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A Constrained Minimization Problem
With Integrals on the Entire Space

Orlando Lopes

— Dedicated to the memory of Antonio Gilioli (1945-1989)

Abstract. In this paper we consider the question of minimizing functionals defined
by improper integrals. Our approach is alternative to the method of concentration-
compactness and it does not require the verification of strict subaddivity.

I. Introduction
In this paper we study the problem of minimizing

Vi) = % AN |grad u(z)|?dz + AN F(u(z))dz

subject to
I(u) = AN Glulz)ydz =L #40,

This minimization problem is considered in the space H1(RY); under
certain growth assumptions V'(u) and I(u) are well defined smooth func-
tionals on H(RM).

This problem has been studied by many authors in connection with
the existence of solution of a semilinear elliptic equation (or system)
and/or the existence and stability of special solutions of some evolution
equation. References [1] to [8] are a partial list of papers about this
topic.

As far as the convergence of minimizing sequences is concerned, our
approach is based on Theorem I which states, using the terminology
adopted in [3], that dichotomy never occurs in the problem above; so,
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all we have to worry about is to avoid vanishing minimizing sequences.

Our growth assumptions are much more restrictive than in (3], for
instance (because we assume two sided growth conditions on F'(u), G(u)
and their first and second derivatives), but we allow G(u) to change sign

and not to be even.

II. Statement of the Results

Let V(u) and I(u) be as above. For N > 2 we set [(N) = % and
denote by M = {u € H'(RY) : I(u) = A} the admissible set (which is
supposed to be non empty) and by f(u) and g(u) the derivatives of F'(u)
and G(u). We rewrite F(u) and G(u) in the form F(u) = mu? + Fi(u)
and G(u) = mou?® + G1(u) and we make the following assumptions:
H1. Fj(u) and G1(u) are C? functions with Fy(0) = G1(0) = 0 = F}(0) =
G'(0) and for some constant k and 2 < ¢ < p < I(N) we have

|y (W), |G@w)| < k(ul?2 + |ulP~2);

H2. V is bounded below on M and any minimizing sequence is bounded

in HY(RM);

H3. if u € HL(RY) and u # 0, then g(u(-)) Z 0.

Remarks.

1. If N = 1 we assume Fj(u) and Gp(u) are C? f_unctions satisfying

Fy(0) = F}(0) = F{'(0) = 0 = G1(0) = G1(0) = G7(0).

2. Assumption Hg is satisfied if g(u) # 0 for u # 0 and small.

3. for N = 3 we give two examples verifying0 assumption Ho:

i g

a) Gu) =v?> and limy 4o F_(u)/|u|3 =0, where F_(u) is the
negative part of F(u); this type of growth condition has also ap-
peared in [3], part II, page 240; the fact that Hy is satisfied is a con-

; : : s

sequence of the interpolation inequality |u|z, < Clgrad ulfs|ulr,*
with a = % — %. Since we need ap < 2 we should ask for p < % but
the fact the limit above is zero is sufficient for

/ |grad w(z)|?dz to dominate/ F(u(z))dx.
R3 R3
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b) G(u) =3 +u5 and F(u) = u? + 4.
Under assumptions H1, H2 and H3 our results are the following:

Theorem L. If u, is a minimizing sequence and u, converges weakly in
HYRY) to u # 0, then u, converges to u strongly in L,(RN), 2 < r <
£(N) (for N =1 this interval becomes 2 < r < o).

In order to analyze the precompactness of minimizing sequences we
have to consider several cases.

First case. mg > 0 and A > 0. In this case the constraint gives
9 1 A
dc=—-——[ G dr + —
ANU (z)dz moAN 1(u(x))dz + o
and so, replacing this expression in V(u) we get
1 2 A
V)= AN |erad u(z)|2dz + AN F(u(z))dz + "T:L—O
where F(u) = Fy(u)— mﬂOGl(u). If we drop the constant ’TZ—S and we keep
the notation F(u) for F(u) we get V(u) of the same form and m = 0.
Theorem II. Assume mg > 0, A > 0 and m = 0. Then inf V(u) < 0;
moreover, any minimizing sequence is precompact in H(RN ) modulo
translation in the x variable if and only if inf V(u) < 0; in this case, the

Lagrange multiplier is different from zero.

