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Harmonic 1-Forms on the
Stable Foliation

Francois Ledrappier

Abstract. We study cohomology classes of Holder continuous closed leafwise 1-forms
on the stable foliation of an Anosov geodesic flow. Each class contains a harmonic 1-
form and is determined by its periods. Asymptotic quantities are computed in terms
of the Pressure function defined by the geodesic flow.

0. Introduction

Let (M,g) be a closed Riemannian manifold with negative sectional
curvature, let W* denote the stable foliation of the unit tangent bundle
SM, and consider the differential complex of sections of real p-forms on
TW which are smooth along the leaves of the foliation and such that all
jets are globally Hélder continuous. The cohomology is trivial except in
degree one where a closed 1-form « is exact if and only if

/a:ﬂ
p

for every closed curve  which remains in the same leaf.

In this paper are studied some properties of cohomology classes of
closed 1-forms. Our main result is that in each cohomology class there is
a unique harmonic 1-form. We also define an “asymptotic cycle” and an
“asymptotic energy” on cohomology classes, naturally associated with
the leafwise Laplacean. In fact these properties are related to asymptotic
properties of the leafwise heat kernel, which were established in [L3].
Using an idea in [LJ], we are able to express the above asymptotic
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quantities through the thermodynamical formalism of the geodesic flow.

I. Notations and results

1.1 Harmonic 1-forms

Let (M,g) be a closed Riemannian manifold with negative sectional
curvature, SM the unit tangent bundle endowed with some smooth
metric, W* the stable foliation on SM. To define W? recall that the
geodesic flow ¢ is defined on SM by

Prv = (Yo(t), Yu(t))

where t — 7,(t) is the geodesic in M defined by

(76(0), 42(0)) = v.

The stable leaf W3(v) is the set of w in SM such that there is a real
b(v, w) with
d(¢sv, ¢s+b(v,w)w) — 0 as § — +00.

The set W*(v) is a smoothly embedded manifold in SM and the function
w — b(v,w) is smooth on W*(v). The stable manifolds {W*(v),v €
SM?} form a Holder continuous foliation of SM. Furthermore all jets of
the function w — b(v,w) on W*(v) are also globally Holder continuous
on SM (see e.g. [An], [HPS]).

We consider in this paper stable forms, i.e. sections of the bundle of
exterior forms on T, W#(v). Denote ds the leafwise differential operator
on stable forms. The projection w — 7,(0) defines a local diffeomor-
phism between W$(v) and M. Use this diffeomorphism to lift the metric
g on M to a metric g; on each stable manifold W?*(v). Denote 05 the
codifferential operator on stable forms associated to gs. In particular
for a stable 1-form «, §,c is minus the gs-divergence of the vector field
of in TW* associated to a by the gs-duality. Denote Ay the Laplacean
Ag = —(bsds + dsbs) and a stable form « is called harmonic if Asa = 0.
When acting on 0-forms, A, is the leafwise Laplace-Beltrami operator
defined on leafwise smooth functions. By [G], [L2], there is a unique
A, harmonic probability measure p on SM, i.e. such that [ Asudy =0
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for all leafwise smooth continuous function u. Observe that uniqueness
implies in particular that the foliation W? is ergodic with respect to u
G].

Denote Cy the space of Holder continuous stable 1-forms a which
are closed, are of class C! along the leaves of the foliation W* and such
that ésc is Holder continuous on SM. Two forms a,a’ in C; are said
to be cohomologous if there is a Holder continuous function u on SM
such that u is C! along the leaves of W* and a — o/ = dsu. Denote H!
the quotient spa,ée of cohomology classes of closed 1-forms in C}.

Theorem 1. In each cohomology class [a] in H L there is a unique har-
monic form &. The assignement o — @ is linear and o([a]) = [ ||&|*dp
defines a positive definite quadratic form on H L.

1.2 Examples of stable 1-forms

If the form o in Cj is lifted from a closed 1-form on M, then by the
Hodge-de Rham theorem and the uniqueness in Theorem 1, the har-
monic 1-form @ is lifted from a harmonic 1-form on M and

o([a]) < energy a,

vol M

with equality only when a is harmonic.

Other elements in C are defined by the global geometry of leaves.
Define e.g. ag by ag = dsb. Let X, be the geodesic spray on SM,
i.e. the vector field generating the geodesic flow. Then af} = —X, and
§sag = divs X, is the mean curvature of the stable horosphere.

