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Heteroclinic Attractors: Time Averages and
Moduli of Topological Conjugacy
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Abstract. In this paper we consider attracting heteroclinic cycles. We recall that
these cycles usually have no S.B.R. measure. This is related with the fact that certain
time averages do not converge. We obtain a topological interpretation of the asymp-
totic properties of these non-converging time averages. In terms of these asymptotic
properties we obtain a complete set of moduli for the attracting heteroclinic cycles.

1. Introduction

In this paper we consider heteroclinic ‘attractors’ (they differ from usual
attractors in the sense that they are only attracting from one side) as
in an example by Bowen of a smooth (at least C3) vectorfield in the
plane with two saddle points and two saddle connections as indicated
in figure 1. The eigenvalues of the linearized vector fields at the sad-
dle points are supposed to be so that the cycle, consisting of the two
saddle connections, is attracting from the inside. The special property
of the example is that for no orbit, converging to this cycle, there is a
corresponding ‘physical measure’.

We say that p is the physical measure corresponding to an orbit x(t)
of a flow in a space X if, for each continuous function ¢g: X — R, the
phase average [, gdu equals the time average lim; o, 1/ fg g(z(s))ds. In
other words, the physical measure of an orbit describes the probability
of finding a point of the orbit z(t), for big values of ¢, in the different
regions of the phase space X; see also [R,1989]. This notion of a phys-
ical measure is closely related to the notion of an S.B.R. measure, see
[S,1970]. In particular in this example the loop of saddle connections is
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an ‘attracting’ set without such S.B.R. measure.

Figure 1: Phase portrait of the example by Bowen.

In the example by Bowen, if z(¢) is an integral curve, converging to
the cycle, and if g is a continuous function on the plane, taking different
values in the saddle points A and B, the time average

t

lim [ g(z(s))ds
t—oo J(

does not exist. This means that in this example there is an open set of
initial states (the basin of attraction of the cycle) such that the corre-
sponding orbits define non-stationary time series (whenever one uses an
observable which has different values in the two saddle points).

I attribute this example to Bowen: although he never published
it, I learned this example through a paper by Ruelle who referred to
Bowen (we have no reference: even Ruelle could not localize that paper).
The example is ungeneric in the sense that it is not persistent under
perturbations (which can break the saddle connections). In the mean
time these homoclinic cycles were also discovered independently by other
mathematicians in situations where they are persistent. In the context of
population biology, were one uses dynamical systems on a simplex, they
were studied by Gaunersdorfer [G,1992], who proved non-convergence
of time averages (as was pointed out to me by M. Krupa). Also in the
context of symmetric vector fields the homoclinic cycles can occur in a
persistent way, and were analyzed e.g. in [GH,1988|.

In [G,1992] there are relations between the limsup and the liminf of
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the partial time averages

t

a(t) = 1/t / g(x(s))ds

0

and the eigenvalues of the linearized flows at the saddle points. These
results can in fact be formulated in terms of the moduli of topological
conjugacy as introduced in [P,1978].

In this paper we extend the relations between the asymptotic be-
haviour of the partial time averages and the moduli of topological con-
jugacy. We construct a new modulus, the value of which can be deter-
mined from the asymptotic behaviour of the partial time averages (and
hence is in invariant under topological conjugacy) and which, together
with the moduli defined before (and whose values can also be determined
from the asymptotic behaviour of the partial time averages), determine
the heteroclinic attractor and its basin of attraction up to topological
conjugacy. Our results admit straightforward generalizations to hetero-
clinic cycles with more than 2 saddles in dimension 2.

The non-existence of physical measures is against physical intuition.
This intuition is supported by the ergodic theorem [B,1931] which im-
plies that for dynamical systems preserving a probability measure, al-
most every (in the sense of that measure) orbit defines a physical mea-
sure. See also the survey on time averages by Sigmund [S,1992]. The
example of Bowen, described above, has an open set of orbits which do
not define physical measures, but the example itself is exceptional: it
has two saddle connection which can be perturbed away. As we ob-
served before, for dynamical systems with symmetry and for dynamical
systems on a simplex, heteroclinic attractors occur in a persistent way.
It is however an interesting and probably difficult question to deter-
mine whether there are such persistent examples for general dynamical
systems (smooth vectorfields or maps on R").