Second case. mg > 0 and A < 0. Arguing as in the previous case, we
may assume m = 0.

Theorem III. Assume N > 2, mg >0, A <0 and m = 0. Then modulo

translation in the x variable any minimizing sequence is precompact in
HY(RM).

Remark. For the case N = 1 see the remark following the proof of
Theorem IV.
Third case. mg = 0 and m > 0.

Theorem IV. Assume mg = 0 and m > 0. Then modulo translation in
the = variable any minimizing sequence is precompact in H'(RN ).

Remark. In the case mp = 0, the condition m > 0 is necessary for
the existence of a minimizer. If m = 0 (the zero mass case) the proof
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of theorem V shows that, modulo translation in the x variable, any
bounded minimizing sequence is precompact with respect to the norm
|grad u| 2 + |u|rr, for some 7, 2 < r < £(N); however, since the Ly norm
of u is absent in V' (u) and I(u), we cannot expect to have boundedness
of a minimizing sequence in the H 1 (R™) norm. This means that we have
to change the space where we want to solve our minimization problem
in the case m = mg = 0 as in [4] for instance.

Before passing to the proof of theorems I to IV, we state a few
propositions which will be very useful.

The following statement known as Lieb’s lemma [10] will play a

crucial role in the proof.

Lemma 1. Let u, be a bounded sequence in Hl(RN) satisfying the
following condition: there are € > 0, 6§ > 0 and ng such that meas
({z : |un(z)| = 6}) > € for n > ng. Then there is a sequence d, € RN
such that if we let vp(x) = up(z + dp) then vp; — v Z 0 in HIRN), for
some subsequence vp;.

We need also the following version of Lieb’s lemma.

Lemma 2. Let u, be a bounded sequence in HL(RN) satisfying the fol-
lowing condition: there are € > 0, § > 0 and ng and a sequence R,
converging to +0o such that meas ({zx : |z| > Ry, |un(z)| > 6}) > € for
n > ng. Then there is a sequence d, € RN with |d,| — +00 such that
if we let vp(x) = up(x + dp) then vp; — v Z 0 0 HYRN), for some
subsequence vp;. :

The growth assumption H1 implies that the functionals V, I :
HIRY) — R are of class C? with first and second derivatives uni-
formly bounded on bounded sets and uniformly continuous on bounded
sets.

Now if u(t,x) is a C? curve satisfying

| yGutt,) =2

then
LNg(u(t, Bt )de =0
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and
ANg’(u(t, )62 (t, z)ds + ANg(u(t, x))u(t, x)dz = 0.

So, if u(0,z) = u(z), the admissible h and & are those satisfying

ANg(u)hd:v =0 and JéNg’(u)thm + ANg(u)ﬁda: =10,

We need the converse (with some uniformity) for the whole sequence
Ui

Lelmma 3. Let u, be a minimizing sequence converging weakly in
HYRM) tou # 0 and h,, and h,, be bounded sequences in HYRN)
satisfying

[ 9tun(@hi @)z =0
and
AN [gl(un(ﬂﬂ))h;?(x) + g(un(x))h,, (x)]dz = 0.

Then there is a §y > 0 such that for n large there is a sequence
of C? functions h,, : (=60, 60) — HYRNM) satisfying: 1) w, + hy(t)
is admissible; ii) hn(0) = 0; h;(0) = h;, ho(0) = hyy i) Ag(t) —
hn(0), hy,(t) = h;,(0), h;,(t)—h;(0) go to zero as t goes to zero, uniformly
on n.

Proof. From assumption H3 we know g(u(z)) # 0. If Y(z) is a, say,
smooth function with compact support such that kN g(u(@))(x)dz # 0,
we see that lemma 4 is a consequence of the application of the implicit

function theorem to the function

.
Hy(o, t) = Lv Glun + 0+ thy + Shi)de A
at (0, 0) provided we define hy, () = up, + o(£)) + th,, + %h;‘b.

