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Local Normal Forms for Constrained
Systems on 2-Manifolds

M. Zhitomirskii

Abstract. We give a complete classification in the smooth category of local phase
portraits (near the origin) of generic constrained systems of the form A(z)z = f(z),
where z € R?, A(z) is a 2 x 2 matrix-valued function, f is a vector field, the origin
is an impasse point (detA(0) = 0, and the existence and the uniquiness of solutions
breakes down). In the last section we discuss some of the main difficulties to obtain
a similar classification in higher dimensions.

1. Introduction and main results.

There exist several definitions of constrained equations (see [1], [2] and
refs. in [2]). We will follow the one given in [2], and begin with a
coordinate definition of a constrained system in R”. All objects consid-
ered below (vector fields, functions, differential forms, diffeomorphisms,
matrix-valued functions, sections, etc.) are assumed to be smooth (C>°).

Definition 1.1. A system of the form
A(z)ye = v(z), (1.1)

where z € R", A(z) is a matrix-valued function and v(z) is a vector field
in R™ is said to be a constrained system (or constrained vector field).
Constrained vector fields generalize vector fields, i.e. systems

& = (), (1.2)

since if any z € R" is a regular point (i.e. detA(z) # 0), then (1.1) can
be written in the form (1.2), where u(z) = A~(z)v(z). A point which
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is not regular is said to be an impasse point of system (1.1). At impasse
points existence or/and uniqueness of solutions breakes down.

We understand in the usual way the notion of a solution and of a
phase curve of a constrained system.

Definition 1.2. A solution of a constrained system (1.1) is a differentiable
map t — x(t) from an open interval I € R to R™, such that A(z(t)z/(t) =
v(z(t)) for any ¢t € I. The graph of a solution is said to be a trajectory
and the projection of a trajectory to the phase space R" along the time-
axis is said to be a phase curve.

Example 1.1. The system
£1=0, Toig=1/2 (1.3)
has a solution
z1(t) = 21(0), 2(t) =/t +23(0), —23(0)<t<oo  (1.4)
and a solution
z1(t) = 21(0), 2(t) = —\/t+23(0) —23(0) <t<oo. (1.5
Solution (1.4) starts from the point (z1(0), z2(0) > 0} and solution (1.5)
starts from the point (z1(0),z2(0) < 0). The phase portrait of system
(1.3) is shown in Fig.1,a. The directions of the phase curves correspond

to the increase of time. The bold line denotes the set of impasse points
(the z1-axis). )
Example 1.2. The phase portrait of the system

1 =0, Tokg=—1/2 (1.6)

is different (see Fig.1,b): in a finite time each trajectory reaches the
r1-axis (the set of impasse points). '

Example 1.3. The system
T1 =1, 99 = —xq ’ (1.7)

has two solutions

21 =21(0) +1, 3= \/23(0) = (@100) + 12, t € (0,2}e1(0)))
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starting from an impass point (x1(0) < 0,0). Both solutions in a finite
time ¢ = 2|x1(0)| reach another impass point (|z1(0)|,0). There are no
solutions starting from the origin. Oriented phase curves are shown in
Fig.1,g. It is important to note that the ”formal integration” of (1.7)
gives the first integral a:% + a:%, but none of the curves

x% =+ ZE% = const

is a phase curve of (1.7).
The phase portrait of systems (1.3) and (1.6) are typical, while that
of (1.7) is not. The main result of the present paper is the following

one.

Theorem 1.1. Let E be a generic constrained system on a 2-manifold M,
a € M be an impass point of E.: The germ at « of the phase portrait of
E is equivalent to the phase portrait of one and only one of the following
5 systems of normal forms:

Normal form 1: &1 =0, z9d9 =1 (1.8)
Normal form 2: &1 =0, 9%y = —1 (1.9)
Normal form 3: #1 =0, (x1+ w%):cg =1 (1.10)
Normal form 4: %.’i‘g —&1 =1, (xa —x1)E2 = Az, |A|>1
(1.11)
Normal form 5: A\&; — 49 =1+ /\2,:102:'52 =—Ax1 —T9, A > 0(1 2
1

The phase portraits of the normal forms are shown in Fig.1, a-f; the set
of impass points is shown by a bold line. :
a-f: phase portraits of typical singularities of constrained systems on a
2-manifold

. g: non-typical phase portarit (of system (1.7)).

Remarks: 1. The precise meaning of the notions of “generic constrained
system on a manifold” and “equivalence of phase portraits” will be given
in Sections 2 and 3, respectively.