2. Statement of the main results
We denote, for the example of Bowen given in figure 1, the expanding
and contracting eigenvalues of the linearized vector field in A by a4 and
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—a- and in B by B4 and —(3_ — we recall that the saddle points are
denoted by A and B. The condition on the eigenvalues which makes the
cycle attracting is that the contracting eigenvalues dominate: a_(3_ >
ot By

The modulus associated with the upper, respectively lower, saddle
connection is denoted by A, respectively 0. They are defined by

A=a_/fs and o = B_ /o,

their values are positive and their product is bigger than 1, assuming
the cycle to be attracting.

We first restate the result of Gaunersdorfer, for our present case of
a two saddle cycle, in terms of the moduli of topological conjugacy:

Theorem 1. (See also [G,1992]). If g is a continuous function on R2
with g(A) > g(B), and z(t) an orbit converging to the cycle, then we
have for the partial time averages g(t):

o 1
i g = A+ —¢q(B
limsup g 1Jro_g( )+1+09( )
1
iminf§ = ——¢q(B) + —— .
lim inf g 1+)\g( )+1+)\g(A)

In order to formulate our main results we need to introduce some
more notation. We continue to use g for the partial time averages of
g(z(t)) as defined in the introduction. For big values of ¢, z(t) is during
most of the time near A or near B. To formalize this, let U4 and Ug be
small neighbourhoods of A and B such that the function g is on these
neighbourhoods bigger than the above limsup, respectively smaller than
the above liminf (still assuming that g(A) > g(B)). Then for values of
t for which z(t) is in Uy, g is increasing, while for values of ¢ for which
z(t) is in Up, g is decreasing. The intervals for which z(¢) is in Uy
or Up are increasing in length unboundedly, the transition intervals,
in which z(t) is going from Ui to Up, or vice versa, are uniformly
bounded in length. Now we take sections T, and %, as indicated in
figure 1 intersecting the upper, respectively lower, saddle connection
transversally. The successive times at which our orbit z(¢) intersects
these sections are denoted by t; < tg, etc., so that z(t]) € =y, z(t) €
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Xs, etc. By taking the sections smaller, one may miss the first few
intersections and get a sequence #; = ti+2x for some integer k. Also,
since we are only interested in the asymptotic behaviour of {t;} for
© — 00, we can allow the numbering i to start at a valtue different from

1.
Theorem 2. In the above situation the following limits exist:
t g o .
i P21 ~ %2 _
t2i — 21

lhn;ﬁiz__;ﬁil::aA/5+::A.
1241 — to

B-jay =0

This implies that
toj10 — 121
lim S2+2 — tat Ao
to; —t2;_2

Also the limit

limig; o —to; — Ao(tg; — to;_2)
exists, and is a new invariant of topological conjugacy (or modulus)
which we denote by v.

Our final result is that the three moduli, mentioned up to now, are
complete.

Theorem 3. If we have two vector fields X and X' on the plane R?, both
with a cycle as in the Bowen example, then there is a conjugacy of the
closure of the domain of attraction of one of the closure of the domain
of attraction of the other if and only if for X and X' the three moduli
(here denoted by A\, o, and v) are equal.

3. Proof of the theorems

3.1 Linearizations

It is known that, for saddle points of C3 vector fields in R2, one can
construct linearizing coordinates which are C1t¢, where ¢ is a positive
number, depending on the eigenvalues of the linear part of the vector
field at the saddle point. Without loss of generality we assume in what

follows that ¢ < 1. This was proved by Hartman [H,1960], even for
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vector fields which are C! and whose first derivative is Lipschits. In the
present case we not only need these linearizing coordinates, but we also
need a certain freedom in constructing them. For this reason we rather
refer to [PT,1993], where a more geometric construction is given from
which it is clear what freedom one has in the choice of these linearizing
coordinates, but where we need the vectorfield to be C3. Below we

describe these results in the form which we need here.

y

/—\_Ey

(Eu

) T

Figure 2: Linearizing coordinates near a saddle point in the plane.

