € [0, 7). Then, sy < 1. Let

Yr = é(a(s0), T(P7(2), a(s0), —T)),

then Y7 € 0Kj(x,0) and ¢(Yr, 7(z,yr, s)) € Ky(z,s) for s € [T, 0].

This implies that the entire trajectory of a limit point of Y7 is e-close
to the trajectory of x, which is absurd.

Take 2z € a(z) (the a-limit set of x). Then we have U((bt(z),y) <0,
withy € 0Kj(z,t) and t € R. Thereforeify € Ki(z,1p), for some ty € R,
we have ¢(y,7(z,y,t)) € Kg(z,t) for t > tg and then o1(2) € Ki(z,0)
for arbitrarily large values of t.

As k was chosen arbitrarily, z € w(z) (the w-limit set of z). This
implies = € w(x), because the trajectories of z and z are asymptotic in
the future.

Using the same argument for y € H,(z), with an appropriate r > 0,
we see that y € w(y) = w(z).
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As a consequence of this, there exists an open set B such that
H.(z) C B C w(%).

If y' € w(z), given k there exists t, so that y' € Kx(¢(z),0) and then
o, 7(de(2), ¥, u) € Kr(¢t(2),u) for v > 0. This means that there
exists T > 0 such that ¢r(y’) € H,(x) and then y' € ¢_r(H,.(z)) C
¢_7(B) C w(z), i.e., w(z) is open.

As M is connected w(z) = M, which implies that every point of M
is stable and therefore w(y) = M, Vy € M.

Now choose positive numbers 6, k1, kg such that Hs(z) C Ky, (z,0),
Ky, (z,0) C Hgja(z) for every z € M and Ul(¢i(2),y) <0 for every t € R
and y € K, (2,¢), i = 1,2.

A compactness argument on clos Hs(z) allows us to find 7' > 0 so
that ¢(y, 7(z,y,1)) € Hsa(¢¢(2)) for t > T and y € clos Hs(2).

Let h > 0 be such that if dist(z,y) < h, the Poincaré map

Py: Hgsjo(x) — Hs(y)

is defined. Therefore, if we choose ¢t > T so that dist(¢4(2),2) < h, a
suitable return map

P:clos Hs(z) — clos Hg(z2)

is defined and then ¢ would have a periodic orbit, which contradicts
w(y)=M,Vye M. O

IV. Local product structure
Let us choose numbers 0 < §; < § < o and k > 0 such that Hy, ()
{y | U(z,y) <k} C Hs,(x) and prove as in [7].

Lemma 5. Let A be an open set of Hs,(z), z € A C Hs, (x). Then there
exists a compact connected set C, x € C C A, C N OA # ¢ such that
Jor every y € C there ezists a continuous increasing surjective function
T:w:]R+ — RT, with Tz,y(0) = 0 and ¢(y,7(z,y,t)) € Hs, (¢¢(x)), for
t>0.

Proof. Suppose this is not true. Then there exists Ty > 0 such that for
every compact, connected set D C A joining z to A, there exists z € D,
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0 <t < Tp, so that ¢(z, 7(x, 2,t)) & Hs,(¢¢(x)) for an appropriate 7. For
otherwise we could find numbers 7T,, — co and compact connected sets
D,, C A, joining x to OA, such that for every y € D, and appropriate
T, ¢(y, 7(z,y,1)) € Hs,(¢¢(x)) for 0 < ¢t < T,,. But then the set

o0

mclos ﬂ D)

n

will satisfy the thesis of the lemma; a contradlction.

For arbitrarily large T, the boundary of the connected component of
Ki(z,T) that contains ¢7(x) must have points y such that U(¢r(z), y) <
0 because if this were not true, taking limits as t — oo we would get
that any y € w(z) would be a stable point of ¢_;; which is absurd by
lemma 4.

