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Biasymptotic Solutions of Perturbed
Integrable Hamiltonian Systems

L. H. Eliasson

Abstract.  We prove that small perturbations of a real analytic integrable Hamil-
tonian system in d degrees of freedom generically have biasymptotic orbits which are
obtained as intersections of the stable and unstable manifolds of invariant hyperbolic
tori of dimension d — 1. Hence, these solutions will be forward and backward asymp-
totic to such a torus and not to a periodic solution. The generic condition, which is
open and dense, is given by an explicit condition on the averaged perturbation.

1. Introduction
A perturbation of an integrable Hamiltonian system has generically an
invariant hyperbolic torus. This torus, which does not exist in the unper-
turbed system, is present in the averaged system (for a generic pertur-
bation) and its persistence to the perturbed system follows from general
results on conservation of invariant hyperbolic tori as is shown in [1,2:3]
— see also [4] for a somewhat different approach using centermanifolds.
In general we don’t know anything about the global behavior of the
stable and unstable manifolds, not even for the averaged system. Some
conditions which assure the intersection of these manifolds for hyper-
bolic periodic orbits have been obtained by variational methods [5] but
these do not apply, at least not in any immediate way, to our problem.
The situation is different, however, when the hyperbolic torus is of
dimension d—1 because then the averaged system is integrable and global
information is available. In the non-degenerate situation — i.e. the hy-
perbolicity does not go to zero with the perturbation — the intersection,
and splitting, and transversality, of the stable and unstable manifolds
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58 L. H. ELIASSON

is a pure perturbation problem. For a sufficiently small perturbation of
such a system the intersection, and splitting, and transversality can be
detected by a Poincaré-Melnikov-integral — [6,7,8]. Our problem how-
ever is degenerate since the averaged system depends on the perturba-
tion parameter — in particular the hyperbolicity of the averaged system
goes to 0 with the perturbation — and therefore the problem is not purely
perturbative. This phenomenon is often referred to as “exponentially
small splitting” and is described in for example [9].

The degenerate problem that we have described can be handled for
symplectic mappings in the plane by an argument using area-preserva-
tion originally due to Poincaré — see for example [10]. Instead of area-
preservation, which makes no sense in our problem, we shall exploit the
exactness of the Hamiltonian flow. A general formulation of such an
intersection property has been given in [11]. Using these more global
ideas we shall prove the intersection of the stable and unstable manifolds
along at least d different orbits — this will hold under the only condition
that the averaged system has a hyperbolic structure.

Statement of theorem A
Consider in the symplectic space (T? x R%, 2dz; A dy;) the integrable
Hamiltonian vector field JV H, given by the analytic function

Ho(y) = (w,v) + (My,y) + O°(v). (1)

defined near y = 0 in RY, where M is an antisymmetric matrix and ( -, - )
is the scalar product in RY.
The torus y = 0 is invariant and we shall assume that it is a resonant

torus with a single resonance but otherwise diophantine:

<n07 U.)> = Oa

|(n,w)| > Kln|",n € Z\{n,Z}, (2)

for some 7 > d — 2, K > 0. The non-degeneracy condition is
det M # 0 and (Mn,,no) # 0 positive say. (3)
This system has no hyperbolicity at all so we must get it from the
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perturbation. Let H (z,y) be analytic and let
1 5
f(@) = fu(z) = lim T/o H(zx + tw, 0)dt.

T—oo

f is analytic and invariant under z — z+tw, t € R, and-we shall assume

that
f has a unique maximum (mod Rw) at some point p,

(4)

1" (p) has a strictly negative eigenvalue.

Theorem A. Under the above assumptions there exists a positive constant
€0 — depending on H, and H — such that if €2 < &,, then the system
H,+¢2H has an invariant hyperbolic torus whose induced vector field is
analytically conjugate to a Kronecker flow with frequency vector w and
whose stable and unstable manifolds intersect along at least d different
orbits.

We have made a certain number of choices of signs in the formulation
of this theorem: of (Mn,,n,); of the perturbation parameter €2: of the
sign of the non-zero eigenvalue of f”(p). They can be made differently
but what is important is that the sign of (Mn,,n,) and the sign of the
non-zero eigenvalue of the averaged perturbation (i.e. of i (p)) are
different.