We consider a C3 vectorfield Z on the plane, which has a saddle point
in the origin with contracting, respectively expanding, eigenvalue —~_,
respectively v4; see figure 2. Then there are C' I+ coordinates Z and 7,
defined in a neighbourhood of the origin, such that in these coordinates,
the flow of Z has the form Z;(Z,7y) = (T exp(v4t), Jexp(—vy-t)). These
coordinates are not unique. In fact, if one takes a (small) section %,
transverse to the stable separatrix of the saddle, and a (small) section
Y., transverse to the unstable separatrix of the saddle (see figure 2),
one can take these linearizing coordinates in such a way that § and &
on X, respectively ¥;, equal one. With this requirement the linearizing
coordinates are even uniquely determined in the quadrant where they
are both positive.

Changing the section %, to Z;(2,) (where Z; denotes the flow of Z),
corresponds to multiplication of § with a factor exp(y_t); changing ¥,
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to Zy(X3), corresponds to multiplication of # with a factor exp(—74t).

2, ds,/ds,=1
V..

dr/dRy=a
Figure 3: Domains /4 and V3 of the linearizing coordinates.

Now we apply this to the example of Bowen; see also figure 3. We
take sections ¥, and ¥, transverse to the upper saddle connection c,
respectively the lower saddle connection ¢, as in the previous section.
Then we take linearizing coordinates \ 4 and G4 in a neighbourhood V4
of A such that A4 and 04, restricted to X, respectively X, are equal
to one. In the same way one constructs linearizing coordinates, denoted
by Ap and 0B, in a neighbourhood Vg of B which are, restricted to X,
respectively ¥, equal to one.

On these sections £4 and g we have, apart from the linearizing
functions which are equal to one, restrictions of linearizing functions
which can be used as a coordinates (and which are zero in the inter-
section of the section with the saddle connection). On each of these
sections we have two of these coordinate functions: one defined on Va
and one defined on V. In general these two functions are not equal on
the section — this complicates the proofs and is related with the modulus
v. In general one can even not take the sections & » and ¥, so that the
two coordinate functions on both sections coincide. The best we can do
is to make on one of the sections, say on ¥ the first derivatives of the
two coordinate functions equal in the point of intersection with the sad-
dle connection cy. This can be done by replacing ¥, by X;(%,), for an
appropriate value of ¢. In fact, doing so has the effect that & A is multi-
plied by a factor exp(a_t) and 65 by a factor exp(—f+t). From this one
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easily sees that by moving the section %, one can make the derivatives
of the two coordinate functions on the other section ¥, equal in the
point of intersection with the saddle connection. One cannot improve
things by also moving the section Xy, because if we apply X; to both
sections then essentially nothing changes: the coordinate functions will
then just be composed with X_;. The ratio of the derivatives of the two
coordinate functions on X in the intersection with c) is related with
the modulus v.

Y S

) g=8Lg-/N

2y

Ty

Figure 4: Transition map of a saddle point of a linear vector field.

3.2 Proof of the first part of theorem 2 and of theorem 1
We start with the first two limits in theorem 2. For this we recall some
facts concerning linear vector fields on the plane.

Let Z be a linear vector field on the plane, given by Z = vy,.8/0z —
v-0/0y, with both v4+ and v_ positive. The sections {z = 1} and
{y = 1} are denoted by ¥, and Z; see figure 4. For a point (s, 1) in 2,
with s > 0, the integration time ¢, needed to reach the other section %,
is given by

Ins

s, e,
T+

The point of intersection of the orbit through (s,1) with %, is given by

(1,8 = s7) where v = v_/v+.

We apply the above considerations to our example, using again the
notation as shown in figure 3. We consider an orbit which first passes
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through Vg and then through Vjy.

First in Vp, using the linearizing coordinates \g and 0B, we take the
orbit entering at 65 = s. This orbit will stay during time —(1/B4)Ins
in Vp and will exit at A\g = s% (as above with v we use 3= _/B4 and
a=a_/ag).

