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Linearizable Circle Diffeomorphisms
in One-Parameter Families

Jacek Graczyk

Abstract. We consider smooth families of diffeomorphisms of the circle. We prove
that the set of parameter values which correspond to non-linearizable maps with
irrational rotation numbers is of Hausdorff dimension 0.

1. Preliminaries

1.1 Introduction. We study one-parameter families of smooth diffeo-
morphisms of the circle which increase with respect to the parameter
value.

The objective of our presentation is to determine the size of the set
of parameter values which correspond to non-linearizable maps with ir-
rational rotation numbers (We define the rotation number a little later).
We prove that this set is of Hausdorff dimension zero and, in particular,
it is of Lebesgue measure zero. This gives an affirmative answer to a
conjecture posed by J.Palis during a workshop in ICTP-Trieste in June
1992 (see also [9]). Palis’ conjecture was motivated by Herman’s result
[5] (see [1] for the case of the sine family below), that the complementary
set of parameter values corresponding to linearizable maps is of positive
Lebesgue measure.

In this paper a circle map is represented by a real monotone function
F(z) obeying

Flz+1)=F(z)+1.

Unless otherwise stated we assume that all derivatives of F exist.
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A standard example of smooth families considered here is the sine
family:

x+— x4+t — (c¢/2m)sin(2rxz) (mod 1),
where 0 < ¢ < 1 is a constant.

Assumptions. Here is a detailed list of our assumptions:

1. The smooth diffeomorphisms Fi(z) considered are infinitely many
times differentiable.

2. The family F; is at least twice continuously differentiable with re-

spect to the parameter value t.

3. The family is monotone with respect to t € T' C R, that is %—f is

positive everywhere in 7' x R.

The dynamics of a typical aperiodic diffeomorphism F' is easily un-
derstood by the fact that, for most irrational rotation numbers, F' can be
obtained from a pure rotation by a C* change of coordinates (Herman
[4]). We will need, however, a more precise version of this theorem which
is due to Yoccoz [10] and in a slightly more general form to Katznelson
and Ornstein (see [6] and also [7] and [9]).

Let us introduce first a class of diophantine numbers by putting
some restrictions on the speed of approximating irrationals by rational
numbers with small denominators. For a real 3 we say that irrational
number p is diophantine with exponent 3 if there is a constant C' so

that
C &

|>
q2+ﬁ -

| p—

Q3

for all rationals p/q.

Theorem 1 (Katznelson-Ornstein).If F' € C*, k € R, k > 3+ 2, then
for any e > 0 there exists diffeomorphism ¢ € C*~1-B~¢ 5o that F is
conjugated by @ to a rotation, pop = F o ¢.

On the other hand, in [1] Arnold proved that the set of rotation
numbers for which there exists a smooth conjugacy is strictly contained
in the set of irrational numbers. He also gave an example of C* (in fact
real analytic) diffeomorphism which is not even absolutely continuously

conjugate to a rotation.
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We will show that generically this situation can happen very rarely:

Main Theorem. The set of parameter values corresponding to maps
with irrational rotation numbers which are not smoothly conjugated to a
rotation has Hausdorff dimension 0.

The proof of the theorem is based on the results of [2], especially on
the harmonic scaling rules stated there.

Generalization. Actually, it is enough to assume that F, depends C1
on the parameter value. However, all results in [2] were proved under
the stronger C? assumption. If we consider C* mappings (k > 2),
instead of smooth ones, then still still the Hausdorff dimension of the
set of parameters corresponding to non-linearizable maps with irrational
rotation numbers! is not greater than 2 /1+k.

1.2. Description of the Dynamics

Uniform Constants. By a uniform constant we will mean a function
on the above defined class of families of circle diffeomorphisms which
continuously depends on the quasi symmetric norm of the maps, the
lower bounds of the derivative both with respect to the parameter value
t and the argument z on the real line and the C? norm of a family.
Uniform constants will be always denoted by the letter K. Whenever
confusion can arise, we specify uniform constants by adding subscripts.

Rotation numbers. The rotation number p(t) of the map F;, measures
the rate at which the orbit of a point wraps around the circle and is

usually given by
o) = jim DT
where x is any point of the realm.
There are a few methods of organizing rotation numbers in order to
expose in a good way, the underlying dynamics. One of them, relies on
the concept of the so-called Farey trees and harmonic coordinates. In

the present paper we are not going to introduce the whole formalism

8 Here, we consider only C! changes of coordinates
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of harmonic coordinates, but only concentrate on the most important
elements of it.