Let G(v, w) be the Green function associated to the Laplace-Beltrami
operator on the leaves. Define k(v, w) if the leaf is simply connected, by
(see [AS], [A1]):

. G(w, Oy p(v0)W)
B = B = )

set oy = dslogk if the leaf is simply connected and extend a; on the
whole SM by continuity. By [H, lemma 3.2.], o is Hoélder continuous
on SM and since §;a; is the function ||ag|%, a1 € Cy. Recall that for
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any closed stable 1-form

fésocd,u = f < @, >g A
and that
[ o ldis < o(io)

with equality if and only if (M, g) is asymptotically harmonic [L3].
Let now ¢ be any continuous function on SM, which is C? along
the leaves and with Holder continuous 2-jets. Set for w in W#(v)
s+b(v,w) 8
Ap(v,w) = lim o(Puv)du —/0 o(pyv)du .

S—00 0

Then «, = dsA, is the unique form in C; such that oy (Xy) = ¢(v).
The above construction applied to the function

Jw) = —% log | det D¢

t/TWS(v)|ls—g

yields another element of Cj, denoted ag, characterized by ag(Xy) =
JE)

The forms g, o7 and a9 respectively are closely associated with the
Bowen Margulis measure of maximal entropy for the geodesic flow on
S M. the invariant harmonic measure and the Liouville measure respec-
tively. Any two of these measures coincide if and only if the correspond-
ing 1-forms are cohomologous.

1.3 Periods and thermodynamic formalism

Theorem 2. Two forms in Cy,a and o, are cohomologous if and only
if [ (a—a) =0 for all closed curves vy in ws.

By theorem 2, a cohomology class in H 1 is completely described by
its periods, i.e. the values of f,raf when « runs through all periodic
orbits of the geodesic flow. Since these integrals are in fact given by

La = /:h) (X gyv)du

for some v in 7, thermodynamic formalism of the Holder continuous
function a(X,) applies verbatim to elements in H 1. For instance define
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the Pressure function on H' by

P([a)) = P(a) = lim v 3 e
{r=£(v)<T}

The pressure P is a convex function on H 1. real analytic on finite di-
mensional subspaces ([R]) and satisfies:

P(a + aop) = P(a) + a,
P(0) is the topological entropy of the geodesic flow, and
P(—ay) = P(—ap) =0 (see respectively [L1] and [BR]).

Theorem 3. There is a positive number { such that for all o in Cy

/630:(1!,:1. = E%P(—al + 50)[s=0 (1)
and if [ bsadp =0
¢ d?
a([a]) = 2 @P(—Oﬁl + 50)|s=0 (2)

From the above relation follows that ¢ = [dsapdp is the average
speed of escape to infinity of the Brownian notion on the universal cover
(ﬂ, §) of (M, g) (see [K]). Theorem 3 expresses that o defines a positive
definite quadratic form on the tangent plane at —ay to the set {P =0}

As will be explained below, Theorem 1 follows from [L3] and Theo-
rem 2 is a reformulation of Livsic Theorem [Li]. The main idea behind
the proof of Theorem 3 is an observation by Y. Le Jan [LJ] that the limit
behavior of a closed 1-form evaluated on the Brownian path is the same
as the limit behavior of the same closed 1-form evaluated on a nearby
geodesic path. The average behavior is given by the invariant harmonic
measure [L1], and since this measure is the equilibrium measure for —a;
formula (1) follows from general thermodynamic formalism. The vari-
ance for an equilibrium measure has been computed by Ruelle ([R], page
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99, see also [K-S]) and comparaison will yield formula (2) in theorem 3.

I1. The stable foliation

2.1 Description

Let M be the universal cover of M, OM the geometric boundary of M
and T the fundamental group of M. The group I' acts on M and on OM.
The quotient space M x OM T will be identified with the unit tangent
bundle of M or with Mp x OM where My is a fundamental domain
for the action of T on M. The identification of SM with My x oM
consists in lifting a unit vector v in SM in a unit vector @ in SMy and
in associating to ¥ the pair (z,£) where z is the footpoint of ¥ and & is
the point at infinity of the geodesic ray

{7:(t),t = 0}
defined by
(73(0), ¥5(0)) = ©.
There is a natural Riemannian metric on SM the Sasaki metric. There

are natural metrics on Mg x &M, defined by choosing a point g in My
and a conformal distance at infinity d,

d(i."’?) = €xrp — 5(5/“?)..10;

where (£/n)z, is the Gromov product, see e.g. [GH], and € > 0 is

sufficiently small. The above identification is Hélder continuous in both

directions with respect to these metrics, so that the property of being

Hélder continuous for some exponent is the same in all these metrics.
Define the stable leaf W*(%) of a point ¥ in SM by:

= w: there is a realb(v,w) such that
WE(v) = = - g
d(PsV, Pstp(5,0)W) — 0 -
Observe that through the above identification

Wo(z, &) = M x {¢}

The set Ws(ﬁ) is a lift of W#(v) and the metric g, the operators ds , ds
and A, lift to the natural metric § on M x {{} and to the operators
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d, 6 and A defined with (M x {€},3). In particular the leaf W*(v)
is isometric to W(ﬁ)/ Stab £. We have either Stab§ = {e} and then
W9(v) is isometric to M or Stab¢ ~ z. This happens if and only if
W*(v) = W*(w) where w belongs to a periodic orbit v and then W#(v) is
isometric to M /Z~, where Z, is one of the cyclic groups which represent
.

2.2 Proof of Theorem 1

Consider a a 1-form in C; and the function ¢ = sa— [ ésadp. The func-
tion 1 is Holder continuous on SM and has integral zero with respect
to the measure p. By [L3] corollary 1, there exists a Holder continuous
function U on SM,C? along the leaves of W*, unique up an additive
constant and such that AU = ¥. Set & = a + ds;U. The form & is
closed, cohomologous to a and satisfies

Ay = —dysa = —ds(Bsa — AU) =0

since §sa — AU is a constant function.

To prove that & is unique with these properties, take @' harmonic and
cohomogous to . Then there is a function U’ satisfying & — & = dsU’
and ds6.d;U' = 0. Observe that & and &' are smooth along the leaves of
W3 and that therefore the function A U’ = §,&' — és@& is smooth along
the leaves. Since the function AU’ satisfies ds(AsU’) = 0, the function
A U’ is constant along the leaves, i.e. constant pa.e. by ergodicity of
the foliation. The value of this constant is 0 since [ AU’'du = 0. Since
the function U’ satisfies AU’ = Op a.e., the function U’ is constant on
11, a.e. leaf. Finally since the function U’ is continuous and the foliation
W? is transitive, the function U’ is constant and &' = &. In particular
& = 0 if and only if « is exact.

By construction, the application a — & is linear from Cy to H'.
Moreover if o[a] vanishes, & = 0 and a is exact the quadratic form o is
positive definite on H -

2.3 Proof of theorem 2
By definition if two closed 1-forms o and o are cohomologous, then
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J,(@—a') = 0 for any closed curve 7 living in a single leaf, in particular,
for any periodic orbit.

Conversely assume that o is a stable form in C; such that f'r «a = 0 for
any periodic orbit 7. Then the Holder continuous function ¢ (v) = a(Xy)
is such that f(f ™) (psv)ds = 0 for all v belonging to a periodic orbit
of length £(7). By Livsic Theorem [Li] there exists a Holder continuous
U on SM such that U is smooth along the trajectories of the geodesic
flow and satisfies:

LxU(v) = a(Xy).

We claim that the function U is C! along the leaves and that d,U =
a (we follow [LMM lemma 2.2]): in order to differentiate U in the
direction of a vector field Y tangent to W#, choose first v in the stable
manifold of some periodic orbit of period 7. Then there are numbers

Tn.aTn-[-l —Th—rT

and some vg in the periodic orbit such that (¢7,v), converge towards
vg as n — oo, Then,

In
U(v) =Ul(vg) — lim_ A o Xgpg0)ds.

Let 1 be the flow associated with Y locally on W*(v) and fix sg
small. Then 1 v is another point of W#(v) and there are numbers

T;,T, 1 — T, — 7 such that (¢77vs,v)n converge towards the same

point vy and

Tn
Ubey) = Ulwo) = Jim [ a(Xpppsgo)ds

Finally, since « is a closed form with

/ " olpuo)ds = 0

Tn Th
Ueg) = Ue) = lim [ " a(Xgpu)ds = [ " a(Xgppagulds

$0
= /0 a(Yy,o)dt
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The formula extends by continuity to the whole SM, and shows that
dsU = a.

2.4 Higher degrees
Stable leaves have no other non trivial topology. The following propo-
sition is therefore natural.

Proposition . Let a be a closed stable p-form of class C! with Hélder
continuous 1-jets and p > 1. Then o is exact, there exists a stable (p—1)
form of class C13 such that dsf3 = a.