2. The parameter A is the modulus of normal forms 4 and 5.

3. Classification results for the constrained systems (1.1), under the
condition rankA(z) = const, have been obtained in [2].
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The paper is organized as follows. In Section 2, we give two invariant
definitions of constrained systems - in terms of bundle endomorphisms
and in terms of differential 1-forms. In Section 3, the notions of equiv-
alence and of phase equivalence of constrained systems are introduced.
Some preliminary normal forms for constrained systems, to be used in
the next sections, are given in Section 4. In Section 5, we show that the
set of impass points of a generic constrained system on a 2-manifold is a
smooth curve and it intersects the phase curves at isolated points. The
proof of Theorem 1.1 is based on the notion and properties of extension
of a constrained system (Section 6). We show that the phase classi-
fication of constrained systems can be reduced to the classification of
pairs consisting of a vector field on a manifold and a hypersurface. This
problem is related also with the study of vector fields near the boundary
of a manifold and of discontinuous vector fields (Refs. [1,3]). In these
references a topological classification of generic singularities of the pairs
can be found. We give, in proving Theorem 1.1, a smooth classification
for 2-dimensional case (Section 8). The notion of extension of a con-
strained system also allows us to define all typical singularities (Section
7). We complete the proof of Theorem 1.1 in Section 9.

In Section 10, we point out some essential differences to obtain clas-
sification results for constrained systems in R”.

I thank J.Sotomayor and M.A.Teixeira for a number of useful dis-
cussions. I am also thankful to IMPA, where this work was done, for its
hospitality and fine mathematical ambiance.

2. Constrained systems on a manifold

In this section we give two (invariant) definitions of constrained systems,
in terms of bundle endomorphisms and in terms of Pfaffian systems, and
define the phase equivalence of germs of constrained systems.

Let M be an n-dimensional manifold. By the endomorphism bun-
dle we understand the smooth bundle on M whose fiber at each point
T € M consists of all linear mappings T,M — T,M. By a bundle
endomorphism we understand a smooth section of the endomorphism
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bundle.

Definition 2.1. (see [2]). A constrained system on a manifold M is a
pair (A, v) consisting of a bundle endomorphism A and a vector field v
on M.

Given a constrained system E = (A, v) and x € M we denote by Al
the linear mapping 7, M — T, M corresponding to A at z, and by v,
the value of the vector field v at x. A solution of E is a differentiable
mapping ¢ — x(t) of an open interval I C R to M such that A[l(t)js(t) =
v(x(t)) for any t € I. Definitions of the trajectories and phase curves are
similar to those for the case M = R™. The set of points o € M at which
Alq is degenerated is said to be the set of impasse points (Imp(E)). A
point o € Imp(E) is said to be a regular point.

We will use one more definition of a constrained system. Take n inde-
pendent differential 1-forms 1, po, ..., iy, on M. Let p= (15 2, ey i) T
Apply u to both right and left hand side of a constrained system

Al =, (2.1)

where A is a bundle endomorphism and v is a smooth vector field. We
obtain the equation

u(Az) = f, (2.2)

where f = (f1, fo,..., fn)T is a vector function on M, f = p(v). For any
a € M and i € 1,...,n the operator £ — pi(Ag), & € T,M is a 1-form
on T M. Therefore, we can define a tuple w = (wq, ..., w,) of differential

1-forms:
wla(§) = u(Ala(§), aeM,feT,M (2.3)

Now (2.2) can be written in the form
w(#) = f (2.4)
This gives sense to the following definition.

Definition 2.2. A constrained system on an n-dimensional manifold M
is a pair (w, f) consisting of an n-tuple w of differentiable 1-forms on M

and a vector function f on M.
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A solution of a constrained system (2.4) is a differentiable mapping
t — (f) of an open interval I C R to M such that wfz(t)(jc(t)) =
f(x(¢)) for any t € I. The set of impasse points can be defined as
o: (w1 N...Nwy)|a=0.

If the tuple w is related to a bundle endomorphism A by (2.3) and f =
p(v), then the solutions of (2.4) coincide with those of (2.1) for any tuple
p. The transition from (2.1) to (2.4) in local coordinates z — (71, ..., )
is as follows. Let A(z) be the matrix of A, Ve = f1(x)0/0z] +
-+ fn(2)0/0xy. Take p = (dzy,...,dz,). Then (2.1) can be written
in the form (2.4), where f(z) = (f1(2),..., fa(z)), w = A(z)dz, dr =
@iy, dn )T,

Example 2.1. The normal form 4 can be written in the form (2.4)
where w = (w1, w2), f = (f1, f2)T, w1 = —dzy + A Vdzy, wy = (29 —
T1)dzral, f1 =1, fa = Azs.