Lemma 4. Let u, be a minimizing sequence converging weakly in
HYRN) to u#0. Then

1) [V'(up)| = 0 as n — +o00, the norm of derivative being calculated
on the admissible elements;
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2) if for some &g > 0, hy : (—00,60) — HYRN) is a sequence of 2
admissible curves such that hyp(0) = un, hn(0) and h(0) are uni-
formly bounded (the dots mean derivative) and hy(t) — hn(0), B () —
b (0), b () — h »(0), go to zero as t — 0, uniformly on n, then

lim inf ——25V t))|¢=0 > 0.
Lemma 4 has been used in [11] and it has a sort of “calculus” proof.
We show the part concerning |V’ (uy)| — 0 because the other is similar.

Proof of part 1 of lemma 3. By contradiction, if it was false then,
passing to a subsequence if necessary, there would exist hn, and n > 0
with Ihn| H1®N) = 1, h,, admissible for u,, such that V’(un)hn < —n. We
define h,, = c,? where 1 is a smooth function with compact support

satisfying

| @)@z #0

and ¢, is chosen in such way that the compatibility condition for hy, in
the previous lemma is satisfied. Let h, : (—6g,60) — H LRN) be the
curve whose existence is guaranteed by that lemma. Then

. t
V(tn + hn(®)) = V(un) = /0 V' (tp + () (8)d8 = £V () im+
<5 /Ot(V'(un + hu(8)) — V' (un))hn(s)ds+

+ /O t V'(un)(hn-(s) _eh)ds.

Let tg > 0 be a fixed (independent of n) number such that for ¢t = ¢y the
absolute value of the last two integrals are less than %Q; then we would
have

V (n + hnlto)) — Vun) < =22,

a contradiction, and so part 1 of lemma 4 is proved.
Let u be a generic admissible element in H LRN). In order to com-

pute |V’ (u)| we have to maximize

V'wep = AN ( grad u, grad @)dzx + ANf(u)cpd:I:
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subject to

ANg(u)zpdx =0 and AN(Igrad o + ©?)dz = 1.

If P is the place where the maximum is achieved, there are numbers o
and ~ such that

AN« grad u, grad o) + f(u)p + ag(u)p+

+7v(grad @, grad @) + 7@p)dz = 0, Vo € HL(RN).
In particular

(1)

—Au+79) + f(u) + ag(u) + % = 0. (2)
If we set ¢ = % in (1) we get V'(u)p = —v and this shows that
[V'(w)| = —7.
Moreover, if h(0) = 0 and A and A are admissible, we have

2
- AN(lgrad A2+ (f/(u) + ag'<u>>h2 — {grad , grad h) — 1) da.

Proof of theorem I. We give the proof for N > 2. The case N = 1
requires minor modifications.

Let u, be a minimizing sequence, u, — u in HY(RN), u # 0. From
lemma 3 and equations (1) and (2) we know that there are sequences
Ony Y, @y, With |¢n|H1(RN) = 1 such that

4 v ((gradun, grad ©) + f(un) + ang(un)p + 1 (grad @,,, grad o)+

+YnPpp)dz =0 for anyp € HL(RN )
and

—A(Un + 1Pp) + f(un) + ang(un) + MnPp =0 (2))
Step 1. a; is bounded. In fact, we know that 7, — 0. Suppose that
for some subsequence, for which we keep the same notation, we have

|an| — o0o. If we divide (1') by a, and let n — +oo keeping ¢ fixed, we
get

[ yotu@)e@idz =0
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for any ¢ in H'(RN) and this contradicts the assumption H3 and this
proves step 1.
Passing to a subsequence if necessary we can assume that a,, — a.

Step 2. For any ¢ > 0 and 6 > 0 there are R and mg such that
meas {z : |z| > R, |un(z)| > 6} < e for n > ng.

If not, there are ¢ > 0 and 6 > 0 and a sequence R,, — —+oco such that
meas {z : || > Ry, |un(x)| > 6} > € for infinitely many n. By lemma
2 and passing to a subsequence if necessary, we know that there is a
sequence d, € RY, |d,| — +oo, such that v,(z) = up(z + dn) — v £ 0
and so, from (1'), we conclude that u and v satisfy

— Au+ f(u) + ag(u) =0
— Av + f(v) + ag(v) =0
Due to the growth assumptions on f and g, v and v are continuous

and tend to zero at infinity.