Farey trees. We assume that all rationals p/q are written in their sim-
plest form.
The Farey mediant interpolates between two rationals

Bl Py
g ¢ q+¢q”

yielding the fraction with the smallest denominator lying between p/q
and p'/q’. The Farey tree is constructed by starting with the endpoints
of the unit interval written as 0/1 and 1/1, and interpolating by means
of Farey mediants. The first level of the Farey tree is 1/2, the second
1/3, 2/3, the third 1/4, 2/5, 3/4 and so forth. It is well known that
all rationals can be obtained in this construction in exactly one way.
By definition, each rational p/q has exactly two immediate neighbors in
the next level. The left is a smaller number called the “left daughter”
and the other is a greater number called the “right daughter”. Join any
rational to its daughters with two edges. As a result we obtain a binary
connected tree with vertices in all rationals. This tree is called the Farey
tree.

Continued Fractions and Dynamics. Let p = [a1,--- ,a,, -] be the
expansion of p into continued fraction, a; are positive integers. This
representation can be finite or infinite depending whether p is rational
or not. For any rotation number we can define the sequence of the closest
returns. We cut off the portion of the continued fraction beyond the n-th
position, and write the resulting fraction in the lowest terms as p,/q, .
Those numbers have a transparent dynamical interpretation. Namely,
the number g, is that iterate of the rotation by p for which the orbit of
any point makes the closest return so far to the point itself. Because of
this interpretation the numbers ¢, are called the closest returns for p.
Take an arbitrary point of the circle. Consider its orbit under F, i.e.
z = F'(2), i € N. By classical Theory of Poincaré, homeomorphisms
with irrational rotation numbers are topologically semi-conjugate to ro-
tations. Thus, the order of the points of the orbit is exactly the same
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as the order of orbits of the rotation.

The Distortion Lemma. Here is one way of stating the Distortion Lemma
for diffeomorphisms of the circle:

Lemma 1.1. If the intervals
(@,b), ..., (F{"(a), F{"(b))

are disjoint, then for drbitmry points x1,T2 € (a,b), the uniform esti-

mate 5
Ve Fm
| log 2=t (:Ul)——log t ($2)|§K
ox ox

holds.

1.3 Scaling Rules in Parameter Space

Harmonic subdivision.

Definition 1.1 The interval from P/Q to P'/Q’ is called a Farey domain
regardless of the order of these two points if and only if either there is
an edge between P/Q and P’/Q’ in the Farey tree or it is one of the
three: (0,1), (0,1/2), (1/2,1).

For every Farey domain, we define a sequence u,,, where n ranges
over all integers.

e If n is positive,

(n+1)P+ P’
(n+1)Q+Q"

Up =

e For n non-positive:
w P+ P(1—-n)
" Q+Qa-n
It can be easily checked that the intervals (Un,Up+1) are all Farey
domains. The collection of the intervals (Un,up4+1) Will be called the
harmonic subdivision of the Farey domain PO, PQ".

Fact 1.1. If P/Q and P'/Q’ are endpoints of a Farey domain, then the
following relations hold:

1. |PQ' — P'Q|=1and 1/2<Q/Q < 2.
2. |P/Q — un| > 1/3nQ?
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We will use harmonic subdivisions to construct nested sequences of
Farey domains which are in one-to-one correspondence to irrationals
from the unit interval.

The intervals obtained by harmonic subdivision of the unit interval
will be called the fundamental domains of level 1. Next, harmonically
subdivide every domain of the previous subdivision and so on. The
Farey domains obtained on the k-th level will be called fundamental
domains of level k.

Fact 1.2. All numbers in the same fundamental domain of level k have
the same closest returns up to gj.

Harmonic scaling. Without loss of generality we may assume that the
parameter space T is equal to [0, 1].

It is well known that the rotation number p(t) is continuous (in fact,
p is both absolutely continuous [4] and Holder continuous [2]) and, as a
consequence of assumption 2., non-decreasing in 7. Hence, the organi-
zation of irrationals given by nested sequences of fundamental domains
can be carried over to the parameter space by the rotation function P
So, we will talk of fundamental domains and harmonic subdivision in
the parameter space as well. However, there is an important difference.
Pre-images of rationals are usually non-degenerate intervals and form
the set of positive but not full Lebesgue measure in the parameter space
(see [4]). ]

In the physical terminology the intervals on which the rotation func-
tion p makes stops are called “mode lockings” and will be denoted in
this paper by M/, = p~Yp/q).

The rotation function is strictly increasing on the set of all preimages
of irrationals numbers.

We fix a point z of the real line. A simple verification shows that in
any “mode locking” Mp/g € T there is a unique parameter value tp/Q
called the center of Mp/q, so that FRz)=z+P.

Denote by t(n) the centers of “mode lockings” M,,,, which consti-
tute the harmonic subdivision of the fundamental domain (¢p /Qs tP Q)
Moreover, we will write ., and t_., for ¢ p/q and tps o respectively. By
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the harmonic scaling in the fundamental domain (t_..,t.) we mean:
[tnt1 — tn
[too = t—oo|

Now we are in position to formulate one of the main facts in [2].