In fact, since the flow is Anosov, there are constants C' > 0 and A < 1
such that for all ¢ > 0 all vector Y in T,W* N X :

6. Y llgpw < CXNIY ]I,

Therefore
Igiall < CPAAP-DE||q||

for any stable form. Since p > 1, the following integral makes sense and
defines a stable (p— 1) form 3 of class C'! with Holder continuous 1 jets:

o=- [ ixtoiaat

Then -
b= —/U dylixdte)dt

:fo (ixdsdrc— Lxdio)dt

= —/ Lx¢ia dt since dgp;a =0
o ;

= .

III. Ergodic theory of the stable foliation and
proof of Theorem 3

3.1 Stable Brownian motion (this section is taken from [G], [L2], [L3]).
Consider the leafwise Laplace operator As. There is a leafwise Brown-
ian motion associated to it, i.e. a family of probability measures PP, on
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he space C(R4, SM) of continuous paths in SM such that with prob-
wility 1, w(0) = v and w(t) € W*(v) for all £ > 0 and such that for all
), (C(Ry, SM),P,) is a Markov process with generator A;. The proof
f the uniqueness of the A; harmonic measure also gives a description

of e
Lo ftn= [, ([ f004() dmotw)

vhere myg is the normalized Lebesgue measure on the fundamental do-
nain My and fi, is the harmonic measure of the point y on the boundary
it infinity AOM.

The other description of the measure p uses several properties of the
reometry of the stable foliation. There is a local product structure given
sy the stable foliation W* and the strong unstable foliation W"*, that
s the manifold SM can be covered by the ranges of charts

0: B"tl x B™ — SM,

where BY is the unit ball in R?, ¢ is Holder continuous and such that,
or all z, y, (B"T! x {y}) is a neighborhood of ¢(0,y) in W*((0,%)),
p({z} x B™) is a neighborhood of ¢(z,0) in W*¥(¢(z,0)). There is a
‘amily of measures u** on the unstable manifolds such that

drp™ = k(v, 7v)dp*"

whenever 7 is an invertible measurable mapping from a subset of W**(v)
s0 a subset of W*(rv) with 7w € W¥(w) for all w ([L1]). Then the
measure

— d UU !
. /ao({ﬁ}xsn) 4 (L(Bnﬂx{y})f((p(x‘y))k(‘P(an)alP(x»?})Jdvolg)

1o not depend on the chart ¢ on its support and globally defines a finite
measure ji. By construction, the measure ji is A; harmonic (see [G])

and therefore p = ﬁ'épﬂj
Write — for the antipodal map on SM. Then —W?*(—v) is the un-

stable manifold W*(v) and the mapping is an isometry between
(Ws(—'t‘)),gs) and (Wu(v)agu)a
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where g, is defined analogously. The measure —u is the unique A, har-
monic probability measure. We write p*° for the corresponding family
of measures on strong stable manifolds W** given by p** = —pu"".

3.2 Invariant harmonic measure

There is also a unique probability measure m on SM which is invariant
under the geodesic flow and such that, in local charts, the conditional
measures of m with respect to W"* are equivalent to p"* [L1]. From
the description of m in [H] follows that on the range of a local chart,
m is equivalent to the product of the measures p** and some measure
1" on local unstable manifolds, with a positive Holder continuous pos-
itive density. Recall also that m is the Gibbs measure of the function
—X logk(v,-) = —a1(X,). Therefore for any continuous function f on

SM p
/ fdim = 2-P(-a1(X) + 8f)js=0
S

In particular for f = a(X) for some a in C1;

(%) /a(X)dm = %P(—al + 800)15=0

The set of stable forms on C; such that [ a(X)dm = 0 can therefore be
seen as a tangent plane to the convex hypersurface P = 0.

Given a Hoélder continuous function f on SM with [ fdm = 0, we
have ([KS])

& 2
g b d p X
tllp;;E (‘[0 foﬂbrdr) dm = T (_al_( )+5f)|s:U
Therefore, for any « in C] with [ «(X)dm =0,

2

2
. ¢
(%%) lim %] (fo a(va)dr) dm = E—P(—m +8a)|5=0 -

t—oo ds?