In the case of non-autonomous quasi-periodic perturbations of one
degree of freedom Hamiltonians we have n, = (1,0,... ,0) and (My,y) =
Mly%. Clearly det M = 0 but since the perturbation does not depend
on (y2,...,Yd), the theorem holds also in this case.

The proof of this theorem will be done by reducing it to theorem B
described below.

Statement of theorem B

Consider instead the Hamiltonian system given by
ﬂQ
Ho(z,y) = (w,9) + 7@/% + f(z1) +2(m,y)y1 + (MY, y),  (5)

where z = (z1,2') € T¢, y = (y1,7') € R%
We shall assume that

|(n,w)| > K|n|™",Yn € 21\ {0}, (6)
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for some 7 > d — 2, K > 0. We also need a non-degeneracy condition:

M

The function f should have a unique and non-degenerate global max-
imum at some point, and satisfy a smoothness condition. We require

det(j% m>:7;é0andﬁ>0. (7)

that it is analytic and
£(0) = £/(0) = 0 and f(0) = —a®, @ >0,
§ = max{ f(x1): ] critical point # 0} <0, (8)

sup  |f(z1)] < L.
.Imz1|<r

So the Hamiltonian vector field JV H, has a hyperbolic invariant
torus of dimension d — 1 at 1 = y1 = 0, ¥’ = 0. The separatrices are

gy = i%\/—2f(x1)-

Theorem B. Suppose H, satisfies (5-8). Then there exists a constant €1
such that if the analytic function H satisfies

given by

|H|p =S%p|H| < By

D = D(r,s) = {(z,y): Imz| <, |y| < s}, s> %,
then the system H,+ H has an invariant hyperbolic terus whose induced
vector field is analytically conjugate to a Kronecker flow with frequency
vector w and whose stable and unstable manifolds intersect along at least
d different orbits.

The constant €1 depends only on |H, — (w,)|p, min(r, s), o, 8,7,6
and the diophantine constants K, T.

2 serves only to assure
[3?

The assumption on the domain, ie. s >
that the perturbed Hamiltonian is defined in a neighbourhood of the
separatrices.

The important point, which permits the deduction of theorem A
from theorem B, is the independence of £; on the norm of w when

this norm becomes large. If we permitted €1 to depend on |w| then

Bol. Soc. Bras. Mat., Vol. 25, N. 1, 1994

BIASYMPTOTIC SOLUTIONS 61

the intersection would be a pure perturbation problem which could be
detected by the variational equation. In our case we need a more global
argument.

Even though exactness is not mentioned in the theorem it plays
an essential role in the proof so we will recall the definition and some
elementary properties.

Exact symplectic transformations

Consider the one-form 6 = —Xy;dz;. A mapping x is symplectic if x*0—6
is closed and it is exact symplectic if this one-form is exact, i.e. = d¢ for
some function ¢. Since phase space is not simply connected there are
closed one-forms that are not exact, and there are symplectic mappings
that are not exact. However, the flow map x: of a Hamiltonian system
JV H is always exact because

g t d t
Mg /O T (0)ds = /0 X:(dO]JVH + d(6]JV H))ds
t
L d/o X:(H + 6] JV H)ds.

One verifies easily that a composition of two exact symplectic trans-
formations is an exact symplectic transformation.

The important property that we shall use is that an exact trans-
formation which is C'l-close to the identity has a generating function.
Suppose (Z, ) = x(z,y) and let §dz — ydz = d¢(z,y). Let

Yz, y) = d(z,y) — y(Z — z)
and consider 1 as a function of Z,y through
T =x1(2,y) ==z = p(Z,y),

which is possible because y is Cl-close to the identity. Then

:sz—?—?f—,
o oY
=Y+ 5=
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Outline of the paper ;

The proof will proceed along the following lines. In section 2 we reduce
theorem A to theorem B and in the rest of the paper we shall prove
theorem B.