Choose T' > Ty. Take an arc a:[0,1] — Ki(z,T), a(0) = ¢r(x),
a(l) € 0Ky(z,T) and U(pr(z),a(l)) < 0. Let sy be the supremum
of those s € [0,1] such that ¢(a(s), 7(¢pr(z),a(s),t)) € Ki(dr(x),t) for
—T <t <0 and ¢(a(s), 7(¢r(x),a(s),—T)) € A. Then sy < 1, and
since U > 0 we have that o(a(s0), 7(o7(),a(s0),t)) € Ki(ér(x),t) for
=T <t <0. Thus ¢(a(sp), 7(¢r(z),a(sg), —T)) € OA and the set

D = {¢(a(s), 7(¢7(), a(s), —

has the property that if y € D, then ¢(y, 7(z,y,t)) € Hs, (¢¢(x)) for
0 <t <T; a contradiction. O

) | 0<s<s0}

Remark. Recall that lemma 3 permit to find a number o > 0 such that U
and its derivatives are defined on N(a). Observe also that the function
7, defined at the beginning of section II, is defined on B(a) x -8, 0]
and consequently if y € H,(z), the Poincaré map

Py Ho(y) — Hoy ()
is well defined.

Definition. Let § < a. Define Ss(x) as Ss(z) = {y € Hs(x)| there
exists a continuous increasing and surjective function Tx,y:R‘*' — RT,
Tey(0) = 0, with the property ¢(y, 7(z,y,t)) € Hs(¢ds(x)) for t > 0}.
Us(z) is defined analogously for ¢ < 0.
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For y € H,(z) and § < a we define the é-stable set of yin Hy(x) as

S5 (y) = Pu(Ss(y))
and the ¢-unstable set of y in H,(z) as

Us (y) = Po(Us(y)).

Lemma 6. Given 0 < ¢ < a, there is o9 > 0 such that if 0 < 0 < 00,

then

(1) Py(z) € Ss(y) if y € So(x)

(2) y € S§(2) if z € SZ(y)

(3) g€ S§(p) if p,q € SE(y)

(4) ify € Hy(x) there exists a compact connected set contained in S5 (y)N
Hs(x), joining y to OHy(x).

(5) SZ(y) does not separate Hy(x).

Proof. (1) For t > 0, define

Tyalt) = =74, 2,0) + 75y (£) + F(d1(y), d(, 74y (1)), 0)

which is continuous, surjective, increasing and 7, (0) = 0. Set z = F(@),
if o is small enough we obtain 2 € Hg(y) and hence o2, Ty (t)) €
Hs(p4(y)) for t > 0.
(2) Set z = Py(z) and take o small such that oy, 7(z, Ps(y),t) €
Hg(¢¢(2)) holds for an appropriate 7. On account of (1) Psi(y) € S5(2),
thus P,(y) € Ss(z) which yields y € S¥(z).
(3) Can be proved using the techniques of (1) and (2).
(4) Choose o such that, if y € H,(z), the Poincaré map P: H,(x) —
Hs, (y) is defined; where 671 is an in lemma 5. Thus, there exists a
compact connected set D C Ss(y) N P(H,(z)) joining y to OP(H,(x));
thus P~1(D) is the desired set.
(5) Assume that the claim is not true. Then, for arbitrarily small values
of o, S5(x) separates H(z). In particular choose 0 < o < 6 as in (3).

Let € > 0 be such that fi(y) = ¢(y,7(z,y,t)) € Han(dy(z)), for
Yy € Ho(z) and 0 < t < e. Clearly, f; is an homeomorphism onto its
image. Let B be an open set contained in a connected component C' of
Hu(z) — Sy(x), which does not meet H,(x).
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Then, fiy(B) C fi(C) and f;(C) is a connected component of
ft(Ho(z)) — fi(So(x)), which does not meet 0f;(Hy(x)).

Clearly, fi(Ss(x)) C Sy(¢¢(x)). Let z € fy(B). Any arc a; joining
¢t(x) to z and to Ofi(Hqa(x)), must meet a point p € S, (é(x,t)) after z
and before 0f;(Hy(z)). Therefore

dist(¢¢(z), 2) < dist(¢e(z), p) < 0.