Then it enters in V4 at Ag = f(s°) = a- 55 + O(s8(149)) — ¢ where
[ is the function which describes the transition from the B-linearizing
coordinate to the A-linearizing coordinate. The derivative of this func-
tion in 0 is denoted by a, and this function has the same differentiability
as the linearizing coordinates, namely C1t¢. The orbit will now stay in
V4 during a time —(1/a4)Ins’ = —(1/a4)(Ina + Blns + O(s7%)). Now
we easily see that the quotient of these successive times (more precisely:
the time spent in V4 divided by the time spent in VB) approaches, as s
tends to zero, the value (86+)/a+ = B_/ay = 0.

This proves the first limit in theorem 2. The second can be derived
in the same way.

For later reference we notice that the above arguments give even the
slightly stronger result that

Jim (i1 — t2 — o (b2 — t2i4)) = —(1/a4) Ina,
and
Jim (ti+2 — 241 — Alt2ir1 — t2s)) = 0.

Next we give the proof of theorem 1. We only derive the limsup —
the formula for the liminf can be obtained in the same way. We divide
the orbit z(t) in ‘periods’, each starting in ¥ (note that the different
periods are not equally long). During these periods, the ratio between
the time spent in V4 and Vg, approaches o: 1. Since, for increasing t the
orbit spends an increasing part of the time it is in Vg in a very small
neighbourhood of B (and the same for Vy), the partial time averages,

at the end of the periods, will approach the weighted average of g(A)
and g(B):

o 1
1450t gfe)

Since the partial time averages are increasing as long as the orbit is
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Va and is decreasing as long as the orbit is in Vg (except if it is in
the transition fase), the above value must be the limsup as stated in
theorem 1. This completes the proof of the first theorem.

3.3 Proof of the second part of theorem 2

In this proof we prefer to divide the orbit z(¢) in periods, which begin
and end each time the orbit is passing ¥, — so the periods are separated
by the t values t9;. First we consider two successive periods. We assume
that the first period starts when the orbit enters V4 at a point where
the A4 coordinate has the value s. By the same type of arguments as
used in the previous subsection one derives that the total time of this
cycle is

—(1/a+ + Oé/,@+) Ins+ O(sae)

and that the total time of the next cycle is
—(1/at + a/B4)(aBIn s + Ina) + O(s*),

where a, as before denotes the derivative of A4 with respect to Ag at
the intersection of ¥, with the separatrix ¢, and where the linearizing
coordinates are C1te.

This means that

t2i+2 —t2; — af(t; —t2i_2) = —(1/at + a/Byylna + R,

where R; = O(s%%), s; being the A4 coordinate of z(t;_2). Since s;41 =
a - sz-o‘ﬁ (1+O(s*?)), R; is converging to zero. Since af3 = Ay this proves
the second part of theorem 2. For the third modulus we have

v=—(1/ay +a/B+)na.

In the next subsection we show that v is an invariant under topological
conjugacy.

For later reference we note two things. First, that R; converges
so fast to zero that the infinite sum 37, 4| R;| converges. Second, that
—(1/a4)Ina can be expressed in terms of the moduli: —(1/a4)lna =
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(1/e)(t/at +a/8+) v = 1+ (@ay)/B1) v = @+ N)~tw.

3.4 The proof of theorem 3

It is known that A and o as defined before are invariants under topo-
logical conjugation, see [P,1978]. In order to show that also v is a
topological invariant we proceed as follows. Let z(t) be an orbit as be-
fore which is mapped by a topological conjugacy to an orbit z’ (t). For
both orbits we can construct the sequences {¢;} and {t.} as before —
since topological conjugacies do not need to respect the sections, these
sequences need not coincide but one can make them — by changing the
indices 4 to 7 + 2k, for some k, in one of the sequences — so that the
differences ¢; — t; are uniformly bounded. Theorem 2 then implies that
also the values of v and v/ are equal for both vector fields. Hence v is
invariant under topological conjugacy.

Next we prove that the three moduli are complete. For a given vector
field X on the plane as in the Bowen example, we construct another such
vector field X’ such that the three moduli are the same, and such that
for the second vector field X’ we have linearizing coordinates such that
(denoting corresponding objects for X’ by the same symbols as we used
for X, but now with a prime) 5\:4 and 5\}3, restricted to XY are equal
and such that ¢/4, restricted to X/, is equal to a’ times 65 We have to
show that, in these two cases the vector field, restricted to the domains
of attraction of the cycles, are topologically conjugated.