Since not all derivatives % are identically zero, if we let
7

p=f'0)+ag'0), p(z) = f'(u(z)) + ag'(u(z)) — u,
we see that the equation
—Aw + (p(x) + p)w =0

has % as a nontrivial solution. ;
1

Before continuing, we show that g > 0; in fact, let ¥ a smooth
function with compact support such that

[ stu@)vi@dz £ 0

and let A be any function in H!(R") such that
| stutahiz)da = o

we define hy, = h + ent and we choose €, such that

[ tun@n(e)dz =0
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and h,, admissible as in the proof of lemma 4. Using that lemma, equa-
tion (3), we conclude that

d? . :
GVt h®)mo = [ | llerad @) + (()(@) + g (u@)iPlda > o

for any h such that
4}\7 g(u(zx))h(z)dz = 0.
As a consequence the spectrum of the linear operator
Lh = —Ah + (f'(u(z)) + ag'(u(x))h

cannot have two distinct points 1, p2 in the negative half-line because,
otherwise, there would be two sequences ¢n , ¥n , |¢nlL, =1, |¥n|L, =
1, such that v, = Ly, — p1vn and w, = L, — ust, tend to zero
in Ly(RY), and choosing a,, and b, in such way that a2 + b2 = 1 and
kn = anpn+bpy, is admissible, we would have (Lk,, k,) < 0 for n large,
and this is a contradiction. Noticing that p(z) — 0 as |z| — 400, we
conclude from theorem 5.7 page 304 in [12] that the half line [u, +-00] is
contained in the spectrum of L; since we have showed that the spectrum
of L cannot have two distinct points on the half-line (—oo,0) we must
have p > 0.
Next we claim that there are ¢); and ($; > p such that

4N¢%d$ =1 and — Ay + (p(x)+B1)Y1 =0.

Similarly, there are ¥9 and B2 > p such that

[y¥de=1 and - gz +(q@) + Bz =0,
where
q(z) = f'(v(@)) + ag' (v(z)) — p.
The existence of ¥; and 19, of ¢ for instance, is obtained by mini-
mizing

W) = [ (eradb(@)? +po)s@)de under [ yA@pdo =1,
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In order to see that this minimum is attained we have to notice that

ou o\ 2
w(2) = f (2) aa o
(azl) Jen \Bzr) =
and then W assumes negative values because, otherwise, W (1) would
have a minimum at both 597”1 and ‘59—;‘1' and this is a contradiction (by
the unique continuation principle). So, the infimum ¢ of W (%) on the

admissible set is strictly negative. Let (¢,,) be a minimizing sequence
converging weakly in H1(RN) to v. Since

/Np(a:)wg(x) converges to /Np(x)i/zz(m)dx
R R

(because p(x) is continuous, tends to zero at infinite and ¢, — ¥
strongly in LZQOC(R”)) we see that W (y) < £ < 0. But if we had

JIRLORS

defining 7,~D = ¢, ¢ > 0, such that
~o B
/RNd) (@)ydm =1

we would have ¢ > 1 and W(sz) = W (¥) < ¢, a contradiction. So, we

ou

conclude that W has a minimum at v and the rest is trivial because B2y

changes sign. g

Notice that 1(z) and t9(x) are continuous and tend to zero as
|z| — +o00; in particular, ¥1(z) ¥o(x — dy,) tends to zero in Ls(RN) as n
tends to +oo, for 1 < s < oo.

Next define hn(z) = a1,,Y1(T) + ag n¥Y2(x — dp) imposing that ain +
a%n =1 and

4Ng(un(x))hn(w)dx = 0;

notice that ‘
AN h2 (x)dx — 1

because f,n91(y)Y2(y — dn)dy — 0.
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For h;, we make the choice h;; = cn® where 1 is as in lemma 3 and
Cn is chosen to satisfy

L o18 n(@)h2(@) + caglum(@)ib(a)lda= o

Let hn(t), [t| < &0, be the sequence whose existence is guaranteed
by lemma 3; then
L o
2" wn+ hn@li=o = [ (rad hl? + (£ (un(a))+

+og (@A @)z~ v [ (grad B, grad ) + B, )

This last term tends to zero and the first is equal to

Lo (@ alerad b1@P + 201 2 grad 1 (2),grac st — s
+03 . |grad Yo (e — dy)|?)dz-+
+ [ (@) + o (un())@2 ()¢

+201,n02,n Y1 (€)Y2( — dn)a3 03 (z — dy))da .