Decomposing the orbit of  in segments of length ¢ and reasoning
inductively, we have B C Sy (x).

Let zg € B. By (3), B C S¥(2p), which implies that z( is a stable
point of ¢; a contradiction according to lemma 4. O

Definition. We say that y € M has local product structure if there
exists a homeomorphism of RZ onto an open neighborhood of y in H,(y)
that maps horizontal (vertical) lines onto open subsets of local stable
(unstable) sets in H,(y).

Lemma 6 shows that Lewowicz’s theory applies (see [7]) to stable
and unstable sets as defined before lemma 6. On account of this we

have

Lemma 7. Ezcept for a finite number of periodic orbits, whose points
we call singular, every point of M has local product structure. If x is
a singular point, the stable set of x is the union of r arcs, r > 3, that
meet only at x.

Let M* be M without the singular points. For € M*, let h,: R? —
H,(z) be such that h; is some homeomorphism onto its image that gives
a local product structure. Define

Fx(“? v, t) = ¢(h$(u7 U)7 T(.T, hx(uv U)a t))
for t in a neighborhood V, of 0 in such a way that {F,},cn+ gives

an atlas of M* that defines a stable foliation W* whose plaques are
F{ = {F(u,c,t),u € R,t € V;;} and an unstable foliation W* defined
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analogously. Let W*(z) be the leaf of W* that contains T

V. Holonomy
In this section we use some concepts of foliations which can be found in
[2].

For o0 < o define

Sp,0) = |J S-(:(p))

teR+

S(pa g, tO) S U SU(¢t(p))

0<t<ty

Remark. Let ¢ € W*(p). Given ¢ > 0, there exists T' > 0 such that
o1(q) € S(p, ¢).
To see this, take plaques {Ui}, 1<i<m,of W#(p), and points p; so
thatqul,peUn and p; e U;NU41,1<i<n—1. Take 0 < ¢/n.
As U is negative on Ct (a set analogous to the set C'~ defined in
section IT) and CT is compact, there exists T > 0 such that if (p,z) € CT
then ¢(z, 7(p, z,t)) € S(p, o) for t > T. Define Ty as

TO = sup{T(p,:C,T) l (p7 .I') € C+}

Then we have ¢;(q) € S(p1,0) and ?¢(p1) € S(p2,0) for t > Tp. Next
choose T} > 0 such that ¢(q) € S(p2,20) for t > Ty. In the same way
we find T > 0 for which ¢7(q) € S(p,no).

Lemma 8. Let £ be a closed curve in W#(p). Then & cannot have one-
sided holonomy. (See [2], VII for the definition of one sided holonomy.)

Proof. As in lemma 6 take 0 < ¢ < B and 0 < 0 < § < a, such that
e if S;(2) N Sy(y) # 0, then there exists |t| < e such that § € Ss(z)
with 7 = ¢ (y).
e the connected component, Ey(z), of Ss(z) N H,(z) that contains z
is the union of arcs joining z to 0H,(z).
If the theorem is not true we can distinguish two cases:
(1) There exists a singular point P such that Ss(p) N W*(p) # ¢.
(2) There does not exist such a singular point.

Bol. Soc. Bras. Mat., Vol. 24, N. 2, 1993

O

EXPANSIVE FLOWS AND THE FUNDAMENTAL GROUP 198

Suppose first that (2) holds and let & be defined by the function
£:[0,1] — W*(p), £(0) =€) = p.

Assume also that p is not periodic (otherwise the proof is easier).
On account of the compactness of £([0,1]) and the last remark, there
exists my > 0 so that ¢(§,m1) C S(p,0). Denote ay = ¢(£,m1) and let
to be such that ay C S(p, o, tg).