In section 3 we formulate a local result — proposition 1 — which
gives the invariant torus and the local asymptotic manifolds in exact
symplectic coordinates. We then follow up these local coordinates along
the unstable manifolds. In doing this we have to compare the time-T-
maps of the averaged system and the perturbed system for some fixed
time 7', independent of ¢ and w. The fact that these two vector fields
may be large, due to the factor w, is of no importance and these two
mappings are e-close, independent of |w|, in the Cl-norm. We then
obtain an exact symplectic mapping which is arbitrarily C 1_close to the
identity as ¢ — 0 and which takes (a part of) the local stable manifold
into the global unstable manifold. Using a generating function we then
reduce the intersection problem to the existence of critical points of a
C-function on T 1.

In section 4 we reduce proposition 1 to a perturbation result on
normal forms near an invariant hyperbolic torus — proposition 2. This
normal form is given in exact coordinates and is somewhat more refined

than we have seen elsewhere so we give a rather brief proof of it in

section 5. The proof differs in no essential Wayhfrom:that in for example

[3].

2. Theorem B Implies Theorem A
Consider now H, + ¢2H satisfying (1-4). We shall transform it to a
Hamiltonian satisfying the setup (5-8) of theorem B.

First of all we can assume that n, = e; = (1,0,...,0)%, i.e. that
the frequency vector is of the form (0,w) with w € R4! diophantine.
In order to see this we choose C' € SI(d,Z) such that Cn, = €1 =
(1,0,...,0)* — such a matrix always exists since n, is primitive, i.e.
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(n,w) = 0 implies that n € n,Z [12]. Then the change of variables
(z,9) — (C*2,C71y)

is defined on T¢ x R and transforms H, to a function of the same
form satisfying (1-3) with n, = e; — M and K will of course depend on
the choice of C'. The function f gets transformed to the corresponding

function for the transformed system, still satisfying (4), and becomes a
function of z; only.

Secondly we can assume that f attains it maximum at z; = 0 and
that this maximum is 0.

Now H, + ¢2H will be defined on some complex domain
D = D(r,s) = {(z,y): Imz| < r,|y| < s}.

and we can assume that K,r,s <1, and [H,|p =< 1.

An averaging transformation
We shall now construct a solution S = S(z), R = R(z,y) € O(y) of the
equation

{SaHo} =H_f_Ra
where { , } denotes the Poisson bracket with respect to the symplectic
form. Expressed in Fourier coefficients the equation becomes

i(n,w)Skm = Hgn(0), k€ Z,neZ¥1\,
{Sa Ho - <wa >} = H($’y> - H(CL‘,O) =I5
Standard estimates of small divisors (see [13]) together with Cauchy

estimates of derivatives give

1

1S B = CWIHID’ |R|p(r—2p,s—0) < € |H|p.

1
Kpr+20-
The constant ¢ only depends on 7. In the sequel we shall denote all
constants that only depend on 7 by the same letter ¢ — the dependence
on d is controlled by the dependence on 7, since 7 > d — 2.

The time-t-map ®,0 < ¢t < 1, of £2JVS preserves z and maps
D(r —3p,s —30) — D(r — 3p,s — 20),
if just €2 < cKp™20.
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1
We now transform the system H, + e2H by the map @".

(H,+e2H)o®" — (H,+*(f + R)) =

1
:/ %(Ho+€2tH+€2(1—t)(f+R))O¢>tdt
0

= ¢t /1{tH+ (1—t)(f + R),S} o ®'dt = c*Hy.
0

and an easy estimate of the error gives

T4+2 _\—2
|H1|D(r-3p,s—3a) < c(Kp""0)

If we now let 6p = r and 60 = s, then the transformed system H, +
e2(f + R) + €*Hj is defined on D (5, 3)-

A scaling
We now do a scaling, replacing y by ey and dividing the system by £
The transformed system is Hamiltonian and given by an integrable part

<%ay/> + <My=y> e f(xl)a Y= (ylay/)v

which satisfies (5-8), plus a perturbation term Hy(z,y,€) which consists
of Hi, R and terms of order > 3 in H,, and which is defined on D (2, 25)
Ife< %ﬂs,ﬂQ =2(Mey,e1), then

T S r 2
D<2’2s> 2’B) -
: r 2 h )
and on the domain D ( 3, 5 ) we have

|Ha(z,y)| < c(az(KrT+2s)_2 + E(KT‘T+282,B)_1 + s(ﬁs)'g’

Hence all conditions of theorem B are fulfilled and this proves theo-

rem A.