3.3 Proof of theorem 3 (1)
Consider the stable Brownian Motion (C(R+,SM),P,) of section 3.1.
Each w in C(R4, SM) can be identified with (@, &p) where @ is a trajec-
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tory of the Brownian Motion on M starting at g and & is such that
wo = (0, €0)-

For P, a.e. w, the trajectory @ converges towards some point at
infinity 7(w) and let 7., denote the geodesic in M such that

F}ﬁd("f'oo) = &0, Y (—00) = N(w)

and
b((z0,€0), (1w(0),€0)) = 0 .
Set
(W) = (Mw(0) ,¥w(0))
and denote for all w such that 4, is defined and all ¢ > 0, (¢(w) the real
number such that ., (G (w)) is the closest point to @(t) on the geodesic .
Let v(w) be the projection of #(w) on SM. This construction associates
to each trajectory w in C(R4, SM) a vector v(w) in W**(wp) and a real
process (¢(w) with the following properties: for P, a.e. w,
lim sup ——d(@1, %(G(w)) < C
t logt
(see [A2], théoreme 7.3) and the distribution m, of v(w) has a Holder
continuous density with respect to p®.
Consider now a stable form a in C; and the real process (Y2):>0,

Y= / Q.
w(0,t)

By [L3, Corollary 2], there is a Holder continuous function U on SM
such that :
(¥ + [ Scadu+Uwr) = Ulwo)eo

is a P, martingale with increasing process 2a(ws)ds. The same result
applied to ag yields a Hélder continuous function Up such that

(b((@0, £0)» (G, £0)) + ¢ / Ss00dp + Up(wr) — U@o))eso-

is a P, martingale with increasing process 2aq(ws)ds.
Therefore we have on a set of P, measure 1:

i) Jim s Vi) + [ oe()dul < C,
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i) Jim o [b((@0, €0); (@1 €0)) — st(w)] < C,

iii) tlin;o |Ztt(w) + [ ésadp| = 0 and

iV) tgr{é]b((aﬂegﬂz(étsfoj) + ffssa{]d;u'l — 0.
Furthermore the distribution under P, of

v) the variable ﬁ%‘m—%— is asymptotically normal with variance
20([a)).

vi) the variable

%(5(&’01 £6) (e o) + 4 / Ssgd)

is asymptotically normal with variance 20 ([ag]).

Properties i) and ii) are obtained by writing the integral of the closed
forms « and ag on the Brownian path w(0, t) as the integral on a continu-
ous, piecewise smooth curve ¢ = (¢, ¢2, ¢3) where ¢ lies is W**(zq, §p), c2
is the geodesic 7,,(0,s:(w)) and g is the curve {(v3(s),60)} where ¥3(s)
is the geodesic between 7, (s (w)) and @y.

If (Z:)¢>0 is a real process on a probability space (2 , ), we say that
the distribution of Z; is asymptotically normal under P with variance
o2 > 0 if for all real A

, 1 _A2
lim [ e*%dP = e 202
t—oo o\ 2

Property v) and vi) follow from the central limit theorem for martingales
and from the fact that as ¢ — oo

t

/ (% | Naoias - uan?dp) @Paggy — 0
1 t

/ (g [ liao(wolPds — [ !If‘rollzd#) @Prygy = 0

(cf the proof of Theorem 1 in ([L3]))

We now translate properties i) to vi) into properties of v(w) and ¢ (w)
under P,,,, where the vector v(w) and the process (;(w) are given by the
above construction:

a) the distribution m,, of v(w) has a positive Holder continuous density
with respect to p®°,

Bol. Soc. Bras. Mat., Vol. 25, N. 2, 1994
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b) lim 5‘-(;“51 = —ffor P, a.e w,

t—oo
c) the distribution of \l,t-(gt (w) + tf) is asymptotically normal with vari-
ance 20([&0]),
d) hm = fg(:(w) a(Yu(u))du = [ dsadp where (7,,(0),4.(0)) = d(w), and
e) the distribution of

Ssbld—1 | éod
\f( RGO / ady)

is asymptotically normal with variance 20 ([a]).

In ¢) and e) we used the fact that if (X;) is asymptotically normal
and (Z;) converges in probability to zero, then (X;+Z;) is asymptotically
normal with the same variance.

The first relation in theorem 3 now follows from a), b) d), (x) and
the following lemma 1, applied to the function ¢ given by ¥ (v) = a(X,):

Lemma 1. For any continuous function ¥, m, a.e. v.

seaele i
Proof of lemma 1. write B for the set of v in SM such that

11n1 —/ Y(Pu) du—fwdm

By the ergodic theorem, the set B has measure 1. Since the function 1)
is continuous, the set B is a union of unstable leaves. By the product
structure of the measure m, for any strong stable leaf, we have

pB(BEN W) =0

Since the measure m,, is absolutely continuous with respect to u**, the
lemma follows.