Let T:S(p,0,ty) — R be a continuous function for which P(z) e
H,(¢(p, o)), where P(x) = ¢(z,T(x)). Since P(p) = ¢(p, ty) and ay C

W#(p), P(a1) is contained in the image of an arc a: [—1, 1] — W#(p) with
a(0) = o(p, to)-

Set mo = sup{T'(z) | = € a1} and ag = ¢(ay,m2). Then ay C A
where A is given by

A = {p(a(s), 7(a(0),a(s),t)) | t €[0,mso] and s € [-1,1]}

Since ¢ has one-sided holonomy, it is not nullhomotopic. Then as
is not nullhomotopic, which implies the existence of numbers 0 < t; <
to < mo such that

So(#(a(0),11)) N So(d(a(0), t2)) # &

because if this were not the case A would be simply connected.

According to this there exists § = ¢(a(0),t + t9), |t| < €, so that
Y € Ss(¢(a(0),t1)). Translating § and ¢(a(0),t1) by the flow, we obtain
points p;, in the orbit of a(0) and numbers ¢, > ¢, o, — 0 such that
?(Pnstn) € Son(Pn).

Now assume that there exists 7" such that ¢, < T. As in lemma 4,
choose T7 > 0 such that ¢(y, 7(z,y,t)) € H,/2(¢t(2)), for y € E;(2) and
b= Ty

Take n so that ne > T7, and ng large such that the distance between
whichever two of the first n returnings of the orbit of Py to Eq(pr,) is
smaller than h, where h is chosen as in lemma 4, i.e. if dist(z,y) < h,
then the Poincaré map Py: H,2(z) — Hy(y) is defined.

Since E;(pp,) does not contain singular points, Es(pn,) is an arc
that contains a periodic point p of period w.

If t,, were not bounded, a similar argument would work for ¢, > T7.
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We remark that the orbit of p attracts every point of W4 (p).

Take an arc b which is the union of two stable arcs joining p to
OHy(p), b:[—1,1] — W4(p), b(0) = p, b([—1,1]) C clos H,(p) and a curve
homotopic to £ contained in the set

{o(b(z), 7(p,b(s),1)) | te [0,w] and s € [—1,1]}

which can be contracted to the orbit of p. Then, ¢ is homotopic to a
multiple of that orbit.

Now assume that (1) holds. Let p be a singular point of period v.
Let 0 < & < 6 be, as in the previous case, such that E5(p) is the union
of r arcs bg, 1 < k < r, by: [0,1] — H5(p), bx(0) = p in such a way that
the first return map Pj: E5(p) — Ss(p) is well defined.

Let ny be the less integer such that Plnk (br) N b # {p}.

Now we can find, as above, a number k and a curve homotopic to £
contained in the set B defined as

B = {6(bi(s), 7(P, br(5),1)) | t € [0,mkv] and s € [0,1]}

Observe that B is a cylinder. Thus there is an integer j such that
for every €9 > 0, £ is homotopic to 8 C B, where B is defined as follows:

Let n:[0, jngv] — B be defined by n(t) = ®(n(0), 7(p,n(0),t)) where
n(0) € b N Hey(p). Let v be an arc contained in by Jjoining n(jngv) to
n(0). Finally set 3 = 7 * ~.

Since £ has one-sided holonomy, 3 also has.

Take arcs I, I C Us(n(0)) and J, J C Ug(n(j_nkv)):so that the holon-
omy map of v, g:J — I and the Poincaré map of ¢, Q:I — J, are
defined.

Then g o @ is the holonomy map of 5. Let I be the component of
I —{n(0)} such that g o Q|I; = id.

As the number of leaves of W* that satisfy (1) is finite, the set of
plaques of those leaves that meet I and J is countable. Therefore we
can find, arbitrarily close to 7(0), a point zg € M* N 1.

Now consider the curve B = 1 *7 where 7) is an arc of ¢-trajectory
joining zq to g‘l(xo), and 7 is a stable arc joining ghl(xo) to zg. (Ob-
serve that the holonomy of 3 is trivial in a transversal that contains
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xo.)