3. Reduction to a Local Problem
Consider now H, as given by (5-8) and let’s write (z,y,&,n) for

(z1,y1,2,y')- Let
B(r) = {(z,y,&n): |zl lyl, Inl, [l €] <7}
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If now r < s, as we can assume, then H, is defined on B(r) and we can
use the following proposition.

Proposition 1. There exists a constant €9 such that if
|H|B(r) <e<ey,
then there exist constants a,b and an exact symplectic transformation
®: B(Rr) — B(r) such that
2
(Ho + H) 0 ® = const. +(w,n — a) + bh(z,y + @<m, n))+
2 2 8 5
+O%(h(z,y + @<m,n>),n —a), h(z,y) = —y + f(=),
and
|® —id|g(g) + la| + [b— 1] < 4e.
The constants e and A depend only on |H, — (w, >|B(r)’ r, a, 8,9,
K, 7, and R only depends on |H, — (w,)[B(T),r,a,ﬁ.
We shall arrange these coordinates somewhat more using the follow-
ing lemma which can be proven by a power series expansion but which
is also a particularly simple case of a theorem of Riissmann [14].

Lemma. There ezist an exact symplectic transformation ¢, defined in
a neighbourhood of the origin, and an analytic function g such that
h(e(z,y)) = g(zy), with ¢(0) =0 and

P(0) = (@ _/5) .

‘I’li(Jf,y,fﬂl)—’(m,y ,82<m 77> £+
By (Cﬁay,fﬂ?) - (90(1'73/),5,77)

® = ®1 o &y is exact symplectic and satisfies

Let now

xm,n),

52

&(B(R1s)) C B(s) and 3 1(B(Rys)) C B(s), Vs<r,
where R and Ry only depend on |H, — (w, >|B(7')’ r, a, 3. Moreover
(Hy+ H)o®o0d = const. +{w,n — a) + bg(zy) + O%(g(zy),n — a).
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Proof of theorem A. For simplicity we shall assume that the irrelevant
constant in (H,+ H)o® is zero, thus saving a letter. We can also assume
that < s so that D(r,s) D B(r) — otherwise we have to replace r by
min(r, s). If now

‘HID(r,s) <e<egy,
then the existence of the invariant hyperbolic torus and its two asymp-

totic manifolds follow from proposition 1 so we must only consider the

intersection.
Let Hy be

(%W—GHWM%y+%ﬂmﬂﬂ+%@%ﬁ—®@+§ﬂmﬂﬂ+
+b(M(n—a),(n—a))

The invariant torus and its local asymptotic manifolds, as well as the
dynamics on them, are the same for Hy and (H, + H) o ® but Hy is
a global Hamiltonian, defined everywhere with the only restriction that
|Im z| < r. The vector field JVHy equals a constant part JV{w,n—a)
plus a part which is essentially independent on w — it depends on w only
through a and b. If XV is the flow map of JVHy an easy estimate of

the variational equation gives that
~xiv(z’) - xf’(z)‘ 2 gl ol — g,

if Imz = 0 and |Im2/| < e~#1!lr, where 2 is shorthand for (@:3: &1
The constant A7, as well as the following cons@ants,fdepend on the same
parameters as A.

In the same way we get for the flow map & of JV(H, + H) that if
z € D(r,s) then

xe(2) = xt' (2)| < Ageille,

as long as the two flows remain in D(r, s).

Consider now two &-sections

(fﬂlayl,&@) = B(RT)
i >1

h(l‘l,yl + —,82_2<m,a>) =0
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and
(z2,92,§,a) € B(Rr)

ro <1

h(z2,y2 + %(m,a)) =0.