3.4 Proof of theorem 3 (2)
Assume now that [ésady = 0 and set ¢¥(v) = a(X,). From e) follows
that under P, the distribution of the variable:

—tt

Rl
- ]  (evw))ds + 7 G()ds
L = Ct w)
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is asymptotically normal with variance 20([a]). Like in 3.3, theorem 3
(2) will follow from comparaison of this property with ( * x). We first
have

Lemma 2. Let v be a continuous function on SM, [ dm = 0. Then for

alle >0
—2t

Jim Py (w : | )v(qbuv(w))dulzex/i):o.

g (w
The proof of Lemma 2 is parallel to the proof of Lemma 1: with
large probab1]1ty 7 f 1}; is small since [1dm is zero and ¢ (w) + £t
is comparable to v/1. More explicitly, there is k > 0, Tp such that for all
t> 1Ty

Py{w: % < lsp(w) + £t] < kViE} >1-— g ;

Also fix a finite cover of SM by open sets O; which are ranges of
(W*, W#$) charts. There is a number § > 0 such that if B is a union
of subsets B;, B; C ©;, B; is a union of W* plaques with m(B) > 1—19
then mg ¢,(B) > 1 — 5 for all (zo, &o)-

Choose T} by the ergodic theorem such that m(Ar ) > 1 — 6, where

1t €
Agy = oVt 2T | ]D Y(buv)du| <

dl 0{ d <i}
an |E /_tw(qbuv) u|__2k.

By continuity of 1 there is a Ty such that if ¢ > T if v; and vy are in
the same W plaque in the same O;, then for all s, %\/E < s < kvt

—Lt+s —ft+s
o f Y(guondu— [ L b(Gu)dul <

and for all s ,5 < —l\/f

-t —ff €
lSI f Y(yv1)du —/ P(Pyv9)du| < o

fi+s Lt+s

For t bigger than Tj, k2 Tl , T, write B; for the set of v in SM such that
there is v1 in the same W* plaque as v with ®_gv; € A7,. Then for all
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v in By, all s with £/ < |s| < kv,

= [ vl < £

ol e

By definition of By,

m(By) =2 m(¢uAr) =146,
so that
Lemma 2 follows since when v(w) € By and

Vit

% S &)+ & < kVt,

then
—ft €
| fg oy VO] < )+l <V

From lemma 2 we conclude that for all (zq, &y) under M(2,60)? the vari-
able -

1 0
ﬁ/—& Y (Puv)du

is asymptotically normal with the same variance 20 ([a]). It follows that
under the probability m/,

m’ :/m(zo,go)dm(mcl!g())a

the variable

0
% / L UG.0)du

is asymptotically normal with variance 20([a]). Observe now that the
measure m’ has a continuous density with respect to m as can be checked
readily in local charts.

Lemma 3. Let (X, A, m; ) be an ergodic flow, 1 a bounded function, U
a non negative function such that [ Udm = 1. Assume that under m’ =

Um the variable % fgzb(ﬁ:udu is asymptotically normal with variance o.
Then the same 1is true under m.

Bol. Soc. Bras. Mat., Vol. 25, N. 2, 1994

HARMONIC 1-FORMS ON THE STABLE FOLIATION 187

To prove Lemma 3, observe that the set of functions U such that,
under the measure Um, the variable -% jé ey, du is asymptotically nor-
mal with variance & is clearly invariant under ¢, convex, and closed in
L' norm. By the ergodic theorem, if it contains one function U, it also
contains the constant 1.

Using lemma 3 and the discussion above we get

Corollary . Let ¥ be a continuous function on SM, of class C? along
the leaves, with- Holder continuous 2-jets. Then under the invariant

harmonic measure m. The variable

1 y [y ) - hy
ﬁ(/[.] P (pyv)du t/ﬁ,dm)

is asymptotically normal. If we write
Y() = [ vdm + a(X,)

for a in Cy, the limit variance is %(f([&'l).

The relation (2) in theorem 3 follows by comparing the value of the
limit variance in the corollary and in (#*).

Observe also that, in the same way as in [LJ], we prove a central
limit theorem for the averages of regular functions along the geodesic
flow and the harmonic invariant measure. This is a particular case of a
result of Ratner ([Ra]).
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