We first observe that for X', due to the special requirements, a
stronger versions of theorem 2 holds: For any orbit x’(t) converging to
the cycle and {t;} as defined before, we have

toite — toiy1 — A(taiq1 — t3;) = 0,
Bi+1 — thi = Oty — th; 1) = —(1/a ) lna’ = 1+ )71y
and hence
toire — t; — Ao(ty; — ;o) = v.
This means that for the lengths of the successive periods T} = to; 10—t

we have T}, | = afT] + v. For any sequence {t,}, satisfying the above
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formulas there is exactly one corresponding orbit of X’ and the sequence
also determines the initial point z’ (0) of the orbit.

Now we consider an orbit z(t) of X and the corresponding sequence
{t:}. From the above observations it follows that ‘a conjugacy should
map z(t) to an X' orbit 2'(t) such that the sequences {t:} and {#} of
these orbits can be taken so that ti — t; is uniformly bounded. However
we need more: since (to;) converges, for 4 going to infinity, to %, N Cy,
also z'(tg;) should converge to a point of ¢, — this means that ¢; — t;
should converge to a constant. In fact we shall construct the sequence
t; such that the above formulas are satisfied (and hence such that there
is a unique corresponding X" orbit x'(t)) and such that ¢; — t; converges
to zero. This means that the conjugacy from z(t) to z’(t) extends to a
conjugacy from ¢, to ¢, in such a way that ¥, Nc¢, is mapped to Bl Ne..
We mentioned in the proof of theorem 2 that t2i+1 — to; — o(to; — to;_1)
converges to —(1/o4)Ina = (1+X)~ 1y = —(1/a/;)Ina’. This means that
the conjugacy from z(t) to z’ (t) also extends continuously to a conjugacy
from cy to ¢}, mapping =, N cx to T\ Nc).

So to complete the construction of the conjugacy, restricted to the
orbit z(t) (and its closure), we only have to construct the sequence {t;}
satisfying lim;_, ., t; —t; =0 and satisfying

tl2i+2 — gy~ Ao(ty; —t; o) =,
and =
thita = toip1 — Althipr — thy).”

We first concentrate on the conditions involving t; and #. for even
values of ¢. We define T} = t2i+2 — tg; and recall that T, — AoT;_ 1 =
v+ R;, with 20| R;| converging to a finite value. For each i, we construct

. 1 ; ‘ .
a sequence TO(Z) ,Ti( ) P ,Ti(z) = T; such that Tj(z) - /\aTj(i)1 = v for
i=1,....4 Then Ty ™ — 1) = Ao)~+DR,, 1 g0 lim,. T =
*xists. We take this Tj as starting point of a sequence {T;} such that T;—
A\oT;_1 = v. Then we have lim(T} — T;} =0 and: |TF - T < 22 11l Rl
This implies that lim;_, Eﬁzo(Ti -T) converges to a finite value. This
neans that we can take t), so that T; = to;4 o —th, and lim(tg; — t9;) = 0.
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/

Finally we take t5; , ; so that ;o —thi11 = A(th; 11 —t5,). This concludes
the construction of the sequence {¢;}.

We obtain a topological conjugacy by applying the above construc-
tion to all orbits. It is easy to see that in this way we get a continuous
map h such that X;h = hX;. We only have to verify injectivity. This
follows from the fact that for two different orbits z(t) and Z(t) of X, the
asymptotic behaviour of the corresponding sequences {t;} and {#;} are
not the same. This last fact can be seen as follows.

Without loss of generality e may assume that tg = g = 0, so that
z(0), Z(0) € X,, and also that the A4 coordinates of both points are
sufficiently small. Then it follows that the ratio of the \ A coordinates
s; and 3;, of the intersections z(t9;) and Z(to;) of the orbits with Y
goes to zero or to infinity. On the other hand, as we have seen, the
values of to;19 — to; and t9;49 — fo; are asymptotically, up to a fixed
multiplicative and a fixed additive constant, equal to Ins;, respectively
Ins;. This implies that t; — ¢; cannot be uniformly bounded. This
completes the proof of theorem 3.
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