There is a positive number 7" such that for all £

P "
XT (‘Tla Y1, éa (I) = (CEQ, Y2, 5) G),
where é depends on £. The number T is easy to compute:
2
1 /= 1 4T 1 =1
T=— ——du < —max | —, —

b6 Jzy v/—2f(u) B i \vV=2f) 6 )’
if 2¢A < 1. Since z1 and z3 only are restricted by the condition that |z1],
ly1| < Rr, we get an upper estimate of T' that only depends on the same
parameters as A, plus §, but which is independent of w. Consider now
xT o ®o XI_VT o ® 1, where & is given by proposition 1. This mapping
takes the local stable manifold of JV(H, + H) near ®(z2,y2, T* !, )
into its global unstable manifold. So we must show that the image
under this map of the local stable manifold intersect itself. Consider

therefore ¥ = &1 o ypo® o XJ_VT which is the same map expressed in
the coordinates given by ®. We must show that ¥, which is defined in

the complex domain
Q: |z — 29| + |y — yo| + [Im&] + |n| < e2.
satisfies
TOQNT)NT £ 2,
where
I':h(z,y + %(m, a)=0,¢eT ,np=a.

B
Notice that ¥ is exact symplectic, that

|\If — ’LdIQ < A3E,
and that
(Ho + H) 0 ®(T) = (Ho + H) 0 ®(¥(T)) = 0.
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We shall formulate this intersection problem in the coordinates pro-
vided by @, so let

(20,0, T, a) = & (z2,y2, T, 0)
and
U = @“1 oWo d.

(This requires that the point (x2,Y2,&, a) belongs to the domain of @,
and this is an w-independent condition on z2.) T is defined in the

complex domain
]z — as|+ yl + [lmg] + n] < Ase?
and
|¥ —id|q, < Ase.
Moreover ¥ is exact symplectic, being a composition of such transfor-

mations, and
GETNQ))=GTNna) =0,
where T' = @ 1(I') and G = (H, + H)o @0 o.
There exists a generating function (%, y,§,n) defined in

1 1 = ¥
|2 — zo)| + |y| + Inl < §A4€7, £emsl

such that ¥ is given by

T —ty, &€= E—y -

y=9—v%s n=1-"9z
Let now n =a, y = 0, & = xg. By a theorem of Ljusternik-Schnirelmann
— see [15] for a proof — there exist at least d points € such that

wé(ajOa 0, éa a) =0.

Hence at such a point we have 7) = n = a and we get from GEIT) =0
that g(zof) = 0. Since |g| = |y — 7| ~ € it follows that 2oy = 0 for
¢ small enough, and since zg # 0, § must be zero. This proves the

&

intersection of the asymptotic manifolds. O
We can easily get transversality of the intersection for e less than
some &1(H,) if H satisfies some (generic) Poincaré-Melnikov integral
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condition. The problem is that &{(H,) tend to become exponentially
small with IwLI so we can not apply this to our original problem. But one
can easily prove that the invariant hyperbolic torus as well as its local
asymptotic manifolds, as given by proposition 1, depend analytically on
|w|, so the distance between the stable and unstable manifolds in, for ex-
ample, the section £ = £y, = 7 also depends analytically on |w|. Since
this distance will be # 0 for some £y and some |w|, it must be non-zero
for almost all |w|. So this argument allows us to conclude generic split-
ting in our original problem. This non constructive argument, however,
does not give us transversality of the splitting.

4. Proof of Proposition 1

We define the normal forms N (r, p, w) as the set of analytic functions
N, defined on B(r), of the form

No + {(w,m) + £y + My (zy)? + 2(Ma, n)ay + (Man, n) + 0% (zy, ),
where Ny and x are constants and where M; = M;(z,y,§) and
I8l > it
[det[M3(0,0,)]| > 3™
I[N = No = {w, )| p(ry < K3
Here [ | denotes the meanvalue
9=/, s
Proposition 2. Let N € N(r, u,w) and let w be diophantine with con-
stants K, 7. Then there exists a constant €3 such that if
|H|p(r) <€ <eés,

then there exist a constant a and a symplectic transformation ®: B (%) —
B(r) such that

(N+H)o® EN(%,QH,w>
and such that ® o T is exact, where

T (ﬂfay,fa :U‘) A ($, ya&ﬂ? + a)7
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and
|<I) = Zd|B(%) + |CL| < Ae.
The constants €3 and A depend only on r,u, K, T.
Proof of proposition 1. Consider now H, as in proposition 1,
Ho = (w,m) + h(z,y) + 2(m, )y + (Mn,n).
By the transformation ®: B(Ry7) — B(r) defined in the previous section
we get
H, 0% = (w,n) + g(zy) + (M3n,n)
= (w,m) + Ky + Mi(ay) + (Msn,n) + 0%(zy),
where k = a3 and det M3 = 2y5~2.