We will make use the Whitney topology in the set of all constrained
systems on a manifold M (see [4]) and say that some property holds for
a generic constrained system if there exists a countable number of open
sets Aj, Ag, ... of constrained systems such that their intersection A is
everywhere dense and the property holds for any constrained system in
A.

Throughout the paper we shall use some basic notions of singular-
ity theory and the following variant (or corollary) of the transversality
theorem (see [4]).

Proposition 2.1. Let E be a generic constrained system on a manifold
M, S be a singularity class of germs of constrained systems, Mg be the
set of points o € M such that the germ of E at o belongs to S. We have
a) if codimS > n, then the set Mg is empty,

b) if codimS = n, then the set M consists of isolated points.

3. Equivalence of constrained systems

Note that the multiplication of both right and left side of (1.1) by a non-
singular matrix-valued function T'(z) does not change the trajectories of
constrained system (1.1). Another possibility to reduce (1.1) to a simple
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form is to introduce new coordinates y such that y = ®(z) where @ is
a local diffeomorphism. This leads to the following definition (we use
form (2.4) for constrained systems).

Definition 3.1. Two germs at 0 € R" of constrained systems w(z) = f(x)
and w(z) = }(CB) are said to be equivalent if there exists a local diffeomor-
phism ® and a smooth matrix-valued function 7' = T'(x),detT’(0) # 0,
such that

O=To'w, [=Tf®).

If two germs of constrained systems are equivalent, then there exists
a diffeomorphism transforming the germ of the set of impasse points
of the first system into that of the second, and transforming every tra-
jectory of the first system into a trajectory of the second. If we are
only interested in the phase portraits then we can make use a weaker
equivalence.

Definition 3.2. Two germs at 0 € R™ of constrained systems FEq and Ey

are said to be phase-equivalent if there exists neighbourhoods U and V

of 0 € R™ and a diffeomorphism ® : U — V such that

a) @ transforms orientated phase curves of E belonging to U into ori-
entated phase curves of Fy. =1 transforms orientated phase curves
of Ey belonging to V into orientated phase curves of Fq,

b) ®(Imp(E1) NU) = Imp(Es) N V.

This definition is similar to the definition of <orbital equivalence of
vector fields (see [5]).

Definitions of equivalence and phase equivalence of germs of con-
strained systems on a manifold can be reduced to Definitions 3.1 and
3.2 in a standard way. Let M be an n-dimensional manifold, o € M.
The space of germs at a of constrained systems on M can be identi-
fied with the space of germs at 0 € R™ of constrained systems on R™.
Using this identification we will denote by 7, F the germ at 0 € R”
corresponding to the germ at « of a constrained system F.

Definition 3.3. Let E7 and E5 be constrained systems on a manifgold
M, a,8 € M. The germ at a of E; is equivalent (phase-equivalent)
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to the germ at 3 of Ej if the germs 7, (F1) and m3(E9) are equivalent
(phase-equivalent).

By equivalence of local phase portraits we mean, in the formulation
of Theorem 1.1, the phase-equivalence of germs of constrained systems.

4. Local classification of Pfaffian systems on a 2-manifold.
Preliminary normal forms

The possibility to present a constrained system in form (2.4) shows that
the problem of smooth classification of germs of constrained systems on
2-manifolds includes the problem of smooth classification of germs at 0 €
R? of Pfaffian systems w; = 0,wg = 0, where wy and wy are differential
1-forms. In other words, we have to classify germs (w1,w9) with respect
to the following equivalence: (wi,ws) is equivalent to (w1,w9) if there
exists a local diffeomorphism & and a matrix-valued function H such
that detH (0) # 0 and

H(®.w1, ®,w)T = (@, @9)7.

Given differential 1-forms wy and ws on a 2-manifold M , We intro-
duce the set

Swiwy ={0 €M :wi Nwg)|g = 0}.

Theorem 4.1. Let wy and wy be generic smooth differential 1-forms on

a 2-manifold M. Then

‘1) if o € Suywy, then Kerwilo N Kerwslq is a 1-dimensional subspase
of T|aM,

2) the set Sjéwl,jéwg is a smooth curve in a neighbourhood of any point
a € Swl,wg;

3) a germ of (w1,ws) at a point o € M is equivalent to one of the
following germs:

(dz1,dz) (4.1)

il = P

(dz1, zadxo) (4.2)
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if a € Sy w, and Swr,wo 18 transversal to Kerwi|o, N K erwsly at a;

(dz1, (z1 — 23)dxs) (4.3)

if o € Sy w, and Suy wy 15 tangent at o to Kerwi|q N Kerws|q-
The same result in terms of the presentation of constrained systems
in form (2.1) is as follows.