The mixed terms in (4) go to zero and the rest is equal to
2 ’
Ly B n8@) — 81 + F(un(a)) + o ()R @)

+ [y Bal=a(@) ~ Ba-+ F/(0a(2)) + o/ (on(@) W} (o)ds =
2

=l [ (B=B1+ F (&) -+ (un(@)) ~ (u(x))— g ()02 )

+03, [ (5= Bo F'(en (@) +ag' (0n(2) ~ f(0(a))—ag'(o(@)3 @)

We claim that the first integral tends to u — B; and the second
to 4 — Bo. Let us look, for instance, at the term LN (' (un(z)) —
f'(u(@))¢f(z)dz. Define h(u) = f'(u), hi(u) = h(u) for |u| < 1 and
zero otherwise, hg(u) = h(u) for lu| > 1 and zero otherwise. From
growth assumption, we have |hy(u)| < const. |u| and |hg(u)| < const.
lulP~1; if r is large, the term Jiajor (A1 (un () — hi (u(2)))9? (x)dz is small
by Holder’s inequality because h1(un) — hi(u) is bounded in Ly(RM)
and w% belongs to Ly(RY). On the other hand, for r fixed, the term
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f|$|<r(h1(un($)) — hl(u(m)))w%(a:)dm tends to zero because hi(un) —
hl(&) in Lll"c(]RN) and w% belongs to L.o(RN). This shows

[ a(un(a) = @@ @)z
tends to zero. The term
[ a(un(a)) = hatw(@)e)ds

is treated in a similar way. 3
We conclude that lim inf j—th(un + hn(t))i=0 < 0; this contradiction

with lemma 4 proves step 2.

Final Step. u, is precompact in Ly, 2 <7 < {(N).

Consider first the case N > 3. In this case up is bounded in
LZ(N)(]RN). For ¢ > 0 and 6 > 0 given, say § = ¢, let R and ng be
asinstep 2. fwelet A={z:|z| >R}, Ap={z € A: |un(z)| > 6} and
s = @ > 1, then for n > ng we have

1

/A 1 jup(z)|"dz < (meas(An))E17 (/An \un(x)\Z(N)> 5

and

/ lun(x)|"dz < 6T”2/ lun(x)|2da:
ASNA ASNA

n

and this proves the final step in the case N > 3. IfN =2we notice that
HI(R2) C L,(R?) for 2 < r < oo and the rest goes as in the case N =3

and theorem I is proved.

Proof of theorem II. We may assume mg = 1. Let v, be a sequence

of functions satisfying the following conditions:
JéNU%(m)dx =1 AN|grad vp(z)|?dz — 0 and |vp|L, — O

For instance, take v, to be radial and defined by Vo) =Epitor @5 F 5
n—1, vp(r) =0 for r > n and linear in the rest and choose &, properly.

Define uy, () = vp(Thx) Where

= 3 [ G
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with this definition we see that Up, is admissible and V(up) — 0 be-
cause 7, — 1 and this shows that inf V(u) < 0 and that the condition

inf V(u) < 0 is necessary for precompactness of minimizing sequences
. . ) ¢
modulo translation in the z variable.

Next we show it is sufficient. Let un be a minimizing sequence and

Qn; @, Y, and ©,, as in the proof of step 1 in theorem IL; the first thing

to be noticed is that u,, satisfies the assumptions of lemma 1 because

if not, u, would converge to zero in L,RM), 2<r< ¢(N) and this
would imply liminf V (u,) > 0 and this is a contradiction. So, passing to
a subsequence if necessary and making a translation in the z variable,
we may assume that u, — u # 0 in H 1(RN ) and then, by theorem LI,
Un = uin L., 2 <r < ¢(N). Next we notice that V(u) < 0 because