If we choose £g small, the arguments of the previous case prove that
E is homotopic to a multiple of a periodic orbit in M*.

In whichever of the considered cases we find a periodic point, p, such
that the holonomy of a multiple of the orbit of p is trivial in an unstable
arc, which is absurd. O

Lemma 9. There does not ezist a closed nullhomotopic transversal to
ws.

Proof. Assume, on the contrary, that v is nullhomotopic and transversal
to W*. Then there exists a continuous map A: D? — M so that A op2 =
5.

A can be put in general position with respect to W* by arguments
in [2] (VII) and in general position with respect to the singular orbits.

Then A*(W?) is a foliation with singularities x1,... ,Zn, Y1,... ,Ym
such that the points A(x;) belong to the singular orbits, the points y; are
orientable saddles or centres, and there is no saddle connection between
distinct saddles.

A can be chosen such that there is no connection between a saddle
and a point x;.

We can also modify A so that there is no connection between two
of the points x;, because if x and z; were connected, A(zy) and A(z;)
would belong to the same singular orbit, by arguments of the previous
section. Then we can modify A to eliminate xj;, and z;.

Let C stand for the set of cycles of A*(W*) (see [2], VII, 2.1).

Let K, be the connected component in C of a centre o. Arguments
of ([2], VII) show that 0K, is a cycle. If K, is a circle leaf it is easy
to check that it has one sided holonomy.

Then assume that for every centre o,0K, contains a saddle. We
claim that there exists a centre og so that the saddle in 0K, is com-
pletely self-connected, because if this is not the case we get a contradic-
tion according to the Poincaré-Hopf index formula for A*(W?#).

Now it is possible to order by inclusion the so obtained saddle self-
connections. Since there is only a finite number of them we can find
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one, say (3, which is one sided. Thus 3 induces one-sided holonomy in
W#; a contradiction according to lemma 8. [J

VI. Exponential growth

(In this section r is as in lemma 7). Let 0 < o < & be such that the
connected component of Us(x) N H,(z) that contains z is the union of
arcs, Ul(z),1>1i <r, joining = to 0H,(x).

Let D;(z), 1 < i < r, be discs, with diam(D;(z)) < o, contained in
plaques of W* such that D;(z) N Ul(z) # @ and the endpoints of UZ(z)
do not belong to D;(z).

For y close to z and 1 < i < 2, there exist 1 < g; < r such that
Ul(y)N Dg,(z) # @ and the endpoints of U?(y) do not belong to Dy, (x).

Now, since M is compact, there exist £ > 0 and points x;, 1 < 4 < K,
so that if y € B.(z;) and 1 < i < 2, there exist 1 < ¢ < r so that
Ul(y )NDy, (z;) # @ and the endpoints of U () do not belong to D,, i (T5)-

Choose 0 < p < 0/2 such that if dist(z, y) < p, then

dist(&(y, 7(x,4,0)),z) < o/2.

Take t* > 0 so that for every p € M and =, y € Us(p) with dist(z,y) > p
we have
diSt((/)(y: T(:E7 Y, t))v ¢(1'7 t)) >0
for some t, 0 < t < t*.
Define T as y
T = sup{T(l‘, Y, t) | T,y € U5(p)7di5t(xa y) > Py
dist(¢(z, 1), o(y, 7(z,y,1))) <o and 0 <t < ¢*}.

Let us define the e-length of a curve. Assume that e is a small
positive number and : [a,b] — M is a continuous curve. The e-length
of v, which is denoted by L.(v), is the maximum number n of points
a<t; <ty <...<t, <bsuch that dist(y(t;), y(tix1)) = €

For ¢ € M take the curve £,:[0,T] — M given by &,(t) = ¢(q,t).
Define A as

A=suwp{Lo(&,) | qe M}
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Let zp € M be a point such that Us(zg) contains no periodic points of
o.