Theorem 4.2. Let E be a generic smooth constrained system on a 2-

manifold M. Assume that E has the form (2.1). Then

1) if o is an impasse point of E, then dimKerA|, =1,

2) the set of impasse points of a constrained system (jéA)dU = 7 {or,
equivalently, the set o : det(jollA) = 0) is a smooth curve in a neigh-
bourhood of any impass point a,

3) a germ of E at a point a € M is equivalent to one of the following
germs:

&1 = fi(x), &2 = fo(x) (4.4)

if o is a regular point of E;

&1 = fi(x), z2d2 = fo(x) (4.5)

if a is an impasse point and Imp(E) is transversal to KerA|, at o;

By = fil@), (21— a3)d2 = fo(d) (4.6)
if a is an impasse point of E and Imp(E) is tangent at o to KerA|,.

Proof of Theorem 4.1. 1. The degeneration wi|, = waloa = 0 has
codimension 4 and by the transversality theorem it takes place at no

points a € M.

2. Let o € Sw, wo- We can assume that wi|, # 0. Then there exist local
coordinates r = (z1,x2) and a function R = R(z), R(« # 0, such that
the germ at a of (wq,ws) is equivalent to the germ (dz1, g(x)dxy),where
9(0) # 0. The set S, wy 18 given locally by the equation jlg = 0. The
degeneration ;Tgl(ﬁ) = 8%(6) = g(B) = 0 has codimension 3 and by the
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transversality theorem it takes place at no points 3 € M. The second
statement of the theorem follows.

3. We have shown that at any point a germ of (w7, ws) is reducible to
(W1 = da1,wy = glx)das). (4.7)

If o € Sy wy, then g(a) # 0 and (wy,ws) is equivalent to (dz1,dzs).
Consider the case a € Swiwys 16 g(0) = 0. Note that locally near
@, Supw, = T:9g(®) =0 and Kerw|o N Kerws|, is generated by 52—2.
If Sy w, is transversal to Kerwi|, N Kerws|, at o then 8‘9792(04) # 0.
In this case we can, preserving wy, reduce g(x) to 29 and wo to Wy =
r1(z)xodro+ro(T)dr1, Where r1(a) # 0. It is clear that the germ (w1, wo)
is equivalent to the germ (4.2).

It remains to consider the case where the transversality condition is

Jg

violated, i.e. a—zg(a) = 0. Using once again the transversality theorem

we can prove that the tangency of S, ., and Kerwi|, N Kerws|, is
42

simple, i.e. g—xg(a) # 0. This condition allows us to introduce new
2

local coordinates (we denote them by the same letters z; and x9) in

which wy = dz1,wy = (y(@1)T23)r1(2)dzg + ro(2)dz1, Where r1(0) £

0, ~(0) = 0. The set Sjéwlvjéw
therefore /(o)) # 0. Using this condition we can reduce (w1,w2) to
(q1(z)dz1, g2(7) (21 +- 23)dzg + g3(x)dx1), where g1 (0) £ 0, ga(0) # 0.

It is clear that this germ is equivalent either to the germ (4.3) or to the

is given by the equation v(z1) = 0,

germ (dx1, (z1 +x%)dm2). Changing x1 by —x7 in the latter normal form
and multiplying both wq and wy by —1 we obtain the germ (4.3).

5. Generic constrained systems
In this Section we prove that a generic constrained system F on a 2-
manifold satisfies the following 2 conditions:

Condition A. The set I'mp(F) is a smooth curve;

Condition B. Any phase curve of F either does not intersect I mp(E) or
intersects Imp(E) at isolated points.
Condition A follows from the second statement of Theorem 4.2. To
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prove condition B, assume that « is a point of intersection of a phase
curve of system (2.1) and the set of its impasss points. Then rankA|, <
2 and v|, € ImA|,. This degeneration has codimension 2 and condition

B follows from the transversality theorem.

6. Extensions of constrained systems
In this section we show that phase classification of constrained systems
can be reduced to the classification of pairs consisting of a vector field
and a manifold.

Let E be a constrained system on a manifold M satisfying condition
A (Section 5). Take an impasse point & € M and a germ U of its
neighbourhood. Define germs UE and U of open sets such that

Ut nUg=, U=(UnImp(E)uiguls.

The germs U; and Uy are defined up to their order. Note that the
restrictions of E to U;f and Uy are germs of smooth vector fields on
Ug: and Uy, respectively.