Jéngrad u(z)|?dz < limianéngrad un (z)|2dz
and
ANF(un(:c))cm — ANF(u(x))d:c.
Moreover, since —Au+ f (u)+ag(u) = 0 we conclude that o > 0 because,
otherwise, Pohozaev’s identity would imply V(u) > 0. We make the
decomposition g(u) = 2u+g1(u). If we multiply both sides of the equality
—A(Uun+ 1P, —u) = f(u)—f(un)+a(9(u)—g(un))+(a‘anj§(un)—7n¢n
by (up —u+ 7,%,) and integrate we get
0< AN[grad(un(a:) — W) + WP (@) 2dz + 22 ,éN (w(x) — un(2))2de <
< [ @) = Fun) = u + )+
+ Yn(g1(u) = 91 (un))Bp, + (@ = ) g(un) (un — t + 1,3, )—
— Mn(Un —u+ VnPn)Ppldz .
Tzking in account the growth assumptions and that w, — u in
LrRY), 2 < r < 4(N), we can show that the right hand side of

this inequality tends to zero. Let us consider, for example, the term
LN (f(uw) — J(un))(un — u)dz; from the growth condition Hy we get

(£ ) = F ) wn = )] < Ry (ful"2 + fun 92 4 [u]P=2 o+ a2y — )2
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(N 2
since |u(z)|9~2 is bounded in Ly(RN), s = q(_-Z’ and |un(z) —u(z)|” tends

to zero in Lg (RN ¥
I(N)

we see that the integral
[ @1 un(a)  uia)Pdo

tends to zero. The other terms can be treated by similar arguments we
conclude that u, — v in H1(RY) and this proves theorem IL

Proof of theorem ITL. Let u,, be a minimizing sequence; such a sequence
satisfies the assumption of lemma 1 because, if not, u, would cc.>nverge
to zero in L,(RN), 2 <r < {(N), and the constraint would be violated.
Let an, @, 7» and P as in the proof of step 1 in theorem II. By theorex:
I and passing to a subsequence if necessary, we can assume on — ah_
0, up — u % 0in HY(RY) and up — win Ly, 2 < r< E(i\/').;fa > 0 the
argument given in Theorem II shows that up, — u in H'(R ).; hovzveﬂxs\f,
if o = 0 the same argument gives only that grad un.—> giadzjf] in L=( y )
and some extra work is needed to get convergenceQm HRY). 1:11. otr er
to get that all we have to show is IuI%2 = lim [un|7,. By c.ontra ic 101;j
suppose lu]%2 < lim Iunl%2 (we can pass to a subsequence if necessary);
then fnG(u(z))dr < A <0. Suppose first N > 3. ) ey
Defining oV = A/ fnG(u(z))dz, and v(z) = u(y) we see tha
o < 1, v is admissible and then V(u) < V(v), that is,

%41\] |grad u(SL‘)|2 o AN F(u(z))dr <

N-2
< A |grad u(x)|2dx + o AN F(u(z))dz
2 kN

Moreover, since —Au = — f(u), we have

_‘N_;E AN |grad u(:z:)lzdx =—-N AN F(u(z))dz

A CONSTRAINED MINIMIZATION PROBLEM 91

and then

1 2-N §
= e <
<2+ Vi ) gN]gradu(a:)] dx <

oM 2-N) y 2
<T + N ° ) AN |grad u(z)|“dz .

This implies grad u(z) = 0 which is a contradiction. If N = 2 we have

ANF(u(m))dm =0

and this shows V(u) = V(v), hence V has a minimum at v and then
—Av + f(v) = Bg(v). Using Pohozaev’s identity again we get 8 = 0 and
then —U—lgAu + f(u) = 0; this implies Au = 0 and this is contradiction.
So theorem IV is proved.

Remark. If @ = 0 and N = 1 the argument above fails. So, in the case
N =1, we are able to prove theorem IV provided a > 0. This condition
is verified if either the only solution of —u,, + f(u) =0, u e HY(R), is
u =0 or V assumes negative values on the admissible set.

Proof of theorem IV. Let u,, be a minimizing sequence. As before, u,,
satisfies the assumptions of lemma 1 and then, passing to a subsequence
and making translation in the z variable, We can assume Uy — U Z 0
in HY(RN ). From theorem IT we conclude u satisfies the constraint and
this together with the inequality V(u) < liminf V(up) gives u, — u in
HY(RN ) and theorem V is proved.
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