Theorem 2 (Harmonic Scaling). The harmonic scaling is bounded, inde-
pendently from a fundamental domain, by two sequences: from below by
K1 /n3 and from above by Ko/n?.

2. Proof of the Main Theorem

2.1 Estimates in Parameter Space

Lemma 2.1. There is a uniform constant K for which the following
1nequality

[too — t_oo| < Q2
holds.
Proof. We can assume that P/Q > P'/Q' and Q < @', for if it not, we

could consider instead of our family F; a family F/ given by
F(z)=1- F1_().

The new family F} still satisfies our assumptions, but because the rota-
tion numbers have been flipped around one half, so has been the Farey
tree.

We fix the counterclockwise orientation of the circle. Denote by f;
the projection of F; to the circle

ftOH:HOFt

by the natural projection II(z) = exp(2miz). To simplify notation, we
continue to write z for the projection of the point z from the realm to
the circle.

By the mean value theorem, we can find a point £ € (t_., ts) so

that
Q

Z) — ’fgm(z) - Z’a
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Using the chain rule we rewrite the time derivative in the form:

aFQ i

Z

OF,
(Fi(2)) - 5<F1 L(2)).

By the Distortion Lemma, we can replace the space derivatives by
the ratios of small intervals lying nearby with a bounded error. The
time derivative of F' is bounded, as can be seen using a compactness
argument. Hence,

o)~z
Q 1fe =) - f)
=17 2) - fie)]

where ¢ = Q' — Q is the closest return for all maps Jts T €, bes)s

[too — -] < K

immediately preceding @ (see Fact 1.2).
By the monotonicity of the family f; and the assumption that P/Q >

P /e,
£7U2) < fP(@) < £ < 2 < 1),
The intervals ( fo ) fo ) and ( fg (=), fQ+q( )) are uniformly compa-
rable as a immediate consequence of the Distortion Lemma. Therefore,
lfQ z) =l
727%=) - f2(2)]

To conclude the Lemma we will need the following elementary fact:

< Kj.

Fact 2.1. The function g(z1,...,xn) = (1/x1) + -+ + (1/2,))~1 limited
to the simplex {x1 > 0,... , 2, > 0: 21+ -+ 2, < P} is dominated by
P/n2. .
Since the intervals (ff_qﬂ(z), fé(z)), 1 <1< @, are disjoint we immedi-
ately get the desired conclusion.

A cover. Let Ip/g be an open interval with an endpoint in P/Q and the
length 1/Q2*5. By definition, diophantine numbers with an exponent
[ can belong only to finitely many intervals of the form I p/Q- We
transport the interval Ip,g by p into the parameter space.
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Lemma2.2. There is a uniform constant K so that the following estimate
o~ Ipg)| < K/Q*H5

holds.

Proof. By Fact 1.1, the interval p=1(Ip /@) 1s contained in the fundamen-
tal domain (¢_, %) so that only one endpoint of p=1(I P/q) coincides
with an endpoint of the fundamental domain. We will estimate the
length of p=1(I p/Q) using the scaling rules. Let the other endpoint of
T P/q) belongs to the interval (¢,,t,11). Then by Theorem 2, we get
that

o~ Tpsq)|

lt—oo - too]
We will dispose of n in the estimate above. By the choice of n, I P/Q D
(up+1,P/Q). Therefore, by Fact 1.1,

1/Q** = |Ipjg| > Ka/nQ?,

< Kj/(n-1).

and consequently

107 Ip/Q)| < Kalt o — too] /Q°.

Finally, from Lemma 2.1 the desired conclusion follows. O

Hausdorff Dimension

Lemma 2.3. The set of parameters values which is covered by the collec-
tion of intervals p_l(Ip/Q) infinitely many times has Hausdorff dimen-
sion less than 2/(2 + 3).

Proof. For a given a < 1 we want to bound from the above
>l el (1)
P/Q :

where the sum is over all rational numbers P/Q. Substituting the es-
timate from Lemma 2.2 to (1) and summarizing with respect to all
rationals with the same numerator @ we obtain the following bound
from above on (1).
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= 1
<oo,

B Yoy e
o Q(2+5)a—1

provided « is greater than 2/(2 + 3). O

The Final Conclusion. The Katznelson-Ornstein Theorem implies that
the set of parameter values for which diffeomorphisms F; are not sm-
oothly conjugated to a rotation is covered infinitely many times by the
collection of intervals ,0_1([ p/qQ) of size 1/Q2+ﬂ, where [ is arbitrary
large. From Lemma 2.3 it follows that this set has Hausdorff dimension
zero. This completes the proof of the main theorem.
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