Definition 6.1. We say that a germ at o € M of a vector field p is an
extension of the germ at a of E if the following conditions are valid:

a) orientated phase curves of u|U coincide with those of E|UZ,

b) orientated phase curves of (—u)|Ug coincide with those of E|Ug.

Example 6.1. The germ at 0 € R? of the vector field

£1=0; @o=1 =
is an extension of the normal form 1 (UT = {(z1,z9) : 73 >0}, U~ =
{(z1,22) : 72 < 0}).

Proposition 6.1. Any germ at an impasse point « € M of a generic

constrained system on M has an extension.

Proof. Take local coordinates in which the germ has the form (1.1). Let
£(x) = detA(x). Define a vector field fi(z) on the set of regular points:
I(z) = (@)A1 (z)v(x). It is clear that there exists a smooth extension
of fi(x) to the set of impasse points, i.e. a smooth vector field u(z)
defined in a neighbourhood of o and such that u(x) = pn(x) at each
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regular point. Let U be a sufficiently small neighbourhood of . Using
the second statement of Theorem 4.2, we can define the sets UT and
U~ as follows:

UT ={(z1,22) €U :€(2) >0}, U~ ={(a1,22) € U : £(z) < 0}.

Since the multiplication of a vector field by a positive function does not
change its orientated phase curves and the multiplication by a negative
function changes the orientation only, we can conclude that the vector
field p(z) is an extension of the germ (1.1).

Example 6.2. Germ (4.5) has an extension

&1 =xof1(x), 2= fa(z); (6.1)

germ (4.6) has an extension

&1 = (21 — 23) fi(x), @9 = folz). (6.2)

Given a constrained system F,E = (A,v) denote by —E the con-
strained system (A, —v).

Proposition 6.2. Let E1 and Ey be germs at 0 € R2 of generic con-

strained systems and vy and vy be their extensions, respectively. Then

a) if Ey is phase equivalent to Es, then vy is phase equivalent either to
v or to —v9,

b) if there exists a local diffeomorphism ® transforming orientated phase
curves of vy into those of vy and such that ®(Imp(E1)) = Imp(Es),
then Eq is phase-equivalent either to Eo or to —E».

Proof. We will prove the first statement, the proof of the second being

similar. Let ® be a local smooth diffeomorphism (homeomorphism)

transforming orientated phase curves of E; into those of Fy and the set

Imp(E1) into the set Imp(F>). Then, either

7) @(Ugl) = UgZ,

o(Ug,) = Ug,,
or
i) ®Ug)="Ug, oUg)= Ug -
Consider the case i). Take an orientated phase curve v C Ugl of

the vector field v1. Then v is an orientated phase curve of F; and &(v)
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is an orientated phase curve of Es. Since ®(v) C UEQ, then ®(v) is
an orientated phase curve of vp. Take now an orientated phase curve
yCU By of the vector field v1. It is an orientated phase curve of —Ej.
The curve ®() is an orientated phase curve of —FE5. It belongs to U By
therefore ®(v) is an orientated phase curve of vs.

We have shown that ® transforms any orientated phase curve of v;
which does not intersect the set of impasse points into an orientated
phase curve of Ey. The smooth (topological) phase-equivalence of vy
and vy follows now from condition B.

The arguments in case ii) are similar and we omit them.

7. Singularities of constrained systems on 2-manifolds
In this Section we define singularity classes consisting of germs at im-
passe point 0 € R? of constrained systems which are equivalent to the
normal forms given in Section 1.
Let @ be the set of all germs at an impasse point 0 € R? of con-
strained systems on RZ.
Introduce two subclasses of @:
e a singularity class @1, consisting of germs (A,v) € Q satisfying the
following conditions
a) dimKerA|g =1,
b) Imp(jtA,v) is a smooth curve (and, therefore I'mp(A,v) is a
smooth curve), .
c) vlo & ImAlp,
e a singularity class QQ2, consisting of germs (4, v) € Q satisfying con-
ditions (a) and (b), but not (c) and such that
d) the curve Imp(A,v) is transversal to KerA|g at 0 € R2,

Lemma 7.1. We have that

1) codim@Q1 =1, codimQo =2 (inQ),

2) let E be a generic smooth constrained system on a 2-manifold M,
a €M and moE € Q. Then, 1, E € Q1 U Q9.