Now define a family of curves «,, in the following way: i is an
arc, ofg: [07 1] a U&(.’L’O), al([07 1]) C CIOSHU(xO)v 051(0) = Zo, al([oa 1]) N
aHa(J"O) 7& a.

Assume that o, is defined as

n
an:al*a”*ag*agﬁ*-u*aQ

where of: [0,1] — Us(a k(0)) is an arc such that

al([0,1]) C clos Hy(aX(0)) and o ((0,1)) N OH,(ak(0)) + @

and of k+1 is an arc of ¢-trajectory, joining af (1) to ak+1(0) with o-

length < An.
Next we define a,,41. Because of the way t* was chosen, there exist
numbers 0 <t <t*, 0 <t < t* and 0 < S < 1 such that
def

925 1(5) E g(ak(s), T(ak (sk), ok (s), th)) € clos Hy (d(ak (s1), tr))

for s € [sg, 1] and

92571 (s) L g(ak(s), 7(ak(0), k(s), b)) € clos Ho(6(0k(0), )

for s € [0, sg]. Then we have that

928 1 (Isk, 1]) N OH, ($(k (s1), tr)) # @

and
92510, sx]) N OH, ($(ak(0), 1)) # @
Define
i 1(s) = gakiq(s + (1= 8)s) and o287 (s) = g25 7 (ssp)

Finally, define ai’f{__ll’zk as the arc of ¢ trajectory joining ailf,__ll(l) to

a2k | (0).

Remark. The o-length of ak k+1

is <A(n+1).

Then according to the last paragraph, given n, there exist j and m
such that for at least 2" / K'r distinct values of 4, we have aﬁlﬁDm(xj) # O
and the endpoints of o, do not belong to Dy ().
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Let N be the maximum integer of 2" /Kr and let 0 < ¢ < Lot b=
tny <1 be numbers so that a,(t;) € D m(T;).

For 1 <p < N, define n,(s) = ay(s) for s € [t1,2p):

Let B, be an arc joining ay,(tp) to ay(t1), whose image is contained
in Dy, (z;) and set v, = np * B,

Lemma 10. v, v, if and only if p=gq

Proof. Assume that Yp = g with p > ¢q. Then ﬁ * nq * Mp * Bp = 0.
Observe that 77q * 7)p 18 homotopic (with endpoints fixed) to the curve
71 defined by

= anlieg 1)

Let us show the existence of a curve 7 transversal to W* and homo-
topic (with endpoints fixed) to 1. Choose numbers lg=a1<bhi<az<

.a; < by = t, such that 77|[a b;] 1s transversal to W* and ulll [bi,a;4,] 15 A0
arc of ¢-trajectory.

A lemma of trivialization (see [2]) shows that there exist neighbor-
hoods V; of n([b;, a;+1]) in which the foliation W is trivial. Now it is easy
to modify 7 inside V; to obtain 7. Our assumption implies o Ly 5 2D,
which is homotopic to a closed transversal to W$. But this cannot be
true, according to lemma 9. O
Lemma 11. v, is homotopic to a curve ¥, of o-length < 3 + 2An for
1<p<N.

Proof. «, was constructed so that there exists a eontinuous function
7:[0,1] — R such that 7(s) < nT and

P(an(s), —7(s)) € Hs(wp)
for s € [0,1]. Define B:[0,1] x [0,1] — M by
B(s,t) = ¢(an(s), —t7(s))

Let A, be a curve homotopic (with endpoints fixed) to B( 1) with
length < 20 and set

Gs(t) = B(t1(1 — s) + stp, t)
Tip = Go * Ap * GTL 2 .
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Then 5, = 7, * (5, satisfies the lemma. O

Corollary. P(30+2Aon) > N, where P is the growth function defined in
the Introduction. Observe that this inequality gives the desired theorem.

Note. After this work was completed I was informed that Inaba and
Matsumoto ([4]) obtained another non existence theorem for expansive
flows on certain 3-manifold.
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