Now we can apply ®o T, 1 given by proposition 2,
(Hy+H)o30®0T; ' = (w,n— a) + K'zy + O*(zy,n — a),
module an additive constant. Since g(zy) = 0 if and only if zy = 0 when
r is small enough, independent of w, the transformed function can be

written as ;
K
(w0~ a) + —g(zy) + O*(g(zy),n — @),

Moreover, using the estimates of ® one verifies that |’ — k| < A’e, where
A’ depends on the same parameters as A. Hence

!

K
— — 1| < u1Aze.
K

Now we consider ®~1: B (Rg%ﬁ) — B (Elf‘r) Then

P . 2
(H0+H)O@O@0Ta_1 O(I)_l = <wan_a> + %h(xay+ ?<m777>)+
2
+ O (h(@,y + g (m,m)),n - a)
and proposition 1 is proven, with R = Rg%. O
5. Proof of Proposition 2
k,l,m

Given an analytic function F' = Sag; m(§)x y'n™ in B(r), we decompose
it into its homogeneous components F' = £(F'); where (F); is the sum
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of all terms in the Taylor series with min(k, ) + |m| = j. Notice that the
Poisson bracket {Fj, Gx} may not be homogeneous but that

{ECel) =0, ©< 5+ k-2,

We decompose (F); further as (F' )? +(F )]1 +(F )]2 consisting for terms of
which k =1, k > I, k < [ respectively. When there is no risk for confusion
we shall write F; for (F ); This will be the case for all indexed functions
below except for My, My, M3 and their tilde-versions.

We now turn to the proof and we first notice that we can assume
without restriction that p; > 1 and r < 1. Notice also that 7 > d — 2.

We first determine a such that
2[M3(0,0,-)]a + [6,H (0,0, ... ,0)] = 0.
By the assumption on M3, such an a exists and

H2py -

lal < 7

— ¢ here and below denotes a constant that only depends on 7. In
particular, T,: By — B, where B; = B(r — jp), if

1
B gt

Mg
We shall take r = 28p.
Write now (N+H)oT, = N+H, N = N+(w,a). Wehave H = F+G

with

F= 2<M27 (Z)l‘y + 2<M377a a> ot aﬂN(xa Y, 5» n)a + H(l‘, Y, "5, 77)7

G = <M3aaa> + (N(l', y7§777 + a) - N(%beﬂ?) - 877N(£L‘, y,fﬂ?)a)‘i'

+ (H(xay’gvn + CL) o H(x7y7£’77))’

where N = N — (No + N1 + No), and

1Fls, < (ol +e) =<
B3, 2, €
Glg, < c (—2|a| i —|ay) < ()2
p p
Notice that the mean value

18, F(0,0,...,0)] =0,
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by construction of a. m Hr
Now we want to determine S = Sp + S1 and R = R8 + R} + R,

Re Oz(xy, n), such that

(S,N}=F—R, [R}+R}=R)+R],

i.e.
{So, N1} = Fy — R{, [RY] = R}
{51, N1} = Fy — ({So, Na})1 — RY, [RY] = R}
—(F — Fy — F1)—{S0, N2 + N}+({So0, N2}) )1—{S1, N2 + N}—R.

The first equation becomes

w0 Sy = FY — RY, R} = [F(0,0,... ,0)]
m:awSé + w@gS& = F&
— kyBpS3 + wa§S§ = F2.

The first equation can be solved in Fourier series in ¢ and the solution
is estimated by standard small divisor estimates ([15]). The second
equation is expanded in power series in x and each coefficient can be
solved in Fourier series in & and easily estimated because x # 0. The

third equation is solved in the same way and the outcome is

144

1505, <cp ‘Ro\ <e.