Proof. Let moE' = (A,v). By Theorem 4.2, conditions (a) and (b) are
valid and what we have to prove is that if v|g € ImA|j then condition (d)

Bol. Soc. Bras. Mat., Vol. 24, N. 2, 1993

AT R Wy ey

LOCAL NORMAL FORMS FOR CONSTRAINED SYSTEMS 225

is valid. In Section 4 we proved that any germ of a generic constrained
system on a 2-manifold is reducible to the normal form

&1 = fi(z), g(x)E2 = fo(x) (7.1)
A germ belongs to @Qq if
and it belongs to Q9 if
0
90) =0, £20)=0, 57(0) #0 (7.3)

Now the lemma follows from the transversality theorem.
Let us divide @)1 into the following two subclasses

Q11 =1{(A,v) € Q1 : Imp(A,v) is transversal to KerA|p},

Q12 ={(A,v) € Q1 : Imp(A,v) has a simple tangency with KerA|p}.

Lemma 7.2. We have that

1) codim Q11 =1, codim Qi2=2 (in Q),

2) Let E be a generic smooth constrained system on a 2- manifold
M, ae M and n,E € Q1. Then nE € Q1,1 U Q1 2.

Proof. The lemma follows from the transversality theorem: in coordi-

nates of the normal form (7.1), a germ belongs to Q1,1 if

0
9O =0, F(0) 40, f(0) #0 (7.4)
a germ belongs to Q1 2 if
B dg - 92g
9(0) =0, @(0) =0, f2(0) #0, ’a?%(o) # 0. (7.5)

We will also divide Q2 into subclasses using extensions of constrained
systems defined in Section 6.

Lemma 7.3. Let (A,v) € Q2 and p be a smooth extension of (A,v).
Then u(0) = 0.

Proof. In Section 4 we shown that any germ satisfying conditions (a),
(b) and (d) is reducible to the normal form (4.5). For germs of Q1.1
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the condition f2(0) = 0 holds. On the other hand, the germ (6.1) is an
extension of (4.5) and the lemma follows.

Let (A,v) € Q2 and u be an extension of (A,v). Let A1 and Aa be
the eigenvalues of p. Define the singularity subclasses

Q21 ={(A,v) €Q2: Iml=Imla=0, M2 ¢&Q,
Q22 ={(A,v) €Q2: Rel; = Redy #0, ImA=—ImAy # 0}.

Lemma 7.4. Let E be a generic constrained system on a 2- manifold
M, a€ M and o E € Q3. Then moE € Q21U Q22-

Proof. The eigenvalues of the vector field (6.1) are the roots of the
equation A2 — Xc — ab = 0, where

af

a:fl(())’ b:axl(o)v cza_fQ_

0o

(0).
Using this and the transversality theorem we obtain the result.

Theorem 7.1. Let E be a generic constrained system on a 2- manifold

M. Then
1) for any impasse point o € M, the germ mo E belongs to one and only

one of the singularity classes
Q11; Q12 Q21; @22, . (7.6)

2) let My1; Myg; Ma1; Mag be the sets of points at which the germ
of E belongs to the singularity classes (7.6), respectively. Assume
that none of these sets is empty. Then

a) the closure of My 1 is a smooth curve,

b) the sets My 9; Mo 1; Mo g consist of isolated points of the closure of
My, ‘

c) the germs of singularity classes (7.6) are phase-equivalent to the fol-
lowing normal forms given in Section 1: ’
germs of the singularity class Q1,1 are equivalent either to the normal
form 1 or to the normal form 2;
germs of the singularity class Q12 are equivalent to the normal

form 3;

Bol. Soc. Bras. Mat., Vol. 24, N. 2, 1993

P p—

LOCAL NORMAL FORMS FOR CONSTRAINED SYSTEMS 2217

germs of the singularity class Q21 are equivalent to the normal

form 4;

germs of the singularity class Q29 are equivalent to the normal

form 5.

We have already proved the first statement. The second one follows
from the results of this section and the transversality theorem. The third
statement, from which Theorem 1.1 follows, will be proved in Section 9.

8. Classification of pairs consisting of a vector field and a curve
In Section 6 we shown that the classification of constrained systems can
be reduced to a classification of pairs (v, f) consisting of a germ at 0 € R2
of a vector field and a function-germ f : RZ — R, f(0) =0, df|y # 0.
The equivalence relation is as follows: (v, f) is equivalent to (7, :f) if there
exists a diffeomorphism & transforming phase curves of v into those of
¥ (the orientation might not be preserved) and transforming the curve
{f = 0} into the curve {f = 0}. In this section we give a classification
with respect to this equivalence.
We begin with the simplest case where v|g # 0.

Lemma 8.1. Let v|g # 0 and v|g be transversal to the curve f =0 (i.e.
v(f)|lo #0). Then the germ (v, f) is equivalent to the germ (8/0z1,x1).

Proof. We can assume that v = 9/0x1. Then df/0x1(0) # 0 and there
exists a coordinate transformation ® : x1 — (z1,x2), x93 — x9 such
that ,(0/0x1) = HO/0z1, f(®)=x1, H(0)#0. The lemma follows.

Lemma 8.2. Let v|y # 0 and v|g has a simple tangency with the curve
f=0 (i.e. v(f)lo=0, v3(f)|o #0). Then the germ (v, f) is equivalent
to the germ (0/0z1, x3 — 23).
Proof. We can assume that v = 9/0z;. Then 0f/0x1(0) = 0,
82f/(9x%(0) # 0, therefore (v, f) is equivalent to (0/0z1, =% + v(x2),
where v is a function-germ. Since df|y # 0, then v(0) = 0 and ~(0) # 0.
Therefore, we can reduce v to z9 and the lemma follows.

Now let us consider the more difficult case v|g = 0. Normal forms
for this case are similar to normal forms obtained in [3].
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Lemma 8.3. Let v|g = 0, the eigenvalues A1 and Ao of v are real,
A /Xo €Q. Assume also that the curve {f = 0} is transversal to the
eigenvectors of the linearization of v. Then the germ (v, f) is equivalent

to the germ vy, x1 — xg, where

U] = m18/8m1 + A\x90/0x2, ,)\| > 1. (8.1)

Proof. By Chen’s linearization theorem we can assume that v has form
(8.1) (see [5]). The transversality of the curve {f = 0} to the stable and
unstable manifold of v means that df/dx1(0) # 0 and Of/0x2(0) # 0.
The transformations 1 — g1, T2 — go2 preserve v and using them
we can reduce f(z1,22) to the form F(z1,z2) = z92 — z1 +o(||z||). Then
the curve {f = 0} can be given by the equation 9 = z1 + x%u(ml), where
w(z1) is some germ. The transformations 1 — x1(1 + h(z1)), x2 —
z9(1 + h(z1))* are locally smooth and they preserve the phase portrait
of v (for any germ h(z1),h(0) = 0). To prove the lemma it suffices to
show that one of these transformations reduces the curve {f = 0} to
{z9 = z1}. This condition leads to the following equation for h = h(z1):
F(zi,h)=(1+h)>—1— :1:%(1 + h)?2u(z1(1 + h)) = 0. This equation has
a solution h = h(x1), h(0) = 0, since near (0,0) F is a smooth function,
F(0,0) =0 and 0F/0h(0,0) = A — 1 # 0.

Lemma 8.4. Let v|g = 0, A1, Az be the eigenvalues of v and Rel\y =
Relg # 0, ImA = —ImAg # 0. Then the germ (v, f) is equivalent to

the germ (U1, x1 — x2), where _
U1 = (=1 + A\x2)0/0x1 + (—Ax1 — 22)0/022, A > 0. (8.2)
Proof. We can assume that v has linear normal form (8.2) (see [5]).
The transformations
x1 — exp(—y(21)/A) (21 cos ¥ (1) + T2 siny(21)),
xg — exp(—y(z1)/A)(—z1siny(x1) + T2 cosy(1)) - (8.3)

do not change the phase portrait of v for any function y(z1) (we can
check this using polar coordinates). Assume that the curve {f = 0} is
given by the equation x1 = zg(z2) (the case where the curve is given
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by the equation 9 = x1(z1) can be similarly considered). Let us show
that one of the transformations (8.3) reduces the curve to {zy = 0}. To
prove this we have to show the solvability of the equation

w1, y) = cosy + sin'yG(—e‘V/)‘xl siny) = 0. (8.4)
We can take o € R such that
cosa+ G(0)sina = 0. (8.5)

Then F(0,a) = 0, and to prove the solvability of (8.4) with respect to
¥ =7(x1), 7(0) = a we have to show that 9F/d(0, o) # 0, that is

—sina + G(0) cosa # 0. (8.6)

But condition (8.6) follows from (8.5). The lemma follows.

9. Proof of Theorem 1.1
In this section we prove the third statement of Theorem 7.1 and
Theorem 1.1.

End of proof of Theorem 7.1. Let e be a germ of one of the singularity
classes (7.6). Then the germ e is is phase-equivalent to the normal form
(7.1). This normal form has an extension

9(@) f1(x)0/0x1 + fa(x)0/Oz2. (9.1)

In the case e € Q1 conditions (7.4) hold. These conditions imply
that the extension (9.1) is transversal at 0 € R? to the impasse curve
{g9(x) = 0}. By Lemma 8.1 and Proposition 6.2, the germ e is phase-
equivalent either to the normal form 1 or to the normal form 2.