1
where (4 = max (,ul, K)'
The second equation is of the same kind. We just need to estimate

({So, N2})1 by Cauchy estimates in Bg, and we get

,u,3,u4 0 K314 2
|Sl|B4<cp27+25, \Rll < 6 pT+2

Notice that R(i) is independent of n by the construction of a.
For the third equation we get by a simple Cauchy estimate that

M3M4
27+4

’RI <c g

B5 p
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From Cauchy estimates of the derivatives of S in Bs we get an esti-
mate of the time-t-map @' of JVS. It gives for 0 < ¢ < 1

@ti B7 =5 B6
t M3M4
’CP Zd’BG < Cp2¢+3€
if just
27+4
g <P 5
K3y

Hence, the transformed Hamiltonian

(N+H)od' —(N+R) = /{tH+ (1—HR, S} + Q) odtdt =
is defined in B7 and verifies

3,4
b4 H3k4

Let’s now consider N + R = N + (w,a) + R which is of the form
No + (w,a) + R8 +(@,n) + Rxy + My (zy)>+
+2(Ma, n)zy + (M3n, n) + 03(zy, n),
where @ and & are constants and @ = w by the choice of a. The differ-
ence k — Kk can be estimated by the second order derivatives of Ry and
Ms3(0,0,8) — M3(0,0,€) by the second order derivatives of R. Fix now
1 < v < 2. Then one verifies easily that

1
’Kl| > ]—/—
i
[det[ 30,0, )| > )

Vi
[N+ R = (No + (w,a) + Ro) — (w, )| <wus,
3
if just
v—1
e < CT 47'—{-6.
H2p3 H4

To summarize this we now abandon the homogeneous notation —

different indices will from now on simply denote different functions. Let
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p= QLS’ rL="7,Ty = %’r, €1 = € and v9 = v. Then we have constructed a

constant ag and an exact symplectic mapping ®9 such that

Ta2 o ®g: B(TQ) —_) B(T'l),

and
(N + H) 0Ty, 0®9 = N2 + H?
with A
Ny € Ni(rg,vap,w),
92,2745 4
B2 < A .
B(ry) (rp —ro)®7+12
Moreover i
3
lag| < co (1 — g2 1e!
and
2
popg g

|Ta2 o dy — id‘B(w) < COW 1-

All this holds under the condition that

1 v—1 6748
e1 < — <553 5" —1)°T+e.
€0 papg " Hy
The rest is now an easy calculation. Let
r
re=(L+275h) -,

’Uk:1+2_k,1/2--~1/k/'1/006]1,2[, i
pk +1) = vgy1pk) = va .. Vg1,

pa(k) a3 (k> opa(k)t 5
(e — e T2 P

In order to continue the above construction infinitely many steps we
need that

€k+1 = €0

o o Vel — 1
co pa(k)2us(k)?m+3 (k)

The right hand side of this inequality is larger than BY* where

B=1_" (1} v=(3) .

. 27+3
co ppp3” Opg \2 2
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If we now let dj = €1 and dyg4+; = AXkd% with

2,217+5 4
_ o HoH3 4 100423 5 o 87+12
A = C W2 ,X = 2 T s
then di > € so it suffices to verify that d < BY* for all k. But this

clearly hold if e < BY and € < (AX?)"! ie. if

p87+12

2, 27+5, 4"
#2#3T+ 2

e<c

So under this assumption on € we can do the above construction
infinitely many times and construct a sequence

(Tay 0 ®2) 0+ 0 (T, © B)p)

with a subsequence converging to a symplectic mapping ®: B () — B(r)
such that

(N+H)ode M (g,QH,w),

42 2
. H2pts  ~Hy
|@ = ’ld’B(%) < Cwﬁ,
1213
la| < C 3160 = Yag.

® is not exact but @ o T, ! is, because it is the limit of

o -1
(Tapy 0 ®20T; 1) 0+ 0 (Tagtegay, © Bt 0 i e SO

which is a composition of exact diffeomorphism, hence exact. This
proves proposition 2 and completes the proof of our theorem. O

Note added in proof

The problem of the intersection of the stable and unstable manifolds
for hyperbolic tori of arbitrary dimension mentioned in the introduction
has been solved by S. Bolotin using quite different variational methods.
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