In the case e € Q12 conditions (7.5) hold. They imply that the
extension (9.1) has a simple tangency with the impasse curve 19(@) = 0}.
Denote by e the normal form 3. By Lemma 8.2 and Proposition 6.2,
the germ e is phase-equivalent either to the germ e3 or to —e3. The
change of the coordinate zo by —z9 transforms the germ —e3 to es,
therefore e is phase-equivalent to es.

Consider now the case e € (2,1UQ2 2. By Theorem 4.2, e is reducible
to the normal form (4.5). The vector field (6.1) is an extension of the

Bol. Soc. Bras. Mat., Vol. 24, N. 2, 1993



230 M. ZHITOMIRSKII

normal form (4.5). Using the condition that 0 is not an eigenvalue of
the vector field (6.1), we can conclude that the vector 9/0z1 is not an
eigenvector of the linearization of (6.1). Therefore the eigenvectors of the
linearization of (6.1) are transversal to the impasse curve {xg = 0}. By
Lemma 8.3 and Lemma 8.4, there exists a diffeomorphism transforming
the curve {x9 = 0} into the curve {z1 = z2} and transforming the phase
curves of the vector field (6.1) into those of one of the fields (8.1) or
(8.2). Denote by e4 and e5 the normal forms 4 and 5, respectively. Note
that Imp(eq) = Imp(es) =x1 = 9, the vector field (8.1) is an extension
of e4 and the vector field (8.2) is an extension of e5. By Proposition
6.2, the germ e is phase-equivalent to one of the germs eq, €5, —e4, —€5.
The change of coordinates z1 — —x1, %9 — —xg transforms the germ
—ey into the germ e4 and the germ —es to e5. Therefore, the germ e is
phase-equivalent either to the normal form 4 or to the normal form 5.

The proof is now complete.

Proof of Theorem 1.1. Let F be a generic constrained system on a 2-
manifold M, and « a point in M. By Theorem 7.1, the germ of E at «
is phase-equivalent to one of the normal forms 1-5. It remains to show
that the normal form 1 is not phase-equivalent to the normal form 2 and
that none of the different germs of the forms (1.11) or (1.12) are phase-
equivalent. The first statement follows from the stability of the manifold
of impasse points for normal form 1 and its instability for normal form
2 (see Fig.1,a,b). The second statement follows frem Proposition 6.2:
the vector field (8.1) is an extension of the normal form 4, the vector
field (8.2) is an extension of the normal form 5 and none of the different
vector fields v1 and vy of the forms (8.1) or (8.2) are orbitally equivalent
(i.e. vy is phase-equivalent neither to vy nor to —uvo, see [5]).

10. Discussion on the classification of constrained systems
onR", n>3

Trying to extend the obtained results to constrained systems A(x)t =
F(z), v € R™, n > 3 one meets the following difficulties:

1. If n > 4, then the degeneracy rankA(0) = n — 2 becomes typical. It

Bol. Soc. Bras. Mat., Vol. 24, N. 2, 1993

LOCAL NORMAL FORMS FOR CONSTRAINED SYSTEMS 231

is not even clear how to obtain a normal form for the matrix A(z) and
a scheme of adjacencies in this case.

2. Let rankA(0) = n—1. The hypersurface of impasse points {detA(zx) =
0} might be tangent to KerA(0) and, on the top of this, F'(0) € ImA(0).
This codimension 3 degeneracy is not typical in the 2-dimensional case.

3. Let rankA(0) = n — 1 and the hypersurface of impasse points be
transversal to KerA(0), but F(0) € ImA(0). Arguments similar to those
in the 2- dimensional case show that the system can be reduced to

z = fl(m)a ven 3By = fn—l(x)axni'n = fn(m)

where f,(0) = 0. To investigate the phase portrait of this system one
has to deal with a pair consisting of the vector field I

T = xnfl(l')a v 7i'n—1 = xnfn—l(x)aj% = fn($)

(the extension of the constrained system, see Section 6) and the hyper-
surface of impasse points {z,, = 0}. The vector field y has a codimension
2 submanifold L of singular points, L = {z, = f,(z) = 0}, while in the
2- dimensional case the singular points of the extension of a constrained
system are typically isolated.

4. Furthemore, at any point of the submanifold L the vector field I
has n — 2 zero eigenvalues and two more eigenvalues Aq, Ag. There are
points of L (forming a codimension one subset) at which the tuple A1, Ao
is resonant. In particular, there are points at which it is not hyperbolic
(ReA1ReAa = 0). This is a typical degeneracy (of codimension three),
and there is no analogous degeneracy in typical 2-dimensional case.
Note, that the degeneracies 1) and 4) seem to be most difficult. The
work on typical singularities in n-dimensional case is in development.
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